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LATTICE BASIS REDUCTION, JACOBI SUMS
AND HYPERELLIPTIC CRYPTOSYSTEMS

J O E BUHLER AND NEAL KOBLITZ

Using the LLL-algorithm for finding short vectors in lattices, we show how to compute
a Jacobi sum for the prime field Fp in Qfe27r'/"J in time O(log3p), where n is small
and fixed, p is large, and p = 1 (mod n). This result is useful in the construction of
hyperelliptic cryptosystems.

Let n = 2<7 4- 1 be an odd prime, and let p = 1 (mod n). Consider the hyperelliptic
curve

(1) C: Y2 + Y = Xn

of genus g over Fp. Let N be the number of Fp-points on the jacobian J of the curve
C. Our purpose is to give a fast method to compute N when n is small and p is large
— that is, in the cases when the jacobian group might be suitable for the hyperelliptic
cryptosystems introduced in [7].

The jacobian J of the curve C is a quotient of the jacobian of the famous Fermat
curve Xn + Y" — 1. Formulas for the number of points on C and on J go back many
years; a detailed treatment can be found, for example, in [6]. We shall state what we
need without proof.

Let C = e2m/n, and let a e F p be a fixed non-nth-power. There is a unique multi-
plicative map x o n F p such that xia) = C- We extend this character \ to Fp by setting
x(0) = 0. Let

(2) J(X,X)= £ X(V)X(1-V)
V€FP

be the Jacobi sum of the character x with itself; and for 1 ^ i ^ n — 1 let O{ be
the automorphism of the field K = Q(C) such that CTJ(C) = 0- Then an easy counting
argument shows that the number of points on the curve (1), including the point at infinity,
is equal to
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148 J. Buhler and N. Koblitz [2]

where TK/ Q is the trace from the cyclotomic field K down to the rational numbers. One
can also show (see [6, 11]) that —J{x, x) and its conjugates are the reciprocal roots of
the numerator of the zeta-function of this curve. In other words,

n - l

Z(T;C/FP) = - ^

The number N of points on the jacobian J of C is equal to the value at 1 of the numerator
of Z(T\ C/Fp); that is,

n - l

(3) N = p °i (AX, X) + l) = N*, Q (J(X, x) + l),

where N#y Q(Z) denotes the norm of an element x of K.

There are two reasons why we are interested in small n. In the first place, when
constructing a hyperelliptic cryptosystem, one usually wants N to be no greater than
sa 1050. Since N falls in the interval [(^/p - l ) " ~ \ (y/p+ l)""*] (bY (3)) — that is, it
is roughly equal to p9 — we see that if g ^ 8 we shall be working with primes p of order
only about 106, and for them the Jacobi sum can be quickly evaluated directly from the
definition (2).

In the second place, there is a security consideration that argues against choosing
n > 13 in the cryptographic applications. In [1] a subexponential algorithm is given for
the discrete log problem in the jacobian of a hyperelliptic curve of high genus. Although
the exact practical meaning of "high genus" has not yet been established, it seems prudent
to avoid genus g for which n — 2g + 1 > log p. Since we are interested in p such that
glogp is about 100, our restriction n < 13 shall be sufficient for the purpose of ruling
out the Adleman-DeMarrais-Huang attack.

A final crucial condition for a hyperelliptic cryptosystem to be secure against all
known attacks is that N must be divisible by a large prime (of at least 40 decimal digits).
[There is one other attack on hyperelliptic cryptosystems: the generalisation in [4] of the
method in [10] of reducing the elliptic curve discrete logarithm to the discrete logarithm
in a finite field. However, that attack is feasible only if the jacobian is supersingular (that
is, all of the reciprocal roots of the zeta-function have p-adic ordinal 1/2), and in the case
of the curve (1) with p = 1 (mod n) the jacobian in fact is always ordinary (that is, half
of the reciprocal roots are p-adic units).]

Along with the curve C given by (1), we also consider its "twists" by non-nth-
powers and by non-squares. To do this, let 77 be a fixed non-square in Fp, and consider

the equation
_ . / 1 \ 2 „• „ 1

V
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for i = 0,1 and j = 0 , 1 , . . . , n — 1 (where a is the same fixed non-nth-power that was
used to define x). This equation can be rewritten in the form

(4)

By analogy with (3) one finds that the number of points on the jacobian of the curve (4)
is given by

(5) Nid =

When constructing a hyperelliptic cryptosystem we compute the numbers N^ and
hope that some will be prime or almost prime. Actually, some of these numbers are forced
to be divisible by n or n2. It follows from (7) below that iVo.o is divisible by n2 and NQj
is divisible by n for nonzero j . In that case the most one can hope for is that NOtO/n2 or
Noj/n is a prime. When i = 1, there is no such obstruction to Nij itself being prime.
Thus, after we compute J(x,x) f°r our chosen n and p = 1 (mod n), we shall want to
compute the numbers (5) and test n~2No,o, n~lNoj, and N\j for primality. Since Nij is
of order p9 = p '""1 ' / 2 , we see that to get jacobians whose order is divisible by a prime of
size at least B, we should take primes p larger than B2^"-1). For instance, if we want
Nij to be divisible by a prime of at least 40 digits, then B — 1040 and we should choose
p larger than bn where:

n: 3 5 7 11 13
bn: 1040 1020 2 x 1013 108 5 x 106

We need a way to compute the Jacobi sum J{x,x) that is much faster than the
definition (2), which clearly takes time O(p). In the case n = 3 this was in effect done by
Gauss, who found an explicit formula for the number of points on (1) [5]. The calculation
boils down to the computation of a greatest common divisor in the ring of integers of the
field of third roots of unity. The Euclidean algorithm has been generalised for n = 5,7,11
[9], and this could presumably be used to calculate Jacobi sums. We prefer to use lattice
basis reduction [8], which gives a general solution to the problem that does not depend
on special properties of the n-th cyclotomic field. (See also a similar use of LLL in [2].)

We start by considering the prime ideal P C Z[C] of degree one that lies over the
rational prime p and is generated by p and a — C> where a = a^""1^" is a primitive n-th
root of unity modulo p that depends on the choice of a. We shall assume that P is a
principal ideal; this is always the case if n < 23, because the corresponding cyclotomic
field has class number one. (We remark that for larger n one could select primes p for
which P is principal, or else one could consider the ideal n <*rl(P)t which is guaranteed
to be principal since it is generated by the Jacobi sum.)

Our main computational task is to find a generator /? of P. Assume for the moment
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that this has been done. We then set

(6) J = f[a-l(/3).
i=l

By standard facts about Jacobi sums, the ideal generated by J is equal to the ideal
generated by J(x, x)- Moreover, J also shares with J(x, x) the property that the different
imbeddings in the complex numbers all have the same absolute value. In fact, for any Oj

the product of a, J and its complex conjugate o,- n <*71{P) I is the norm of /?, which

is equal to p, so that all archimedean absolute values are equal to ^/p.
It follows from these facts that J is equal to J(x, x) UP to a root of unity. To find

the root of unity, we use the congruence

(7) J(X,x)=-l (modTr2)

in the ring Z[£], where TT = £ — 1 is a generator of the unique prime ideal lying over n
(see [6, p.227]).

n-2

We know that there exist r G {±1} and s such that r£"J = J(x, x)- Let J = £ o-jC.3-

From the formula
C* = (1 + n)k = 1 + kn (mod TT2)

we see that the congruence (7) reduces to

n - 2

= - 1 (modTr2).

This congruence is easily solved by choosing r € {±1} such that r = - £ a.j (mod n) and
then setting s = r'Eja.j (modn). We have thereby reduced the problem of finding the
exact value of J(x, x) to the problem of finding a generator /? of the ideal P.

To do this, we use the LLL lattice basis reduction algorithm (see [8] or [3]). Recall
that if L c R2' is a lattice of rank 2g, then the LLL algorithm produces a nonzero vector
x in L with norm ||i | | bounded by

Here 6 — l/(a — 1/4) > 4/3 is a constant that depends on the choice of a parameter a
satisfying 1/4 < a < 1. The larger a is, the better the short vectors are and the more
slowly the algorithm runs. For fixed g the choice of a only affects constants in the running
time.
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The cyclotomic field K = Q(C), where £ = e2"' /n, can be imbedded in C 9 in the usual
way by taking an element of K and applying each of the g imbeddings (up to complex
conjugation) of K into C to construct a </-tuple of complex numbers. The image of the
ring of integers Z\C\ is a lattice whose determinant is 2~9\/D, where D = DK/Q = nn~2

is the discriminant of the field. The prime ideal P of degree one lying over the rational
prime p is a sublattice of rank 2g and determinant 2~9p\/~D. By abuse of notation we
shall identify the ideal P with its image under the imbedding into C9. We now apply
LLL to this lattice and get an element

x = (xux2,...,x2a-i,x2g) € R29 ~ C 9

that is bounded in the R29-norm by

The images of this element of the ideal P under the various imbeddings of K into C are
X2j-\ + ix2j, j = 1 , . . . , 5 , and the norm of the element is the product of those numbers
and their complex conjugates, that is, the product of i jy-i + x

2j
 o v e r J = 1> • • • J 9• Using

the arithmetic-geometric means inequality and the above bound on the Euclidean norm
of £, we get

( ^ + + Xl)9 < 9-9^p2-%2g + I)9 • - L

In other words, LLL returns us an element of P whose norm is bounded by a constant
times p .

We consider the ratio NK/Q(X)/P and the running time first from a theoretical point
of view, and then we describe what happened when we implemented this algorithm.

Since the dimension is fixed, the running time of the LLL algorithm depends only
on the size of the numbers describing the lattice. In our context, the size is Ouog (p)J
and the running time is O(log(p)3) (see [8] or [3]).

Now we ask how much larger than p the norm Nft-/Q(a;) can be. In the case n = 5,
g — 2, we choose 6 = 1.99, so that LLL gives us an element x € P with N K / Q ( I ) ^
1.994(25/(16\/5))p < l i p . Since there are no elements of Z[£] of norm strictly between 1
and 11, it follows that x has norm p, and so is a generator of P. Thus LLL is guaranteed
to produce a generator (3.

When n > 5 the bound on the norm is not sharp enough to guarantee that we
shall immediately get a generator However, the bound tells us that the norm differs
from the desired norm p by a constant (that is, 59 ye/n ) that depends only on n.

In theory we could tabulate generators of all ideals of K whose norm is less than that
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constant, and then divide the element produced by LLL as appropriate. In other words,
if NK/Q(X) = cp, then our table would contain all generators y of ideals of norm c, and
for some such y we would find that x/y is an algebraic integer in K of norm p.

For instance, if n = 7, then, <3ioosing<$ = 1.538, we find that LLL gives us an element
x G P with NK/Q(X) < 29p. Then the only possibility other than 1 for NK/Q(X)/P is
8, and in that case it suffices to try just y = 1 + C + C3 a n d its complex conjugate. If
n ^ 11, then the number of y of norm less than the theoretical bound Sg2 Je/n becomes
considerably larger.

What happens when we actually implement this algorithm? First, we remark that
although the lattice P C R2fl is not generated by vectors with integer coordinates, the
Gram matrix of the lattice is (almost) integral. This is convenient, because it means
that "all-integer" versions of LLL can be employed, so that there are no round-off error
concerns (see [3]). For the sake of those wanting to duplicate our experiments, we give
the Gram matrix explicitly.

An element u> of the field K is a polynomial /(C) in C, and it maps to the element

under the usual imbedding. If /(07) = % + ify, a,j,bj € R then the image as a real 2g-

tuple is (a i ,6 i , . . . ,ag,bg). The Euclidean inner product of two such real vectors w = /(C),

u/ = /'(C) is

<w,w'> = t,aja!i + bfi = £Re(/(CV(Cj)) = (1/2)T*/Q(W),

where uf denotes the complex conjugate of u/. To make this inner product an integer
when LJ,U)' € Z[£], from now on we replace the standard inner product on R2s by twice
itself. (This artificial device is needed because we considered only half of the complex
imbeddings; a more elegant alternative would have been to imbed K into C2* ss R4ff and
to note that the lattices in question are no longer full lattices, but rather have rank 2g.)
If we now choose a Z-basis {o>i,... ,u>2g} of the prime ideal P, then the Gram matrix of
the corresponding lattice is T K / Q ^ W J ) .

Our prime ideal P is generated over Z[£] by the two elements p and £ - a (where
a = a(p~1)/n is the same primitive n-th root of 1 modulo p as before). This implies that
P has Z-basis

{p ,C-a ,C 2 -a 2 , . . . ,C n " 2 -an-2} ,

where a* = (a* mod p). Indeed, these elements are all in P, and the index of the ideal
that they generate in Z[Q is p.

The Gram matrix with respect to this basis is easy to compute:

(p,p) =
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- 1 + ak + a/ + (n - l)ata(,

where <$jy = 1 if k = I and Ski = 0 otherwise.

Our algorithm can be easily implemented in any symbolic algebra system that in-
cludes an LLL algorithm. We chose GP/PARI. The program is about 10 lines of code.
For n = 5 it runs more or less instantaneously on our workstations, even for primes up
to 100 digits. For n = 19 it takes only a few seconds, even for 50-digit primes. In other
words, in an application to hyperelliptic cryptosystems the running time is small, even if
we take into account that the program will have to be run many times in order to obtain
prime values.

In addition, the shortest vector produced by the algorithm had norm p in all exper-
iments that we tried. In fact, the usual situation was that all n — 1 vectors in a reduced
basis had norm p, although there were several instances for n = 19 where only about half
of the vectors had norm p. In other words, the theoretical bounds on the norms of the
vectors are much greater than what one seems to get in practice.
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