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ABSTRACT 
The design of systems today often involves computer simulation to assess performance and design 
margins. Understanding how variability erases design margin is important to assure adequacy of 
margins, especially in optimization efforts. In this paper, we develop a toolchain using open source code 
libraries in Python, and encapsulate it in Jupyter notebooks, to provide an open source, interactive 
uncertainty quantification and sensitivity analysis toolchain. This works generally with simulation tools, 
where a reference folder is created containing a script that reads an input file of parameter values and 
runs the simulation. With that easily created, the toolchain executes the necessary uncertainty 
quantification steps with replicates of that reference folder. This approach fits within a broader workflow 
outlined that defines the variation modes to study, maps to simulation inputs, and screens the variables 
for sensitivity before conducting an uncertainty quantification. An example is shown in the simulation 
analysis of a Stirling engine. 
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INTRODUCTION 

The design and development of systems today is becoming more complex, involving the consideration 

of many dimensions and features that all interact and contribute to providing the overall system 

performance. In concert with this increased complexity, the ability to diagnose when problems occur 

has become more difficult. For example, Tan et al. (2017) report on recent examples of large programs 

that had experienced unexpected cost overruns and delays, and found unexpected redesign effort due 

to design margin loss on critical requirements as contributors. Detailed inputs when varying interact in 

unforseen ways reducing constraint margins, causing extensive debugging and lost productivity. The 

aim of this paper is to provide a accessible means for engineers to study variability and design 

margins, to make use of and encode available algorithms and code libraries on uncertainty analysis 

into readily adopted scripts for a design engineer. In this paper, we present a workflow procedure 

implemented in the open source scripting language Python to quantify the design margin capability 

against uncertainties using computer simulation tools and Quasi-Monte-Carlo simulation. We adopt 

previous research methods and combine them into a scripted process to define, initialize, compute and 

report the uncertainty in a system and its causal sources. 

Complex system design often involves assuring a hierarchy of system, subsystem and component 

operational constraints such as temperature, pressure and loading limit constraints while supplying 

necessary system performance. Typically design engineers meet constraints using margins, an 

allowance between the failure limit to be avoided and the limit of operation over the population of 

units built. Margins are necessary to cover the range of uncertainty, including the variability in as-used 

conditions and variability in as-manufactured units. 

The degree of design margin needed is typically based on past experiences, where for example 

insufficient margins on past designs have caused failures and so increased. With the expanding 

adoption of design optimization, the ability to get design margins right is becoming more critical, as 

the optimization analysis can often drive the design solution right up to the design margin constraint 

limit. Therefore, estimation of the design margin limits becomes more critical. 

The design margin limit often is made difficult given uncertainty tolerances on inputs. While design 

optimization studies generate high performance designs, it also selects the nominal configuration with 

active constraints. This often leaves open that as-built units, which can be anywhere in the tolerance 

domain, may also exceed the design margin boundary slightly. Some of the design margin is 

consumed by as-built manufacturing variations. Engineers need the means to quantify and estimate the 

level of design margin used up by manufacturing variability. 

To improve the estimate of necessary design margin, the uncertainties can be quantified and studied 

for impact on design margins. Given a simulation or parametric model of the design constraints, it can 

be used to compute the uncertainty in the design margin and associate risk of failure. Input variations 

are represented as probability distributions, and uncertainty quantification methods applied to compute 

the design margin distribution. 

While apparently straightforward for implementation, in practice barriers remain to adoption of the 

previous research which has developed these techniques. Uncertainty quantification methods remain 

difficult for many firms to adopt and limited (Wallace, 2011, Arvidsson et al., 2010). The aim of this 

paper to provide workflows of manual and computational tasks for engineers to execute the analysis as 

readily adopted open source scripted procedures. This includes systematically studying a design for 

necessary input variations to modeling, mapping these variations to simulations and variables, 

screening the many variables, and quantifying the contribution of the several sensitive inputs. In this 

paper, we present a workflow procedure implemented in the open source scripting language Python to 

quantify the design margin capability against uncertainties using computer simulation tools and Quasi-

Monte-Carlo simulation, and to clarify the largest input contributors. 

Many researchers have explored robust design and uncertainty quantification in design research. Chen 

et al. (2006) pioneered analysis methods to compute robust designs. Fang et al. (2005) have described 

various sampling methods and results with examples from the automotive industry. Jin et al. (2001) 

discuss alternative surrogate models for simulation in design. These previous research efforts 

demonstrated the necessary algorithms and methods to implement robust design, we adopt the 

methods here and make it available using open source code libraries within a scripted workflow. 

Rikard et al. (2006) have developed tools and methods to consider uncertainties in compliant 

assemblies, and also has studied geometric variation management and impact on performance 
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(Forslund et al., 2018). Howard et al. (2017) have studied variation management, mapping variability 

from processes through to system variability. Freund et al. (2017) offer guidelines for improving 

robustness. These work are related to that here as studies in robust design of related mechanical 

systems. 

1 MODEL BASED DESIGN CAPABILITY ANALYSIS METHODS 

To analyse a design for margin loss through uncertainty, uncertainty quantification is needed (Eifler et 

al., 2013, Arvent et al., 2013). These are computational methods to sample an input space of variables 

and use computer simulation tools to compute response values and fit a distribution to the results. In 

this way, the risk of a constraint failure limit margin can be computed as the probability beyond the 

failure limit. 

The uncertainty is typically viewed as a histogram of simulation output data points computed at input 

variable values sampled over an input space. Among others, common methods for sampling include 

traditional factorial sampling, random sampling, Latin hypercube sampling, and low discrepancy 

sequence sampling such as Hammersly, Sobol or Halton sequences (Garud et al., 2017). 

To analyze for contributions, global sensitivity analysis methods computing Sobol indices are needed. 

Methods for computing Sobol indices include FAST or Saltelli’s method which builds off a base 

sampling approach such as Sobol sampling (Saltelli et al., 2008). Unfortunately for problems of 

typical size of over 10 variables, thousands of samples are needed for reasonably small confidence 

intervals on the results. Therefore the computational effort needed for these becomes prohibitive 

without some form of screening of variables. 

One approach for screening variables for contribution is Morris’ method (Saltelli 2008). Here a set of 

one-factor-at-a-time variable changes are made as path sequences. The results are integrated to provide 

a rank ordering of variables on both their main effect and on their nonlinear effects (higher order or 

interaction effects). While not quantifying the uncertainty contribution, the Morris method does 

indicate which variables are more important than others. This can be used to screen a large set of 

variables down to many which ought be investigated with Sobol indices calculations. 

Another approach for reducing the computational burden is using surrogate models. Methods include 

ordinary least squares regression, radial basis function interpolation, Kriging or Gaussian process 

modeling in general, and support vector regression, among many others. Qian et al. (2005) discuss 

such surrogate model use in mechanical design. 

These works describe the methods and tools needed for efficient uncertainty quantification and 

sensitivity analysis in robust design. We next demonstrate a toolchain of these algorithms using 

open source libraries and tools, made explicit in an easily used robust design workflow 

implemented in Python and Jupyter notebooks. The approach makes these methods accessible and 

easily implemented. 

2 CAPABILITY ANALYSIS WORKFLOW AND TOOLCHAIN 

A workflow is an orchestrated repeatable sequence of tasks or procedures to be execute to solve a 

problem. We are here concerned with a workflow for robust design, to define, initialize and solve for 

the uncertainty in a system output and explain it in terms of system input variations. This can be 

repeated for different design concepts. Robust design has both manual and computational tasks. 

Manual tasks include defining what inputs ought be considered for study. Computational tasks include 

quantifying the uncertainty or decomposing it with sensitivity analysis. When executing a workflow, 

standard input and output artifacts are generated at each step. When the output of a computational task 

is the input to the next computational tasks, the chain of computational tasks can be scripted into a 

toolchain. 

Typically toolchains are defined as a sequence of commands in scripted languages such as Matlab, 

Python, or shell scripts. Here the toolchain is developed in Python, an open source complete 

programming language. With limitations, the toolchain could have been developed in other languages. 

Python is useful for several reasons. First, it is inherently a complete programming language, whereas 

others are perhaps not. It is extensive with many developed code libraries. It is also modern, most 

packages are complete with features such as automated testing and peer-reviewed documentation. 

Finally, as open source it is constantly improved and debugged by the community. 
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2.1 Python toolchain 

The tool chain is a scripted set of procedures that implement the calculations within robust design 

workflow. The Python toolchain is built within the open source Jupyter Notebook environment 

(Kluyver et al., 2016). This environment is a system of interactive webpages, a webserver, and a 

computational core that executes commands entered in the webpages. The computation core can be 

one of several languages such as Python, R, C#, or otherwise; here we work with Python. 

Jupyter notebook pages are edited by the user and consist of blocks, where each block is either a 

descriptive Markdown (html) documentation block or an operative Python code block. Workflows are 

easily implemented in Jupyter notebooks as a sequence of code blocks that can be interactively 

modified and executed, block by block. Operative code blocks are programmed in Python. Typically, 

each Python code block is separated by a Markdown description block, which offers highly descriptive 

html documentation comments and instructions for the next code block. 

The open source Python coding language offers many relevant packages for uncertainty quantification, 

including statistical analysis and graphics, design of experiments, sampling procedures, surrogate 

modeling, and global sensitivity analysis. Many Python packages are used in this toolchain. 

For uncertainty quantification sampling methods, several packages are used in the toolchain depending 

on user selections. The Python package pyDOE (Baudin 2015) provides factorial and Latin hypercube 

sampling. The package sobol_seq (Lawless 2015) offers low discrepancy Sobol sequence samples, and 

the package ghalton (De Rainville, 2017) offers low discrepancy Halton sequence samples. 

For surrogate modeling, the Python package scikit-learn (Pedregosa et al., 2011) is used. This package 

offers many surrogate modeling alternatives including ordinary least squares regression, radial basis 

functions, support vector regression, Kriging, Gaussian process models, PCE models, and many others. 

For sensitivity analysis, the Python package SALib (Herman et al., 2017) is used. This package offers 

multiple sensitivity analysis methods, including FAST, Saltelli sampling, and fractional sampling methods. 

2.2 Robust design workflow 

While these codes and methods are available as code libraries, they are not convenient for a system 

design engineer to apply. An experienced design engineer often would be a novice at these packages 

and would not know where to start. We here implement these codes and necessary activities into a 

robust design workflow diagrammed in Figure 1. This is a combination of designer assessment tasks 

and computational tasks. The workflow starts by considering a system with a variation problem, and 

first clarifies the issues to be modelled. This is mapped to available simulations, and then variations 

defined for uncertainty propagation with the simulation model. 

 

Figure 1: Model based robust design workflow. 
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There are several steps, however, that become necessary in this workflow to make the calculations 

practical. These include analyses to detect convergence issues in the black-box simulation, 

analyses to screen the variables to a smaller set for uncertainty quantification, and surrogate 

modeling to make the sensitivity analyses computationally practical.  We detail each step of the 

workflow next. 

The first step of the workflow is for the important variation modes to be identified.  Rather than 

simply consider a simulation model and varying its inputs, a design engineer ought examine the 

system and make clear the necessary inputs to consider. Using the Variation Modes and Effects 

Analysis (VMEA) methodology (Johansson et al., 2006), a system is analyzed for causal sources 

of variations in each component of the system, the variation modes. This is a manual task, often 

executed as a workshop of engineers and results in a list of hundreds of possible input variation 

modes for a typical system. 

Next in step 2 of Figure 1, given the list of possible input variation mode causes and available models, 

the variation modes identified are mapped to model variables. Typically any available model does not 

necessarily represent all variation modes, some sources of variation are of too fine a geometric or 

dynamic resolution compared with a simulation model that may happen to be available. As such, the 

modeling choices are interrogated here over scale, amongst more rapid lumped parameter models 

versus finer resolution using slower computing models. The result, however, is a choice of multiscale 

models used and their inter-dependencies as a computational flow. For example, a dynamic simulation 

model of a device can generate force loadings passed on to a finite element stress model of one 

component at several conditions which can generate stress inputs which are in turn passed on to a 

cycle stress-strain material model to predict component life. Linking the original causal inputs to the 

ultimate design margin constraint in this way using perhaps several inter-linked models is what we 

will call a simulation compute unit. 

To easily construct this, we create a reference folder on the computer within which the simulation will 

be executed, Step 3 in Figure 1. Within this folder, we create a file input.csv which is a simple two 

column table of input variable names and values. We then define a batch file (shell script) in the folder 

that is executed. The batch file (shell script) calls an executable file that reads the input.csv file, 

populates the simulation code with the values for the variables, and generates the outputs. These are 

written to a file output.csv which again is a simple two column table of output variable names and 

values. This reference folder is created by the user, and contains all codes and files needed for a batch 

file (shell script) to generate the particular output file from the input file. The simulation compute unit 

is thereby encapsulated within a reference folder on the computer, as shown in Figure 2. This folder 

will be copied and the input file modified for each new input sample used in the uncertainty 

quantification. With the reference folder and compute unit so constructed, initially it is known to 

generate validated predictions at the nominal design. 

 
 

Figure 2: Reference folder for a simulation and the Jupyter Notebook. 

Given the simulation models are constructed as a compute unit and it generated validated predictions at the 

nominal design, there remains no assurance the compute unit will converge and generate a value at input 

values other than the nominal configuration. It can often be the case that changing an input by any amount 

will cause the simulation to fail to converge. This is a problem with most probabilistic sampling strategies 
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which vary all inputs simultaneously, and would result in all samples failing. To check for this, we first 

conduct a very simple one-factor-at-a-time change in input values, to verify the simulation, Step 4 in 

Figure 1. In this step, the reference folder is copied N times for each of the N input variables, and the 

input.csv file contains the nominal inputs except for the ith variable which is increased by a small 

amount such as 1%. Executing these N simulations and ensuring all produce viable results indicates 

the simulation can be used for simultaneously varying all N inputs. 

The next step is to screen the many variables that might possible affect the response down to those 

which have non-negligible sensitivity. The contribution of any variable is conceptually it’s input 

distribution multiplied by it sensitivity. If the variable’s sensitivity is negligible, then it is not worth 

the effort to gather data on its input variability. To compute a rank order of the variables on sensitivity, 

the Morris method can be applied (Saltelli et al., 2008). Here each input is varied over a range of 1%, 

and a set of Morris samples are generated, Step 5 in Figure 1. Here, these samples are generated by the 

Python toolchain, and a set of replicated reference folders generated. 

These folders are each executed by the toolchain, as a set of parallel runs, Step 6 in Figure 1. The 

results in the output.csv files of these runs are then collected and analyzed into a Morris contribution 

analysis, Step 7 in Figure 1. The result is a computed filtered rank order of the inputs into those which 

significantly contribute sensitivity and those which do not. 

The next step is to gather input distribution data on the screened input variables, Step 8 in Figure 1. 

This is a manual laborious task of gathering and estimating Cpk data to inform the input distributions of 

the uncertainty quantification. Typically, this means measuring the standard deviation of 

characteristics of a sample from production parts similar to the new design. 

With the variability quantified, these can be used as variations around the nominal design, Step 9 in 

Figure 1. Then a sample of points in this input uncertainty space are created, Step 10. Sampling 

methods are typically Sobol or Latin hypercube samples. These samples are generated by the Python 

toolchain using sampling code libraries as discussed in the previous section, and a set of replicated 

reference folders generated. The samples are distributed according to the input distributions. These 

folders are each executed by the toolchain, as a set of parallel runs, Step 11. 

These output sample points are then collected from the output.csv files in the folders and shown as a 

histogram, and a distribution fit to the data through maximum likelihood in Step 13. This completes 

one view of the uncertainty quantification, directly using the simulation results. Confidence intervals 

on the statistics provide an indication of adequate sample size in Step 10. 

With the input and output samples, next in step 12 of the workflow a surrogate model is computed for 

use with the sensitivity analysis, which typically needs many more sample points than are realistic 

with direct simulation. The surrogate model is created by the Python toolchain using the Scikit-learn 

code library. A correlation analysis and confidence interval on the fit is generated using bootstrapping, 

and so the goodness of fit and adequacy of the sample size in Step 10 can be assessed. 

With a surrogate model, the intensive sampling needed for global sensitivity analysis can be executed 

to compute Sobol indices, to determine how much each input variable conributes to the output 

uncertainty distribution. These are computed in Steps 14-15 of the workflow using the SALib code 

library which creates a large sample set where at each sample the surrogate model is computed. The 

result is the first, second and total order contribution of each variable, and for each a confidence 

interval computed using bootstrapping. If the confidence interval is too large, a larger sample size can 

be used. 

These steps complete one cycle through the toolchain. As a last step in the workflow, the computed 

uncertainty distribution can be compared against the design margin considering the large input 

contributors. If the output distribution uncertainty is too large compared to the design margin, 

alternative design configurations can be considered and run through the toolchain to compute if the 

new design has higher capability. 

2.3 Example: Stirling engine robust design 

While we have used the workflow in industrial use cases including industrial electric motors, aircraft 

brake systems, air management systems and commercial air conditioning equipment, an issue is that 

industrial use cases are proprietary. We here consider a systems design problem with complete open 

data available for all to study, a Stirling engine project created within the university. The high thermal 

efficiency and the ability to operate on non-traditional heat sources has kept Stirling engines of 

research interest and under constant optimization (Çınar et al., 2018). It will be used to demonstrate 
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the analysis of performance uncertainty due to variability on input manufacturing sources. This 

provides an example of the intended workflow, to define and study the performance uncertainty of a 

system design. 

A miniature Stirling engine was used in a university machine design project course. The tight 

dimensional and geometrical tolerance requirements of a Stirling engine make it an ideal system to 

develop machining skills. Students were asked to machine selected parts of a Stirling engine kit, and 

the remainder of the parts provided. A total of 85 students working in teams of 5 produced 17 engines. 

Each engine was assembled and tested, measuring the operational no-load speed. The no-load speed 

varied between 200 rpm and 600 rpm, depending on the variability of the manufactured parts and 

assembly process. This activity indicated the Stirling engine is sensitive to manufacturing and 

assembly tolerances. However it was not clear which component features or combination of tolerances 

were the most critical in the Stirling engine. 

Separately, Ureili (2010) created a simulation model of the Stirling engine and made it available as a 

Matlab simulation code. Given geometry and temperatures, a Schmidt analysis of the Stirling engine 

cycle is calculated which computes the thermodynamic energy output per cycle and thereby the 

thermodynamic power produced. Given the variability of no load speed observed in the engine sample, 

an uncertainty quantification and sensitivity analysis of the thermodynamic power predicted from the 

Schmidt analysis model could indicate which inputs are most sensitive and need most care when 

fabricating. 

To study this problem, the toolchain was applied to study the performance uncertainty and to 

determine contributing sources, as a demonstrator. The goal was to find the critical parameters 

affecting to the power output performance of the engine. Graduate student teaching research assistants 

applied and executed this workflow, in support of their course teaching, to gain understanding of 

which inputs were critical. 

 

Figure 3: Stirling engine uncertainty quantification and sensitivity analysis results. 

The Stirling engine simulation was written by Ureili (2010) in Matlab for execution. A reference 

folder was created with a file input.csv which had 28 input variables including part diameters and 

lengths in one column and values to use for them in the second column. Within this folder a Matlab 

command script was created which read the input file, ran the Stirling engine simulation code with 
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these input values, and then wrote the output power value to a newly created file output.csv, which had 

one row of data with the output power name and value. Then a BAT batch file was created that 

launched Matlab to run the command script, with all errors directed to a newly created error log file in 

the folder. This reference folder of the input.csv file, Matlab script and batch file will then be copied 

for every execution of the simulation. 

For the Stirling engine, the VMEA analysis identified 42 sources of variation that might affect the no-

load speed. Of these, 12 input variables were prioritized and considered for their impact on computed 

engine power generated. The results of the uncertainty assessment and contributors are shown in 

Figure 3. The computed engine power uncertainty distribution range was ±6%, a large range of 

performance variability. The sensitivity analysis was then executed, and the results show the 

uncertainty was primarily due to the contribution of the piston displacements and diameters (Figure 3). 

This was consistent with the experimental results in the course, where engines with tight power piston 

fits were slower, and engines with larger displacer volumes were faster. 

3 CONCLUSIONS 

A workflow and toolchain for computing uncertainty and sensitivity using simulation is necessary for 

enabling engineers to compute robust design calculations. This proves useful for complex system 

design problems where a performance response has excess variability due to poorly understood input 

manufacturing variations. Yet, running Monte-Carlo simulation studies of an available simulation 

model inputs alone offers no assurance of solving the variability problem. An entire workflow from 

identifying variation modes to model setup to actual sensitivity analysis is all necessary. 

A Python toolchain making use of open source code libraries can offer rapid setup and execution, as 

embodied in a self-documenting Jupyter notebook environment. This is freely available as an open 

source tool. The structure of the toolchain makes it easier for engineers to make use, given the 

construction of a simulation with input and output files in a reference folders. 

Wallace (2011) noted that transfer of design research to industrial practice is difficult and often due to 

lack of a champion. Design researchers pursue a research objective and demonstrate a novel result 

whereas engineers in industry pursue the launch of a new product. These are disconnected. While 

causes for the disconnection are many, high complexity and perceived irrelevance are contributors 

(Wallace 2011). The work here is to create a self-documented toolchain using easily available open 

source code libraries, to thereby make robust design accessible. We have used this toolchain in several 

industrial contexts started by simply providing the toolchain, from large electric motors to large 

commercial air conditioning systems. We find that to insert a new methodology such as robust design 

into a company, a workflow such as this is likely a necessary starting point. 

To demonstrate the robust design workflow, we provide an open data example from the university 

context, the design of a Stirling engine. We use the workflow and toolchain to demonstrate the intent 

of the workflow, to analyze a complex system for the input causal sources of performance variability. 

The graduate student teaching assistants readily executed an analysis for uncertainty using the 

workflow and came to quick conclusions of what to inspect and assure for a high performing engine. 
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