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Abstract
We consider the Euler characteristics 𝜒(𝑀) of closed, orientable, topological 2𝑛-manifolds with (𝑛− 1)-connected
universal cover and a given fundamental group G of type 𝐹𝑛. We define 𝑞2𝑛 (𝐺), a generalised version of the
Hausmann-Weinberger invariant [19] for 4–manifolds, as the minimal value of (−1)𝑛𝜒(𝑀). For all 𝑛 ≥ 2, we
establish a strengthened and extended version of their estimates, in terms of explicit cohomological invariants of G.
As an application, we obtain new restrictions for nonabelian finite groups arising as fundamental groups of rational
homology 4–spheres.
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1. Introduction

In this paper, we address the following problem: if M denotes a closed, orientable even-dimensional
manifold with a given fundamental group G, then what restriction does this impose on the Euler
characteristic of M? In the particular case when 𝜒(𝑀) = 2, we have the related problem of determining
which finite groups can be the fundamental group of a closed, topological, 2𝑛-manifold M with the
rational homology of the 2𝑛-sphere (see previous work on the 4-dimensional case by Hambleton-Kreck
[13] and Teichner [43]). We introduce the following invariant for discrete groups, extending a definition
due to Hausmann and Weinberger [19] for 4–manifolds:

Definition 1.1. Given a finitely presented group G, define 𝑞2𝑛 (𝐺) as the minimum value of (−1)𝑛𝜒(𝑀)

for a closed, orientable 2𝑛-manifold M with (𝑛 − 1)-connected universal cover, such that 𝜋1 (𝑀) = 𝐺.
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2 A. Adem and I. Hambleton

We will first assume that G is a finite group. Recall that Swan [42, p. 193] defined an invariant
𝜇𝑘 (𝐺), for each 𝑘 ≥ 1, by the condition that (−1)𝑘 |𝐺 |𝜇𝑘 (𝐺) is the minimal value over all partial
Euler characteristics of a free resolution of Z truncated after degree k. We call this a k-step resolution.
However, since projective Z𝐺-modules are locally free [40, Section 8], k-step projective resolutions can
be used instead to define 𝜇′𝑘 (𝐺) ≤ 𝜇𝑘 (𝐺) (see [42, Remark, p. 195]).

Let 𝑒𝑛 (𝐺) denote the least integer greater than or equal to all the numbers

dim𝐻𝑛 (𝐺, F) − 2
(
dim𝐻𝑛−1 (𝐺, F) − dim𝐻𝑛−2 (𝐺, F) + · · · + (−1)𝑛−1 dim𝐻0(𝐺, F)

)
,

where the coefficients range over F = Q or F = F𝑝 for all primes p. Our main result is the following:

Theorem A. If G is a finite group and 𝑛 ≥ 2, then

max{𝑒𝑛 (𝐺), 𝜇′𝑛 (𝐺) − 𝜇′𝑛−1 (𝐺)} ≤ 𝑞2𝑛 (𝐺) ≤ 2𝜇𝑛 (𝐺).

Remark 1.2. By [42, Theorem 5.1], 𝜇′𝑘 (𝐺) = 𝜇𝑘 (𝐺) unless G has periodic cohomology of (necessarily
even) period dividing 𝑘 +1, and G admits no periodic free resolution of period 𝑘 +1. In this case, 𝑘 ≥ 3 is
odd, and we will say that the pair (𝐺, 𝑘) is exceptional (see Remark 2.8). For example, 𝜇′3 (𝐺) < 𝜇3(𝐺)

for some of the 4-periodic groups 𝐺 = 𝑄(8𝑝, 𝑞) in Milnor’s list (see the calculations in [29, 31]). If
(𝐺, 𝑛) is an exceptional pair, we provide information about 𝑞2𝑛 (𝐺) in Theorem B and Remark 3.13
below.

The invariants 𝑒𝑛 (𝐺) and the 𝜇𝑘 (𝐺), for 1 ≤ 𝑘 ≤ 𝑛, can also be defined for infinite discrete groups
of type 𝐹𝑛, meaning that there is a model for 𝐾 (𝐺, 1) with finite n-skeleton. In this case, we obtain
similar estimates with a slightly weaker lower bound. Recall that a finitely presented group G is said to
be good if topological surgery with fundamental group G holds in dimension four (see Freedman-Quinn
[9, p. 99]).

Theorem A′. If G is an infinite discrete group of type 𝐹𝑛 with 𝑛 ≥ 2, then

max{𝑒𝑛 (𝐺), 𝜇𝑛 (𝐺) − 𝜇′′𝑛−1 (𝐺)} ≤ 𝑞2𝑛 (𝐺).

If 𝑛 ≥ 3, or 𝑛 = 2 and G is good, then 𝑞2𝑛 (𝐺) ≤ 2𝜇𝑛 (𝐺).

The invariants 𝜇′′𝑘 (𝐺) = 𝜇𝑘 (𝐺), for 𝑘 ≥ 3, and we define 𝜇′′2 (𝐺) = 1 − Def(𝐺), and 𝜇′′1 (𝐺) =
𝑑 (𝐺) − 1, where Def (𝐺) is the deficiency of G, defined as the maximum difference 𝑑 − 𝑟 of numbers
of generators minus relations over all finite presentations of G (see [8]) and 𝑑 (𝐺) denotes the minimal
number of generators for G. These modifications to the previous invariants arise from the additional
condition that the resolutions be geometrically realisable (see Section 4). For 𝑘 = 2, determining the
relation between 𝜇2 (𝐺) and 1−Def (𝐺) is part of Wall’s (unsolved) D2 problem [45, Section 2], which
for infinite groups is related to the Eilenberg-Ganea conjecture [7].

Our results sharpen and generalise the estimate proved by Hausmann-Weinberger [19, Théorème 1]:

𝑒2(𝐺) ≤ 𝑞4 (𝐺) ≤ 2(1 − Def (𝐺)),

since 𝜇2 (𝐺) ≤ (1 − Def(𝐺)) by [42, Proposition 1]. The results of Kirk-Livingston [23] for 𝑞4(Z
𝑛)

show that these bounds can be improved for specific groups.
The proof of the lower bound in Theorem A for 𝑞2𝑛 (𝐺) is given in Section 2. In Section 3, we

establish the upper bound 𝑞2𝑛 (𝐺) ≤ 2𝜇𝑛 (𝐺) by generalising the well-known “thickening” construction
for groups G which admit a balanced presentation with equal numbers of generators and relations
(i.e., Def (𝐺) = 0). For 𝑛 = 2, this involves showing that finite D2-complex es with good fundamental
groups (e.g., groups of finite order) admit suitable thickenings via methods from topological surgery
(see Theorem 3.8).
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Example 1.3. For 𝐸𝑘 = (Z/𝑝Z)𝑘 , an elementary abelian p-group, 𝑒𝑛 (𝐸𝑘 ) = 𝜇𝑛 (𝐸𝑘 ) − 𝜇𝑛−1 (𝐸𝑘 ), and
this number can be explicitly computed using the Kunneth formula (see Example 3.14). This can be
used to show that 𝑞2𝑛 (𝐸𝑘 ) grows like a polynomial of degree n in k, for example

𝑘4 − 2𝑘3 + 11𝑘2 − 34𝑘 + 48
24

≤ 𝑞8 (𝐸𝑘 ) ≤
𝑘4 + 2𝑘3 + 11𝑘2 − 14𝑘 + 24

12
.

For n even, 𝑞2𝑛 (𝐺) ≥ 2, as the minimal possible Euler characteristic that can occur in our setting is
𝜒(𝑀) = 2, which holds when M has the rational homology of a 2𝑛-sphere, and is implied by Theorem
A if 𝜇𝑛 (𝐺) = 1. The condition 𝜇2 (𝐺) = 1 also holds for groups of deficiency zero, and there are many
groups with this property (see [51]). In contrast, our computations for the groups 𝐸𝑘 = (Z/𝑝Z)𝑘 show
that 𝑞4𝑛 (𝐸𝑘 ) > 2 for all 𝑛 > 1 and 𝑘 ≥ 3. Hence, higher dimensional rational homology spheres with
elementary abelian fundamental group of rank larger than 2 cannot occur.

For periodic groups, we can compute 𝑞2𝑛 (𝐺) in certain cases, which, in particular, provides an
alternate argument for [13, Corollary 4.4] and generalises that result to higher dimensions:

Theorem B. Let G be a finite periodic group of (even) period q. Then 𝑞2𝑛 (𝐺) = 2 if q divides 𝑛 + 2,
and 𝑞2𝑛 (𝐺) = 0 if 2𝑞 divides 𝑛 + 1.

Remark 1.4. Note that in our setting, 𝜒(𝑀) > 0 if and only if n is even (see Corollary 2.13). Thus,
for n odd, the minimal possible value of 𝑞2𝑛 (𝐺) = −𝜒(𝑀) is zero. Apart from the results of Theorem
B for periodic groups with twice their period dividing 𝑛 + 1, any finite group G which acts freely and
homologically trivially on some product 𝑆𝑛 × 𝑆𝑛 will have 𝑞2𝑛 (𝐺) = 0. There are many such examples,
including any products 𝐺 = 𝐺1 × 𝐺2 of periodic groups, many rank two finite p-groups, including the
extra-special p-groups of order 𝑝3, and all the finite odd order subgroups of the exceptional Lie group
𝐺2 (see [11, 17, 18]).

We are especially interested in the case of rational homology 4-spheres (called Q𝑆4 manifolds) with
finite fundamental group. In Section 5, we consider the following “inverse” problem, for which the lower
bound implies significant restrictions on G.

Question. Which finite groups can be the fundamental group of a closed, topological, 4-manifold M
with the rational homology of the 4-sphere?

For example, it was observed in [13, p. 100] that if G is finite abelian, then 𝑑 (𝐺) ≤ 3 (see Corollary
5.1). This bound follows directly by estimating the Hausmann-Weinberger invariant 𝑞4 (𝐺). Moreover,
Teichner [43, Section 4.13] showed that this bound is best possible for abelian groups by explicit
construction of examples.

Our methods shed light on more complicated finite groups by making use of cohomology with
twisted coefficients to obtain better lower bounds for 𝑞4 (𝐺):

Theorem C. Let𝑈𝑘 = 𝐸𝑘 ×𝑇 𝐶, where p is an odd prime, 𝐸𝑘 = (Z/𝑝𝑍)𝑘 , and C cyclic of order prime
to p acts on each Z/𝑝Z factor in 𝐸𝑘 via 𝑥 ↦→ 𝑥𝑞 , where q is a unit in Z/𝑝Z.

(i) If 𝑥𝑞2
≠ 𝑥 for all 1 ≠ 𝑥 ∈ 𝐸𝑘 , then for all 𝑘 > 4,𝑈𝑘 does not arise as the fundamental group of any

rational homology 4–sphere.
(ii) If 𝑞 = 𝑝−1, then for all 𝑘 > 1,𝑈𝑘 does not arise as the fundamental group of any rational homology

4–sphere.

This paper is organised as follows: in Section 2, we analyse free group actions on (𝑛−1)-connected 2𝑛-
manifolds using cohomological methods; in Section 3, we discuss minimal complexes and thickenings;
in Section 4, we prove Theorem A′; in Section 5, we focus on rational homology 4–spheres; and in
Section 6, we collect some remarks, examples, and questions related to the invariants introduced here.
Appendix A contains the proof of Theorem 3.8.
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4 A. Adem and I. Hambleton

2. Free actions on (𝑛 − 1)-connected 2𝑛-manifolds

In this section, we will apply the cohomological approach outlined in [1, Section 2]. The proofs of
Propositions 2.1, 2.3, and 2.5 are straightforward modifications of the results there and details are omitted.
We assume that Y is a closed, orientable, (𝑛 − 1)-connected 2𝑛-manifold with the free orientation-
preserving action of a finite group G; its homology has a corresponding Z𝐺–module structure. Both
𝐻2𝑛 (𝑌,Z) and 𝐻0 (𝑌,Z) are copies of the trivial module Z, whereas 𝐻𝑛 (𝑌,Z) is a free abelian group
with a Z𝐺–module structure which, by Poincaré duality, must be self–dual as a Z𝐺–module, that is,
𝐻𝑛 (𝑌,Z) � 𝐻𝑛 (𝑌,Z)∗. We assume, here, that Y admits a finite G–CW complex structure, with cellular
chain complex denoted by𝐶∗(𝑌 ) (if the action is smooth, this is always true, and holds up to G-homotopy
equivalence in the topological case).

We denote by Ω𝑟 (Z) the Z𝐺-module uniquely defined in the stable category (where Z𝐺-modules
are identified up to stabilisation by projectives) as the r–fold dimension–shift of the trivial module Z.
We refer to [2] and [3] for background on group cohomology.

Proposition 2.1. Let Y be an (𝑛− 1)-connected 2𝑛-manifold with a free action of a finite group G which
preserves orientation. Then there is a short exact sequence in the stable category of Z𝐺–modules of the
form

0 → Ω𝑛+1(Z) → 𝐻𝑛 (𝑌 ;Z) → Ω−𝑛−1(Z) → 0. (2.1)

Corollary 2.2. The short exact sequence (2.1) yields a long exact sequence in Tate cohomology

· · · → 𝐻𝑖+𝑛 (𝐺,Z)
∪ 𝜎
−−−→ 𝐻𝑖−𝑛−1(𝐺,Z) → 𝐻𝑖 (𝐺, 𝐻𝑛 (𝑌 ;Z)) → 𝐻𝑖+𝑛+1(𝐺,Z) → . . .

determined by the class 𝜎 ∈ 𝐻−2𝑛−1 (𝐺,Z) which is the image of the generator 1 ∈ 𝐻0(𝐺,Z) � Z/|𝐺 |.

We can analyse this sequence just as was done in [1, Section 2].

Proposition 2.3. The cohomology class 𝜎 ∈ 𝐻−2𝑛−1 (𝐺,Z) � 𝐻2𝑛 (𝐺,Z) can be identified with the
image of the fundamental class 𝑐∗ [𝑌/𝐺] under the homomorphism

𝑐∗ : 𝐻2𝑛 (𝑌/𝐺,Z) → 𝐻2𝑛 (𝐵𝐺,Z)

induced by the classifying map 𝑐 : 𝑌/𝐺 → 𝐵𝐺. Under this identification, the class 𝜎 determines the
extension (2.1).

Remark 2.4. This property of the extension class was proved for 𝑛 = 2 in [13, Corollary 2.4], and the
proof in the general case is similar.

Similarly, the map Ω𝑛+1(Z) → 𝐻𝑛 (𝑌,Z) defines an extension class

𝜀𝑌 ∈ 𝐻𝑛+1 (𝐺, 𝐻𝑛 (𝑌,Z))

which appears in the long exact sequence above as the image of the generator under the map𝐻0 (𝐺,Z) →
𝐻𝑛+1 (𝐺,Z). Algebraically, this responds to mapping the canonical defining extension for Ω𝑛+1(Z)
(identified with the extension class for the module of cycles in 𝐶𝑛 (𝑌 )) to the extension obtained by
reducing by the module of boundaries 𝐵𝑛:
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𝐵𝑛

��

𝐵𝑛

��
0 �� 𝑍𝑛

��

�� 𝐶𝑛

��

�� 𝐶𝑛−1 �� . . . �� 𝐶0 �� Z �� 0

0 �� 𝐻𝑛 (𝑌,Z) �� 𝐶𝑛/𝐵𝑛 �� 𝐶𝑛−1 �� . . . �� 𝐶0 �� Z �� 0

.

These two extension classes are related as follows:

Proposition 2.5. Let G denote a finite group acting freely on an (𝑛 − 1)-connected, orientable 2𝑛-
manifold Y preserving orientation, then 𝜀𝑌 ≠ 0 and |𝐺 | = exp(𝜎) · exp(𝜀𝑌 ). The class 𝜀𝑌 has exponent
|𝐺 | if and only if 𝜎 = 0, in which case, we have a stable equivalence

𝐻𝑛 (𝑌,Z) � Ω𝑛+1(Z) ⊕ Ω−𝑛−1(Z).

Example 2.6. Observing that the cohomology of a group with periodic cohomology is always zero
in odd dimensions, we see that if G has periodic cohomology, then there is a stable equivalence
𝐻𝑛 (𝑌,Z) � Ω𝑛+1(Z) ⊕ Ω−𝑛−1(Z).

We note the standard identity 𝜒(𝑌 ) = 2 + (−1)𝑛 dim𝐻𝑛 (𝑌,Q), and the formula |𝐺 |𝜒(𝑌/𝐺) = 𝜒(𝑌 )
from the covering𝑌 → 𝑌/𝐺. Since the transfer map induces an isomorphism𝐻𝑖 (𝑌/𝐺;Q) � 𝐻𝑖 (𝑌 ;Q)𝐺 ,
we have 𝜒(𝑌/𝐺) = 2 + (−1)𝑛 dim𝐻𝑛 (𝑌,Q)

𝐺 . In particular

dim𝐻𝑛 (𝑌,Q)
𝐺 = (−1)𝑛 (𝜒(𝑌/𝐺) − 2).

From the stable sequence

0 → Ω−𝑛 (Z) → Ω𝑛+1(Z) → 𝐻𝑛 (𝑌,Z) → 0,

we infer the existence of projective modules 𝑄𝑟 and 𝑄𝑠 which fit into an exact sequence

0 → Ω−𝑛 (Z) ⊕ 𝑄𝑠 → Ω𝑛+1(Z) ⊕ 𝑄𝑟 → 𝐻𝑛 (𝑌 ;Z) → 0, (2.2)

where 𝑄𝑖 ⊗ Q � [Q𝐺]𝑖 for 𝑖 = 𝑟, 𝑠. Here, we write Ω 𝑗+1 (Z) ( 𝑗 ≥ 0) for the j-th kernel in a minimal
projective resolution of Z, meaning a resolution:

0 → Ω 𝑗+1(Z) → 𝑃 𝑗 → 𝑃 𝑗−1 → · · · → 𝑃0 → Z→ 0 (2.3)

realising 𝜇′𝑗 (𝐺) (see [42, p. 193]), from which we see that

rankZΩ 𝑗 (Z) + (−1) 𝑗−1 = |𝐺 | (𝜇′𝑗−1 (𝐺)) and rankZΩ 𝑗 (Z)𝐺 + (−1) 𝑗−1 = 𝜇′𝑗−1 (𝐺),

where (−1)𝑘 |𝐺 |𝜇′𝑘 (𝐺) is precisely the minimal value over all partial Euler characteristics of a projective
resolution of Z over Z𝐺 (see [42, Remark, p. 195]). The corresponding invariants 𝜇𝑘 (𝐺) for minimal
free resolutions of Z were defined by Swan (see [42, p. 193]).

By dualising, we see that a minimal representative for Ω− 𝑗 (Z) is given by Ω 𝑗 (Z)∗, the dual module.
Thus, for our purposes, we have

rankZΩ𝑛+1(Z)𝐺 = 𝜇′𝑛 (𝐺) + (−1)𝑛+1, rankZΩ−𝑛 (Z)𝐺 = 𝜇′𝑛−1 (𝐺) + (−1)𝑛.

Applying invariants after tensoring over Q to the exact sequence (2.2) yields the formula

𝜇′𝑛 (𝐺) + (−1)𝑛+1 + 𝑟 = 𝜇′𝑛−1 (𝐺) + (−1)𝑛 + 𝑠 + (−1)𝑛 [𝜒(𝑌/𝐺) − 2],
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6 A. Adem and I. Hambleton

whence we obtain

𝑠 − 𝑟 = 𝜇′𝑛 (𝐺) − 𝜇′𝑛−1 (𝐺) + (−1)𝑛+1𝜒(𝑌/𝐺).

Theorem 2.7. If Y is a closed, (𝑛− 1)-connected 2𝑛-manifold with a free orientation-preserving action
of G, a finite group, then for any subgroup 𝐻 ⊂ 𝐺

𝜇′𝑛 (𝐻) − 𝜇′𝑛−1 (𝐻) ≤ (−1)𝑛 [𝐺 : 𝐻]𝜒(𝑌/𝐺).

Proof. We will prove this for 𝐻 = 𝐺 by contradiction. Assume that 𝑠 − 𝑟 > 0 and form the diagram

𝑄𝑠

��

𝑄𝑠

��
0 �� Ω−𝑛 (Z) ⊕ 𝑄𝑠

��

�� Ω𝑛+1(Z) ⊕ 𝑄𝑟

��

�� 𝐻𝑛 (𝑌,Z) �� 0

0 �� Ω−𝑛 (Z) �� 𝐿 �� 𝐻𝑛 (𝑌,Z) �� 0,

where L is the quotient of Ω𝑛+1(Z) ⊕ 𝑄𝑟 in the middle vertical exact sequence. Note that this middle
vertical exact sequence splits (since L is torsion-free). Hence,

Ω𝑛+1(Z) ⊕ 𝑄𝑟 � 𝐿 ⊕ 𝑄𝑠 .

By Swan [41, Lemma 2.1], there is a projective resolution

0 → 𝐿 → 𝑃𝑛 ⊕ 𝑄𝑟 → 𝑃𝑛−1 ⊕ 𝑄𝑠 → 𝑃𝑛−2 → · · · → 𝑃0 → Z→ 0.

Since 𝑠 > 𝑟 , this contradicts the minimality of the resolution (2.3) realising 𝜇′𝑛 (𝐺). Hence, we have
shown that 𝑠 − 𝑟 ≤ 0. The full result follows using covering spaces. �

Remark 2.8. As mentioned in the Introduction, Swan proved that 𝜇′𝑘 (𝐺) = 𝜇𝑘 (𝐺) unless G has periodic
cohomology of period dividing 𝑘 + 1, and G admits no periodic free resolution of period 𝑘 + 1. In these
exceptional cases, 𝜇𝑘 (𝐺) = 1 and 𝜇′𝑘 (𝐺) = 0. In contrast, 𝜇𝑘 (𝐺) = 0 if G has a periodic free resolution
of period 𝑘 + 1 and 𝐺 ≠ 1. We also note that if the pair (𝐺, 𝑘) is exceptional, then 𝑘 ≥ 3 is odd and G
is noncyclic. In particular, 𝜇′𝑘 (𝐺) = 𝜇𝑘 (𝐺) if G is a finite p-group (see [42, Corollary 5.2]).

If the pair (𝐺, 𝑛) is not exceptional, the numbers 𝜇𝑛 (𝐺) can be computed using group cohomology.
By a result of Swan [42, Proposition 6.1], the invariant 𝜇𝑛 (𝐺) is the least integer greater than or equal
to all the numbers

(dim 𝑀)−1
(
dim𝐻𝑛 (𝐺, 𝑀) − dim𝐻𝑛−1(𝐺, 𝑀) + · · · + (−1)𝑛 dim𝐻0(𝐺, 𝑀)

)
as M ranges over all simple F𝑝𝐺–modules for all primes p dividing |𝐺 |. As extending the field doesn’t
change dimensions, we can takeK𝑝 , an algebraically closed field of characteristic p, and restrict attention
to absolutely irreducible K𝑝𝐺–modules. Next we introduce

Definition 2.9. For any discrete group G of type 𝐹𝑛, let 𝑒𝑛 (𝐺) denote the least integer greater than or
equal to all the numbers

dim𝐻𝑛 (𝐺, F) − 2
(
dim𝐻𝑛−1 (𝐺, F) − dim𝐻𝑛−2 (𝐺, F) + · · · + (−1)𝑛−1 dim𝐻0(𝐺, F)

)
,

where the coefficients range over F = Q or F = F𝑝 for all primes p.
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Remark 2.10. When 𝐺 = 𝑃 is a finite p–group, the trivial module F𝑝 is the only simple module, and
we can verify that 𝜇𝑛 (𝑃) − 𝜇𝑛−1 (𝑃) = 𝑒𝑛 (𝑃).

We have the following elementary inequality:

Lemma 2.11. Suppose that X is a closed, orientable 2𝑛-manifold with fundamental group G of type 𝐹𝑛
whose universal cover is (𝑛 − 1)-connected. Then, for any subgroup 𝐻 ⊂ 𝐺 of finite index

𝑒𝑛 (𝐻) ≤ [𝐺 : 𝐻] (−1)𝑛𝜒(𝑋).

Proof. Let F denote any field of coefficients. The connectivity of the universal cover implies that

𝐻𝑖 (𝐺, F) � 𝐻𝑖 (𝑋, F) for 0 ≤ 𝑖 ≤ 𝑛 − 1

and

dim𝐻𝑛 (𝐺, F) ≤ dim𝐻𝑛 (𝑋, F).

By Poincaré duality, we have

𝐻𝑘 (𝑋, F) � 𝐻2𝑛−𝑘 (𝐺, F) for 𝑛 + 1 ≤ 𝑘 ≤ 2𝑛.

Combining these facts and using covering space theory, we obtain the inequality. �

Applying the mod p coefficient sequence yields an attractive corollary

Corollary 2.12. If X is a closed, orientable 2𝑛-manifold with finite fundamental group G whose universal
cover is (𝑛 − 1)-connected, then for all primes p dividing |𝐺 | and subgroups 𝐻 ⊂ 𝐺

dim𝐻𝑛+1(𝐻,Z) ⊗ F𝑝 − dim𝐻𝑛 (𝐻,Z) ⊗ F𝑝 ≤ (−1)𝑛 ([𝐺 : 𝐻]𝜒(𝑋) − 2).

Proof. Since [𝐺 : 𝐻]𝜒(𝑋) equals the Euler characteristic of the [𝐺 : 𝐻]-fold covering of X, it is
enough to do the case 𝐻 = 𝐺. Let ℎ𝑖 (𝐺) = dim𝐻𝑖 (𝐺;F𝑝). From the relations noted above, and Lemma
2.11, we have the formula

(−1)𝑛 (𝜒(𝑋) − 2) ≥ ℎ𝑛 (𝐺) − 2
𝑛−1∑
𝑖=1

(−1)𝑖+1ℎ𝑛−𝑖 (𝐺).

But by the mod p coefficient sequence, we have

ℎ𝑖 (𝐺) = dim𝐻𝑖+1(𝐺,Z) ⊗ F𝑝 + dim𝐻𝑖 (𝐺,Z) ⊗ F𝑝 , for 1 ≤ 𝑖 ≤ 𝑛.

The result follows by combining these two relations. �

Applying this to any subgroup 𝐶 ⊂ 𝐺 of prime order, we obtain

Corollary 2.13. If X is a closed, orientable 2𝑛-manifold with (𝑛 − 1)-connected universal cover and
nontrivial finite fundamental group G, then 𝜒(𝑋) > 0 if and only if n is even.

Proof. Let 𝐶 ⊂ 𝐺 be a cyclic subgroup of order p, a prime. Then 𝐻2𝑘 (𝐶;Z) = Z/𝑝Z (if 𝑘 > 0), and
𝐻2𝑘+1(𝐶;Z) = 0. For n even, applying the inequality above with 𝐻 = 𝐶 yields 𝜒(𝑋) > 0. When n
is odd, note that 𝑏𝑛 (𝑋) ≠ 0 implies 𝑏𝑛 (𝑋) ≥ 2, since the intersection form of X is nonsingular and
skew-symmetric. Hence, 𝜒(𝑋) ≤ 0. �
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3. Minimal 𝐾 (𝐺, 𝑛)-complexes and thickenings

We now turn our attention to the existence of orientable 2𝑛-manifolds having fundamental group of
type 𝐹𝑛 and (𝑛 − 1)-connected universal cover. We recall the following well-known construction (see
Kreck and Schafer [24, Section 2]):

Proposition 3.1. Let G be a discrete group of type 𝐹𝑛 for 𝑛 ≥ 2. Then there exists a closed, orientable
2𝑛-manifold Z, such that 𝜋1 (𝑍) = 𝐺 with (𝑛 − 1)-connected universal cover.

Proof. Let K denote a finite CW complex of dimension n with 𝜋1 (𝐾) = 𝐺 whose universal covering is
(𝑛 − 1)-connected. For example, take a finite, cellular model for the classifying space 𝐵𝐺, and consider
its n-skeleton K. Then we can construct a smooth 2𝑛-manifold 𝑍 = 𝑀 (𝐾) by doubling a 2𝑛-dimensional
handlebody thickening of K. Thus, the universal cover �̃� of 𝑀 (𝐾) is an (𝑛 − 1)-connected, closed,
orientable 2𝑛-manifold with a free action of G, such that

𝜋𝑛 (𝑀 (𝐾)) � 𝐻𝑛 (𝑀 (𝐾);Λ) � 𝐻𝑛 (𝐾;Λ) ⊕ 𝐻𝑛 (𝐾;Λ),

where Λ := Z𝐺 denotes the integral group ring. Moreover, the Euler characteristic 𝜒(𝑀 (𝐾)) = 2𝜒(𝐾).
A variation of this construction is to let Z denote the boundary of a regular neigbourhood, for some
embedding 𝐾 ⊂ R2𝑛+1 of the finite n-complex in Euclidean space. �

Definition 3.2. Let G be a discrete group of type 𝐹𝑛. A finite CW complex K of dimension 𝑛 ≥ 2, with
fundamental group 𝜋1 (𝐾) = 𝐺 and 𝜋𝑖 (𝐾) = 0 for 1 ≤ 𝑖 ≤ 𝑛 − 1, is called a 𝐾 (𝐺, 𝑛)-complex.

The chain complex 𝐶∗(�̃�) of the universal covering of a 𝐾 (𝐺, 𝑛)-complex affords a free n-step
resolution of the trivial Z𝐺–module Z. Conversely, we wish to realise a given finitely generated n-step
free resolution

ℱ : 𝐹𝑛 → 𝐹𝑛−1 → · · · → 𝐹1 → 𝐹0 → Z→ 0

as the equivariant chain complex of a suitable 𝐾 (𝐺, 𝑛)-complex. Note that by Swan [42, Theorem 1.2],
we have 𝜇𝑛 (𝐺) ≤ (−1)𝑛𝜒(ℱ) and that the lower bound is attained by some resolution.

Proposition 3.3. Let G be a discrete group of type 𝐹𝑛, and let ℱ be an n-step resolution of Z by finitely
generated free 𝑍𝐺-modules. If 𝑛 ≥ 3, then there exists a finite 𝐾 (𝐺, 𝑛)-complex K and a G-equivariant
chain homotopy equivalence 𝐶∗(𝐾)  ℱ.

Proof. Let 𝑛 ≥ 3, we can apply [16, Lemma 8.12] to show that ℱ is chain homotopy-equivalent to a
finitely generated free complex ℱ′ which agrees with the 2-skeleton of a model for 𝐾 (𝐺, 1). Then the
construction of [41, Lemma 3.1] (credited to Milnor) provides the required complex K by successively
attaching i-cells equivariantly using the boundary maps from the chain complex ℱ′. �

Remark 3.4. For finite groups, Swan [42, Corollary 5.1] shows that under certain additional assump-
tions, one can geometrically realise the actual sequence 𝑓0, 𝑓1, 𝑓2, . . . of ranks for the i-chains of ℱ. We
also record the facts due to Swan that 𝜇𝑛 (𝐺) ≥ 1 for n even, and 𝜇𝑛 (𝐺) ≥ 0 for n odd if 𝐺 ≠ 1 is finite
(see [42, Section 1]).

Corollary 3.5. If 𝑛 ≥ 3, then for any discrete group of type 𝐹𝑛, we have 𝑞2𝑛 (𝐺) ≤ 2𝜇𝑛 (𝐺). In
particular, if n is even and G is a finite group with 𝜇𝑛 (𝐺) = 1, then G is the fundamental group of a
rational homology 2𝑛-sphere.

Proof. We apply Proposition 3.3 to a minimal n-step resolution ℱ with 𝜒(ℱ) = 𝜇𝑛 (𝐺), and obtain a
finite 𝐾 (𝐺, 𝑛)-complex K. The manifold 𝑍 = 𝑀 (𝐾) constructed in Proposition 3.1 provides the upper
bound 𝑞2𝑛 (𝐺) ≤ 𝜒(𝑍) = 2𝜇𝑛 (𝐺). �

We now consider the case 𝑛 = 2, where the argument above fails at the first step. To establish our
upper bound for 𝑞4 (𝐺), we need a more general construction and some results of C. T. C. Wall [45, 46].
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Definition 3.6. A finite complex X satisfies Wall’s D2-conditions if𝐻𝑖 (𝑋) = 0, for 𝑖 > 2, and𝐻3 (𝑋;B) =
0, for all coefficient bundles B. Here, 𝑋 denotes the universal covering of X. If these conditions hold, we
will say that X is a D2-complex. If every D2-complex with fundamental group G is homotopy-equivalent
to a finite 2-complex, then we say that G has the D2-property.

In [45, p. 64], Wall proved that a finite complex X satisfying the D2-conditions is homotopy-equivalent
to a finite 3-complex. We will therefore assume that all our D2-complexes have dim 𝑋 ≤ 3. It is not
known at present whether all discrete groups have the D2-property. Note that 𝜇2 (𝐺) ≤ (1 − Def(𝐺))

by [42, Proposition 1], and equality holds if G has the D2-property.

Proposition 3.7 [12, Corollary 2.4]. Any finitely generated free resolution

ℱ : 𝐹2 → 𝐹1 → 𝐹0 → Z→ 0

over Z𝐺 is chain homotopy-equivalent to 𝐶∗(𝑋), where X is a finite D2-complex.

If we apply this to a minimal resolution with 𝜒(ℱ) = 𝜇2 (𝐺) = 𝜇′2 (𝐺), then if G is finite, the module
𝐻2 (𝑋;Z) is a minimal Z-rank representative of the stable module Ω3(Z). The following result may also
be of independent interest (it applies to any finitely presented group G which is good in the sense of
Freedman [9, p. 99], in particular, to poly-(finite or cyclic) groups).

Theorem 3.8. For any finite D2-complex X with good fundamental group, there exists a closed, topo-
logical 4-manifold 𝑀 (𝑋) with 𝜋1 (𝑀 (𝑋)) = 𝜋1 (𝑋) and 𝜒(𝑀 (𝑋)) = 2𝜒(𝑋).

For continuity, we defer the proof of this result to Appendix A.

Corollary 3.9. For G a finitely presented good group, 𝑞4 (𝐺) ≤ 2𝜇2 (𝐺). In particular, 𝜇2 (𝐺) = 1 and
G finite implies that G is the fundamental group of a rational homology 4-sphere.

Proof. We apply Proposition 3.7 to realise a minimal 2-step resolution by a finite D2-complex, and then
Theorem 3.8 provides a suitable Q𝑆4 manifold. �

The proof of Theorem A. Concatenating our previous results, we have obtained the estimates

max{𝑒𝑛 (𝐺), 𝜇′𝑛 (𝐺) − 𝜇′𝑛−1 (𝐺)} ≤ 𝑞2𝑛 (𝐺) ≤ 2𝜇𝑛 (𝐺)

for any finite group G. For the lower bound, we apply Theorem 2.7 and Lemma 2.11. For the upper
bound, we apply Corollary 3.5 if 𝑛 > 2, and Corollary 3.9 for 𝑛 = 2.

We now prepare for the proof of Theorem B. The next result, due to Swan and Wall, shows that
arbitrary periodic groups appear as fundamental groups of rational homology spheres.

Lemma 3.10. If G is a finite group with periodic cohomology of period dividing 2𝑘 +2, then 𝜇2𝑘 (𝐺) = 1
for 𝑘 ≥ 1.

Proof. We will discuss the case 𝑘 = 1 for groups of period 4. Swan [41] constructed a finitely dominated
Poincaré 3-complex Y with 𝜋1 (𝑌 ) = 𝐺, and Wall [47, Corollary 2.3.2] shows that Y is obtained from a
D2-complex by attaching a single 3-cell. The chain complex 𝐶∗(𝑌 ) provides a projective resolution

ℱ′ : 𝑃 → 𝐹1 → 𝐹0 → Z→ 0

with 𝜒(ℱ′) = 1, where P is projective, 𝐹1 and 𝐹0 are free and 𝐼 (𝐺)∗ = ker 𝑑2(ℱ
′). This shows that

𝜇′2 (𝐺) = 1 and so 𝜇2 (𝐺) = 𝜇′2(𝐺) = 1 by Swan’s results.
One can give a direct argument for this last step. By adding a projective Q so that 𝑃 ⊕𝑄 = 𝐹 is free,

we obtain a free resolution

ℱ : 𝐹 → 𝐹1 → 𝐹0 → Z→ 0
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with 𝐼 (𝐺)∗ ⊕ 𝑄 = ker 𝑑2(ℱ). By the ‘Roiter replacement lemma’ (see [36, Proposition 5], or [21,
Theorem 3.6]), 𝐼 (𝐺)∗ ⊕ 𝑄 = 𝐽 ⊕ 𝐹 ′, where 𝐹 ′ is free and J is locally isomorphic to 𝐼 (𝐺)∗, so
rankZ(𝐽) = rankZ 𝐼 (𝐺)∗. We now divide out the image of 𝐹 ′ in F (a direct summand) to obtain a free
resolution

ℱ′′ : 𝐹 ′′ → 𝐹1 → 𝐹0 → Z→ 0

with 𝐽 = ker 𝑑2(ℱ
′′) and 𝜒(ℱ′′) = 1. Hence, 𝜇2 (𝐺) = 1.

A similar argument shows that 𝜇2𝑘 (𝐺) = 1, for all 𝑘 > 1, if G has periodic cohomology with period
dividing 2𝑘 + 2. Details will be left to the reader. �

Remark 3.11. The calculation in Lemma 3.10 together with Theorem 3.8 provides an alternate proof
of [13, Corollary 4.4]. However, the essential ingredients are the same in both arguments.

The proof of Theorem B. By assumption, the group G is periodic of even period q. In the first case, if q
divides 𝑛 + 2, then n is even and 𝜇𝑛 (𝐺) = 1 by Lemma 3.10. By Theorem A, we have the inequalities

2 ≤ 𝑞2𝑛 (𝐺) ≤ 2𝜇2 (𝐺) = 2,

and hence, 𝑞2𝑛 (𝐺) = 2.
In the second case, n is odd and the minimal Euler characteristic 𝑞2𝑛 (𝐺) ≥ 0 by Corollary 2.13. We

will show that the lower bound is realised when G is a periodic group of even period q, provided that
2𝑞 divides 𝑛 + 1.

This follows from the solution of the space form problem: Madsen, Thomas and Wall [28, Theorem
1], [49, Corollary 12.6] proved that there exists a finite Poincaré duality complex X (called a finite Swan
complex) of dimension (2𝑘 − 1), with 𝜋1 (𝑋) = 𝐺 and universal covering 𝑋  𝑆2𝑘−1, whenever 𝑘 ≡ 0
(mod 𝑒(𝐺)), where 𝑒(𝐺) is the Artin exponent of G [25, p. 94]. Moreover, a detailed analysis of the
group cohomology of periodic groups shows that 2𝑒(𝐺) is equal to q or 2𝑞, depending on the structure
of its 2-hyperelementary subgroups (see Wall [49, p. 542], where the notation 2𝑑 (𝜋) is used for the
period of a periodic group 𝜋).

For any finite Swan complex X, there exists a degree one normal map ( 𝑓 , 𝑏) : 𝑁 → 𝑋 , where 𝑁𝑛 is a
closed, topological n-manifold (see [44, Corollary 3.3]). We then have a degree one normal map of pairs

( 𝑓 × id, 𝑏 × id) : (𝑁 × 𝐷𝑛+1, 𝑁 × 𝑆𝑛) → (𝑋 × 𝐷𝑛+1, 𝑋 × 𝑆𝑛).

By Wall’s ‘𝜋-𝜋 Theorem’ [50, Theorem 3.3], this normal map is normally cobordant to a homotopy
equivalence of pairs. It follows that 𝑋 ×𝑆𝑛 is homotopy-equivalent to a closed, topological 2𝑛-manifold.
Since 𝑋 × 𝑆𝑛 has Euler characteristic zero, these examples show that 𝑞2𝑛 (𝐺) = 0 as required.

Remark 3.12 (Smooth examples). If G satisfies the 2𝑝-conditions (meaning that every subgroup of
order 2𝑝 is cyclic, for p prime), Madsen, Thomas and Wall [28, Theorem 5] proved that there exists a
closed, oriented, smooth (2𝑘 − 1)-manifold 𝑁2𝑘−1 with 𝜋1 (𝑁) = 𝐺 and universal covering 𝑁 = 𝑆2𝑘−1,
whenever 𝑘 ≡ 0 (mod 𝑒(𝐺)). Under this extra assumption, the products 𝑁𝑛 × 𝑆𝑛, for 𝑛 = 2𝑞𝑟 − 1,
provide smooth manifolds realising the minimum value 𝑞2𝑛 (𝐺) = 0.

Remark 3.13 (The exceptional case). In the arguments above, we have not used the full strength of
the Madsen-Thomas-Wall results, which produce smooth space forms in the minimal dimension 𝑞 − 1
whenever 𝑞 = 2𝑒(𝐺) (see the discussion on [28, p. 142]). This observation does give additional examples
of periodic groups with 𝑞2𝑛 (𝐺) = 0, for example, when 𝑛+1 ≡ 2 (mod 4), but deciding whether 2𝑒(𝐺)

equals q or 2𝑞 for a given G involves difficult number theory.
If the pair (𝐺.𝑛) is exceptional, then surgery theory can be used to study 𝑞2𝑛 (𝐺) as follows (see [27,

Sections 2–3] for background on the space form problem):

(i) For any periodic group with period 𝑛 + 1, there exists a finitely dominated Swan complex X with
𝜋1 (𝑋) = 𝐺 and universal covering 𝑋  𝑆𝑛 (see [41, Proposition 3.1]).
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(ii) For any finitely dominated Swan complex X, there exists a degree one normal map ( 𝑓 , 𝑏) : 𝑁 → 𝑋 ,
where 𝑁𝑛 is a closed, oriented, topological n-manifold (see [44, Corollary 3.3] and [48, Proposition
2]).

(iii) The product 𝑋 × 𝑆𝑛 is homotopy-equivalent to a finite Poincaré complex (by the product formula
for Wall’s finiteness obstruction [10, Theorem 0.1]).

(iv) We have a degree one normal map

( 𝑓 × id, 𝑏 × id) : 𝑁 × 𝑆𝑛 → 𝑋 × 𝑆𝑛,

with surgery obstruction 𝜆( 𝑓 , 𝑏) ∈ 𝐿ℎ2𝑛 (Z𝐺) determined by the Wall finiteness obstruction 𝜎(𝑋) ∈
𝐾0(Z𝐺) (see [34, p. 244]).

(v) If 𝜆( 𝑓 , 𝑏) = 0 (this is the hard step), then this normal map would be normally cobordant to a
homotopy equivalence. In other words, 𝑋×𝑆𝑛 would be homotopy-equivalent to a closed, topological
2𝑛-manifold with Euler characteristic zero.

We conclude this section with a sample computation of the estimates for elementary abelian p-groups.

Example 3.14. If 𝐸𝑘 = (Z/𝑝Z)𝑘 then we can use the Kunneth formula to compute these invariants.
The term 𝜇𝑛 (𝐸𝑘 ) has a polynomial of degree n as its leading term. For 𝑛 = 2, 3, 4, we have

𝑘2 − 3𝑘 + 4
2

≤ 𝑞4 (𝐸𝑘 ) ≤ 𝑘2 − 𝑘 + 2

𝑘3 − 3𝑘2 + 8𝑘 − 12
6

≤ 𝑞6 (𝐸𝑘 ) ≤
𝑘3 + 5𝑘 − 6

3
𝑘4 − 2𝑘3 + 11𝑘2 − 34𝑘 + 48

24
≤ 𝑞8 (𝐸𝑘 ) ≤

𝑘4 + 2𝑘3 + 11𝑘2 − 14𝑘 + 24
12

For instance, for 𝑘 = 2, this only gives the rough estimate 1 ≤ 𝑞8 (𝐸2) ≤ 6, but we know that 𝑞8(𝐸2) = 2
by performing surgery1 on 𝐿7 (Z/𝑝Z) × 𝑆1. However, for 𝑘 = 3, the lower bound gives 𝑞8 (𝐸3) ≥ 3, and
hence, 𝐸3 is not the fundamental group of a rational homology 8-sphere.

4. The proof of Theorem A′

In this section, we establish a lower bound for 𝑞2𝑛 (𝐺), for G an infinite discrete group of type 𝐹𝑛. With
the results of Lemma 2.11, Corollary 3.5 and Corollary 3.9, this will complete the proof of Theorem A′.

The invariants 𝜇′′𝑘 (𝐺) used in the statement of Theorem A′ can also be defined as follows.

Definition 4.1. For 𝑘 ≥ 2, let 𝜇′′𝑘 (𝐺) = (−1)𝑘 · min{𝜒(ℱ)}, where ℱ varies over all k-step resolutions

ℱ : 𝐹𝑘 → 𝐹𝑘−1 → · · · → 𝐹2 → 𝐹1 → 𝐹0 → Z→ 0

of Z by finitely generated free Z𝐺-modules, which arise geometrically as the chain complex of the
universal covering for a finite 𝐶𝑊-complex of dimension k with fundamental group G.

The sign (−1)𝑘 is introduced to agree with Swan’s conventions. Note the inequalities

𝜇′𝑘 (𝐺) ≤ 𝜇𝑘 (𝐺) ≤ 𝜇′′𝑘 (𝐺)

relating these invariants to those defined by Swan. We define 𝜇′′1 (𝐺) = 𝑑 (𝐺) − 1, where 𝑑 (𝐺) denotes
the minimal number of generators for G.

1Here, 𝐿7 (Z/𝑝Z) denotes the 7-dimensional lens space with fundamental group 𝐺 = Z/𝑝Z, and the surgery is performed on
the 𝑆1 factor by removing 𝐷6 × 𝑆1 and gluing in 𝑆5 × 𝐷2.
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Remark 4.2. By Proposition 3.3, we have 𝜇𝑘 (𝐺) = 𝜇′′𝑘 (𝐺) if 𝑛 ≥ 3. Note that 𝜇′′2 (𝐺) = 1−Def (𝐺). If
𝜇2 (𝐺) < 𝜇′′2 (𝐺) for some finitely presented group G, then there would be a counter-example to Wall’s
D2 problem (but no such examples are known at present). In addition, we do not know if the strict
inequality 𝜇1 (𝐺) < 𝑑 (𝐺) − 1 can occur.

We now establish the lower bound for infinite groups.

Theorem 4.3. Let G be a discrete group of type 𝐹𝑛, for 𝑛 ≥ 2. If Y is a closed, (𝑛 − 1)-connected 2𝑛-
manifold with a free orientation-preserving action of G, a finite group, then for any subgroup 𝐻 ⊂ 𝐺 of
finite index

𝜇𝑛 (𝐻) − 𝜇′′𝑛−1 (𝐻) ≤ (−1)𝑛 [𝐺 : 𝐻]𝜒(𝑌/𝐺).

Proof. It suffices to prove this inequality for 𝐻 = 𝐺, and then apply covering space theory. Let M denote
a closed, orientable, 2𝑛-dimensional manifold with 𝑛 ≥ 2 and fundamental group G of type 𝐹𝑛, such
that 𝜋𝑖 (𝑀) = 0 for 1 < 𝑖 < 𝑛. Let 𝐾  𝑀 be a finite 𝐶𝑊-complex homotopy-equivalent to M, and let
𝐶 := 𝐶 (𝐾;Λ) = 𝐶 (𝐾) denote the chain complex of its universal covering. It is a finite chain complex,
with each 𝐶𝑖 a finitely generated free Z𝐺-module. We note that the homology of M is computed from
the chain complex 𝐶 ⊗Z𝐺 Z, and therefore, 𝜒(𝑀) =

∑2𝑛
𝑖=0(−1)𝑖𝑐𝑖 , where 𝑐𝑖 := rankZ𝐺 𝐶𝑖 .

We may assume that the (𝑛−1)-skeleton 𝐾 (𝑛−1) ⊂ 𝐾 has (−1)𝑛−1𝜒(𝐾 (𝑛−1) ) = 𝜇′′𝑛−1 (𝐺), by applying
Wall’s construction of a normal form to replace K by a homotopy-equivalent complex if necessary (see
[47, p. 238]).

The long exact sequences of the triples (𝐾, 𝐾 (𝑖) , 𝐾 (𝑖−1) ), for cohomology with Z𝐺-coefficients gives:

0 → 𝐻𝑖 (𝐾, 𝐾 (𝑖−1) ) → 𝐻𝑖 (𝐾 (𝑖) , 𝐾 (𝑖−1) ) → 𝐻𝑖+1(𝐾, 𝐾 (𝑖) ) → 𝐻𝑖+1(𝐾, 𝐾 (𝑖−1) ) → 0.

If we let 𝑍 𝑖 := ker 𝛿𝑖 and 𝐵𝑖 := im 𝛿𝑖−1 (for later use) in the cochain complex (𝐶∗, 𝛿∗), where 𝐶𝑖 =
HomΛ (𝐶𝑖 ,Λ), then the sequence above becomes

0 → 𝑍 𝑖 → 𝐶∗
𝑖 → 𝑍 𝑖+1 → 𝐻𝑖+1(𝐶) → 0.

Since 𝐻𝑖 (𝐶) = 𝐻2𝑛−𝑖 (𝐶) = 0, for 𝑛 + 1 ≤ 𝑖 ≤ 2𝑛 − 1, and 𝐻2𝑛 (𝐶) = Z, we can splice the short exact
sequences

0 → 𝑍 𝑖 → 𝐶∗
𝑖 → 𝑍 𝑖+1 → 0

for 𝑛 ≤ 𝑖 ≤ 2𝑛 − 1, and obtain a long exact sequence

0 → 𝑍𝑛 → 𝐶∗
𝑛 → 𝐶∗

𝑛+1 → · · · → 𝐶∗
2𝑛−1 → 𝐶∗

2𝑛 → Z→ 0.

Since this a resolution of Z by finitely generated Z𝐺-modules, with rankZ𝐺 (𝐶∗
𝑖 ) := 𝑐𝑖 , we have

(−1)𝑛𝜒𝑢𝑝𝑝𝑒𝑟 (𝐶) := (−1)𝑛
2𝑛∑
𝑖=𝑛

(−1)𝑖𝑐𝑖 ≥ 𝜇𝑛 (𝐺).

On the other hand, by the normal form construction, we have

(−1)𝑛𝜒𝑙𝑜𝑤𝑒𝑟 (𝐶) := (−1)𝑛
𝑛−1∑
𝑖=0

(−1)𝑖𝑐𝑖 = (−1)𝑛 (−1)𝑛−1𝜇′′𝑛−1 (𝐺) = −𝜇′′𝑛−1 (𝐺).

Therefore, 𝑞2𝑛 (𝐺) ≥ (−1)𝑛𝜒(𝑀) ≥ 𝜇𝑛 (𝐺) − 𝜇′′𝑛−1 (𝐺), as required. �

Remark 4.4. Note that 𝜇′1(𝐺) ≤ 𝜇1 (𝐺) ≤ 𝑑 (𝐺) − 1 by Swan [42, Proposition 1], so this is slightly
different than the estimate in Theorem A for finite groups if 𝑛 = 2.
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5. Rational homology 4–spheres

We now specialise our results to the case when M is a rational homology 4–sphere with finite fundamental
group G. We would like to find restrictions on G by computing 𝜇2 (𝐺)−𝜇1 (𝐺). Note that 𝜇1 (𝐺) = 𝜇′1(𝐺)

and 𝜇2 (𝐺) = 𝜇′2 (𝐺), and that for any solvable finite group, 𝜇1 (𝐺) = 𝑑 (𝐺) − 1 [6, Proposition 1]. Let A
denote a finite abelian group minimally generated by d elements, then using Theorem 2.7, we have the
estimate

𝜇2 (𝐴) − 𝜇1(𝐴) =
𝑑2 − 3𝑑 + 4

2
≤ 𝜒(𝑀) = 2

and so we recover the estimate proved in [43, 3.4]:

Corollary 5.1. If G is a finite abelian group minimally generated by 𝑘 > 3 elements, then it cannot be
realised as the fundamental group of a closed 4–manifold which is a rational homology sphere.

Our next objective will be to consider examples where twisted coefficients can be used to establish
conditions for nonabelian groups. Recall the result due to Swan [42, Theorem 1.2 and Proposition 6.1]:
for any finite group G, 𝜇𝑛 (𝐺) is the smallest integer which is an upper bound on

(dim 𝑀)−1
(
ℎ𝑛 (𝐺, 𝑀) − ℎ𝑛−1 (𝐺, 𝑀) + · · · + (−1)𝑛ℎ0 (𝐺, 𝑀)

)
,

where K is a field, M is a 𝐾𝐺-module and ℎ𝑛 (𝐺; 𝑀) := dim𝐾 𝐻
𝑛 (𝐺; 𝑀). Moreover, we can assume

that K is algebraically closed and has characteristic p dividing |𝐺 |, and it suffices to verify the upper
bound on absolutely irreducible modules.

We now focus on an interesting class of nonabelian groups for which the absolutely irreducible
modules are easy to determine. The following proposition follows from elementary representation
theory (see [52, Corollary 6.2.2]).

Proposition 5.2. Let K be a field of characteristic p, G a finite group with maximal normal p–group
denoted by 𝑂 𝑝 (𝐺). Then the simple 𝐾𝐺–modules are precisely the simple 𝐾 [𝐺/𝑂 𝑝 (𝐺)]–modules,
made into 𝐾𝐺–modules via the quotient homomorphism 𝐺 → 𝐺/𝑂 𝑝 (𝐺).

Corollary 5.3. Let 𝑈𝑘 = 𝐸𝑘 ×𝑇 𝐶 denote a semidirect product, where 𝐸𝑘 � (Z/𝑝Z)𝑘 with 𝑘 > 1 and
C is cyclic of order relatively prime to p. Then for any algebraically closed field K𝑝 of characteristic
p, the absolutely irreducible K𝑝𝑈𝑘–modules are one-dimensional characters 𝛼 : 𝐶 → K×

𝑝 on which 𝐸𝑘
acts trivially.

The cyclic group C acts on the vector spaces𝐻𝑖 (𝐸𝑘 ;K𝑝) via one-dimensional characters𝛼 : 𝐶 → K×
𝑝 .

Using the multiplicative structure in cohomology and the Bockstein, this is determined by 𝑁𝑘 =
𝐻1 (𝐸𝑘 ;K𝑝) � Hom(𝐸𝑘 ,K𝑝) as an K𝑝 [𝐶]–module.

Recall that by [2, Corollary II.4.3, Theorem II.4.4], the mod p cohomology ring of 𝐸𝑘 is given by

𝐻∗(𝐸𝑘 , F𝑝) �

{
F2 [𝑥1, . . . , 𝑥𝑘 ] for 𝑝 = 2
Λ(𝑥1, . . . , 𝑥𝑘 ) ⊗ F𝑝 [𝑦1, . . . , 𝑦𝑘 ] for 𝑝 odd

,

where 𝑥1, . . . , 𝑥𝑘 ∈ 𝐻1(𝐸𝑘 , F𝑝), 𝑦1, . . . , 𝑦𝑘 ∈ 𝐻2(𝐸𝑘 , F𝑝) and Λ(𝑥1, . . . , 𝑥𝑘 ) denotes the exterior
algebra on these one-dimensional generators. Moreover, if we let 𝐵 : 𝐻1 (𝐸𝑘 , F𝑝) → 𝐻2(𝐸𝑘 , F𝑝) denote
the Bockstein, then we can assume that for p odd 𝐵(𝑥𝑖) = 𝑦𝑖 , whereas for 𝑝 = 2, 𝐵(𝑥𝑖) = 𝑥2

𝑖 for all
𝑖 = 1, . . . , 𝑘 . By extending coefficients, we obtain the same structure for 𝐻∗(𝐸𝑘 ,K𝑝).

The map B is compatible with respect to the C action and defines an isomorphism onto its image,
thus giving rise to an exact sequence

0 → 𝑁𝑘 → 𝐻2(𝐸𝑘 ;K𝑝) → Λ2(𝑁𝑘 ) → 0
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as K𝑝𝐶–modules. If 𝑁𝑘 �
⊕

1≤𝑖≤𝑘 𝐿(𝛼𝑖) then Λ2(𝑁𝑘 ) �
⊕

1≤𝑖< 𝑗≤𝑘 𝐿(𝛼𝑖𝛼 𝑗 ). Note that if we tensor
the sequence with any other character and take C–invariants, it will still be exact, as (|𝐶 |, 𝑝) = 1.

Using the fact that for any K𝑝𝑈𝑘–module M, 𝐻𝑡 (𝑈𝑘 ; 𝑀) � 𝐻𝑡 (𝐸𝑘 ; 𝑀 |𝐸 )
𝐶 for every 𝑡 ≥ 0, for any

character 𝐿(𝛽), we obtain the formula

ℎ2 (𝑈𝑘 ; 𝐿(𝛽)) − ℎ1 (𝑈𝑘 ; 𝐿(𝛽)) + ℎ0 (𝑈𝑘 ; 𝐿(𝛽)) = dim[Λ2 (𝑁𝑘 ) ⊗ 𝛽]𝐶 + dim 𝐿(𝛽)𝐶 .

At primes q dividing |𝐶 |, we work over the field K𝑞 , and note that 𝐻𝑖 (𝑈𝑘 , 𝐿) = 𝐻𝑖 (𝐶, 𝐿𝐸𝑘 ). Hence,
an absolutely irreducible L with some ℎ𝑖 (𝑈𝑘 , 𝐿) ≠ 0 must also have a trivial action of 𝐸𝑘 . Arguing, as
before, L is the inflation of a character𝐶/𝑂𝑞 (𝐶) → K×

𝑞 . Thus, we have 𝐻𝑖 (𝑈𝑘 , 𝐿) = [𝐻𝑖 (𝑂𝑞 (𝐶),K𝑞) ⊗

𝐿]𝐶/𝑂𝑞 (𝐶) . As 𝑂𝑞 (𝐶) is cyclic, all these terms are isomorphic and of nonzero rank (equal to one) if
and only if the action of 𝐶/𝑂𝑞 (𝐶) is trivial, and we obtain that

ℎ2 (𝑈𝑘 ; 𝐿) − ℎ1 (𝑈𝑘 ; 𝐿) + ℎ0 (𝑈𝑘 ; 𝐿) ≤ 1.

We apply our analysis to obtain a calculation for 𝜇2 (𝑈𝑘 ) and 𝑒2(𝑈𝑘 ):

Proposition 5.4. For 𝑈𝑘 = 𝐸𝑘 ×𝑇 𝐶 as above, with 𝑁𝑘 = 𝐻1(𝐸𝑘 ;K𝑝),

𝜇2 (𝑈𝑘 ) = max{dim[Λ2 (𝑁𝑘 ) ⊗ 𝐿(𝛽)]𝐶 + dim 𝐿(𝛽)𝐶 }

as 𝐿(𝛽) ranges over all characters 𝛽 : 𝐶 → K×
𝑝 , and

𝑒2(𝑈𝑘 ) = dimΛ2 (𝑁𝑘 )
𝐶 − dim 𝑁𝐶𝑘 + 2.

We apply this to the special case when p is an odd prime and the action on 𝑁𝑘 = 𝐻1(𝐸𝑘 ,K𝑝) is
isotypic, that is it is the direct sum of copies of a fixed character 𝐿(𝛼).

Corollary 5.5. Let𝑈𝑘 = 𝐸𝑘 ×𝑇 𝐶, where p is odd and the action of C on the vector space 𝐸𝑘 gives rise
to the sum of k copies of a fixed character 𝐿(𝛼) over the splitting field K𝑝 , with 𝑘 > 1.

(i) If 𝛼2 ≠ 1, 𝑒2(𝑈𝑘 ) = 2, 𝜇2 (𝑈𝑘 ) =
𝑘 (𝑘−1)

2 and 𝜇2 (𝑈𝑘 ) − 𝜇1(𝑈𝑘 ) =
𝑘 (𝑘−3)

2 .

(ii) If 𝛼2 = 1, 𝑒2(𝑈𝑘 ) =
𝑘 (𝑘−1)

2 + 2, 𝜇2 (𝑈𝑘 ) =
𝑘 (𝑘−1)

2 + 1 and 𝜇2 (𝑈𝑘 ) − 𝜇1(𝑈𝑘 ) =
𝑘 (𝑘−3)

2 + 1.

Proof. We apply Proposition 5.4 to compute 𝜇2 (𝑈𝑘 ) and 𝑒2(𝑈𝑘 ). Choose 𝛽 = 𝛼−2, then
Λ2 (𝐻1 (𝐸𝑘 ;K𝑝)) ⊗ 𝐿(𝛽) is a trivial K𝑝 [𝐶]–module of dimension equal to 𝑘 (𝑘−1)

2 . In the special case
𝛽 = 1, we obtain the extra term. The calculation for 𝑒2(𝑈𝑘 ) follows from its expression in terms of
invariants. As𝑈𝑘 is solvable, we have 𝜇1 (𝑈𝑘 ) = 𝑘 , and the proof is complete. �

Corollary 5.6. Let𝑈𝑘 = 𝐸𝑘 ×𝑇 𝐶, where p is odd, 𝐸𝑘 = (Z/𝑝Z)𝑘 and C cyclic of order prime to p acts
on each Z/𝑝Z factor in 𝐸𝑘 via 𝑥 ↦→ 𝑥𝑞 , where q is a unit in Z/𝑝Z.

(i) If 𝑥𝑞2
≠ 𝑥 for all 1 ≠ 𝑥 ∈ 𝐸𝑘 , then

max{2,
𝑘 (𝑘 − 3)

2
} ≤ 𝑞4(𝑈𝑘 ) ≤ 𝑘 (𝑘 − 1).

(ii) If 𝑞 = 𝑝 − 1, then

𝑘 (𝑘 − 1)
2

+ 2 ≤ 𝑞4(𝑈𝑘 ) ≤ 𝑘 (𝑘 − 1) + 2.

Remark 5.7. Note that for 𝛼2 ≠ 1, 𝑒2(𝑈𝑘 ) = 2 < 𝜇2 (𝑈𝑘 ) − 𝜇1 (𝑈𝑘 ) for 𝑘 ≥ 5. Hence, 5.6 improves on
the lower bound given in [19]. On the other hand, if 𝛼2 = 1, then 𝜇2 (𝑈𝑘 ) − 𝜇1 (𝑈𝑘 ) < 𝑒2(𝑈𝑘 ) for all
𝑘 > 1. This shows that the two invariants play a role in establishing lower bounds for 𝑞4 (𝐺).
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We now apply our estimate to homology 4–spheres.

Theorem 5.8. Let𝑈𝑘 = 𝐸𝑘 ×𝑇 𝐶, where p is an odd prime, 𝐸𝑘 = (Z/𝑝Z)𝑘 and C cyclic of order prime
to p acts on each Z/𝑝Z factor in 𝐸𝑘 via 𝑥 ↦→ 𝑥𝑞 , where q is a unit in Z/𝑝Z.

(i) If 𝑥𝑞2
≠ 𝑥 for all 1 ≠ 𝑥 ∈ 𝐸𝑘 , then for all 𝑘 > 4,𝑈𝑘 does not arise as the fundamental group of any

rational homology 4–sphere.
(ii) If 𝑞 = 𝑝−1, then for all 𝑘 > 1,𝑈𝑘 does not arise as the fundamental group of any rational homology

4–sphere.

Proof. For the groups 𝑈𝑘 = 𝐸𝑘 ×𝑇 𝐶, where 𝑥𝑞2
≠ 𝑥 for 𝑥 ∈ 𝐸𝑘 , we consider the inequality

max{2,
𝑘 (𝑘 − 3)

2
} ≤ 𝑞4 (𝑈𝑘 ) ≤ 𝑘 (𝑘 − 1).

If a rational homology 4–sphere X with fundamental group 𝑈𝑘 exists, then 𝑞4 (𝑈𝑘 ) = 2 and we’d have
𝑘 (𝑘−3)

2 ≤ 2, which implies that 𝑘 ≤ 4. Note that the upper bound implies the existence of a rational
homology 4–sphere with fundamental group 𝑈2. In the case when 𝑞 = 𝑝 − 1, our estimate 5.6 shows
that 2 < 𝑞4(𝑈𝑘 ) for all 𝑘 > 1. �

Example 5.9. Let F𝑞 denote a field with 𝑞 = 2𝑘 elements. Then the cyclic group of units𝐶 = Z/(𝑞−1)Z
acts transitively on the nonzero elements of the underlying mod 2 vector space 𝐸𝑘 = (Z/2Z)𝑘 . If we
write F𝑞 = F2 [𝑢]/(𝑝(𝑢)), where 𝑝(𝑢) is an irreducible polynomial of degree k over F2, then the
action can be described as multiplication by u. Expressing it in terms of the basis {1, 𝑢, . . . , 𝑢𝑘−1}, we
obtain a faithful representation 𝐶 → 𝐺𝐿(𝑘, F2) with characteristic polynomial 𝑝(𝑡). This gives rise
to a semidirect product 𝐽𝑘 = 𝐸𝑘 ×𝑇 𝐶, where the action of C on 𝑁𝑘 = 𝐻1(𝐸𝑘 ,K2) decomposes into
nontrivial, distinct characters determined by the roots of 𝑝(𝑡). If 𝛼 is a root of this polynomial, so are
all the powers {𝛼2𝑖 }𝑖=0,...,𝑘−1, and these appear as a complete set of eigenvalues for the action on the
k–dimensional vector space. In other words, we have 𝑁𝑘 �

⊕
0≤𝑖≤𝑘−1 𝐿(𝛼

2𝑖 ). We propose to compute
the invariants 𝜇2 (𝐽𝑘 ) and 𝑒2(𝐽𝑘 ).

Proposition 5.10. For the groups 𝐽𝑘 described above, we have

(i) 𝜇2(𝐽2) = 2, whereas 𝜇2(𝐽𝑘 ) = 1 for all 𝑘 > 2.
(ii) 𝑒2(𝐽2) = 3, whereas 𝑒2(𝐽𝑘 ) = 2 for all 𝑘 > 2.

Proof. As 𝑁𝑘 �
⊕

0≤𝑖≤𝑘−1 𝐿(𝛼
2𝑖 ), we have that Λ2(𝑁𝑘 ) �

⊕
0≤𝑖< 𝑗≤𝑘−1 𝐿(𝛼

2𝑖+2 𝑗
). For 𝑘 > 2, this is

a sum of distinct, nontrivial characters. This follows from the fact that for 𝑘 > 2,

2𝑘 − 1 = 2𝑘−1 + 2𝑘−2 + · · · + 2 + 1 > 2𝑖 + 2 𝑗 ,

and each 𝛼2𝑖+2 𝑗 is a distinct, nontrivial 2𝑘 − 1 root of unity. Hence, if 𝑘 > 2, the module Λ2(𝑁𝑘 ) has
no trivial summands and no repeated summands. Now, if we take any character 𝐿(𝛽), we see that at
most one summand in Λ2(𝑁𝑘 ) ⊗ 𝐿(𝛽) can be trivial. And if this occurs, then 𝛽 ≠ 1. Hence, applying
the formula in Proposition 5.4, we conclude that 𝜇2 (𝐽𝑘 ) = 1. Similarly, we see that 𝑒2(𝐽𝑘 ) = 2 for all
𝑘 > 2. Also Λ2 (𝑁2) � 𝐿(1), whence we see that 𝜇2 (𝐽2) = 2 and 𝑒2(𝐽2) = 3. �

From these examples, we conclude that there exist rational homology 4–spheres with fundamental
group equal to 𝐽𝑘 for 𝑘 > 2, and so groups of arbitrarily high rank can occur as such groups, in contrast
to the situation for abelian groups appearing in Corollary 5.1. For 𝐽2 � 𝐴4, the alternating group on
four letters, we have 𝑒2 (𝐽2) = 3, 𝜇2 (𝐽2) = 2, and so 3 ≤ 𝑞4 (𝐴4) ≤ 4. The cohomological computations
also imply that 𝜇4 (𝐴4) = 1, whence, there does exist a rational homology 8–sphere with fundamental
group 𝐴4.

Proposition 5.11. For the alternating groups 𝐺 = 𝐴4 or 𝐺 = 𝐴5, we have 𝑞4 (𝐺) = 4.
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Proof. By the estimates above, for 𝐺 = 𝐴4, we only need to rule out 𝑞4 (𝐺) = 3, so suppose that
there exists 𝑀4 with 𝜋1 (𝑀) = 𝐴4 and 𝜒(𝑀) = 3. Applying the universal coefficient theorem, we can
use the computation at 𝑝 = 2 (see [2, Theorem 1.3, Chapter III]) to show that 𝐻4 (𝐴4;Z) = 0. Hence,
𝐻−5 (𝐴4,Z) = 0 and applying Proposition 2.5, we infer that 𝜋2 (𝑀) is stably isomorphic to 𝐽 ⊕ 𝐽∗, where
J denotes a minimal representative of Ω3(Z). Since 𝜒(𝑀) = 3, we have 𝐻0 (𝐺; 𝜋2 (𝑀)) = Z. From the
exact sequence for Tate cohomology [3, Chapter IV.4], we have a surjection Z = 𝐻0(𝐺; 𝜋2 (𝑀)) �
𝐻0 (𝐺; 𝜋2 (𝑀)). However,

𝐻0(𝐺; 𝜋2 (𝑀)) = 𝐻0(𝐺; 𝐽 ⊕ 𝐽∗) = 𝐻−3(𝐺;Z) ⊕ 𝐻3 (𝐺;Z) � 𝐻2 (𝐺;Z) ⊕ 𝐻2(𝐺;Z)

and since 𝐻2 (𝐺;Z) = Z/2Z, this is impossible. For𝐺 = 𝐴5, we apply the fact that for every nonperiodic
finite subgroup G of 𝑆𝑂 (3), 𝜇2 (𝐺) = 2 (see Remark 6.3). The rest of the argument is analogous to
that for 𝐴4, since the restriction map 𝐻∗(𝐴5;Z/2Z) → 𝐻∗(𝐴4;Z/2Z) is an isomorphism. This is true
because both groups share the same 2–Sylow subgroup (Z/2Z)2, with normaliser 𝐴4 (see [2, Theorem
6.8, Chapter II]). This implies that 𝑒2(𝐴5) = 3, 𝐻4(𝐴5;Z) = 0 and 𝐻2 (𝐴5;Z) = Z/2Z (note that the
other two p–Sylow subgroups are cyclic, so don’t contribute to even degree homology). Therefore, we
can rule out 𝑞4 (𝐴5) = 3 whence 𝑞4 (𝐴5) = 4. �

6. Some further remarks and questions in dimension four

In this section, we will briefly discuss some questions about rational homology 4-spheres whose
fundamental groups are finite.

Section 6A. Existence via surgery. The main open problem is to characterise the finite groups G for
which 𝑞4 (𝐺) = 2. To make progress, we need more constructions of rational homology 4-spheres.

Examples of Q𝑆4-manifolds can be constructed by starting with a rational homology 3-sphere X,
forming the product 𝑋 × 𝑆1, and then doing surgery on an embedded 𝑆1 × 𝐷3 ⊂ 𝑋 × 𝑆1 representing
a generator of 𝜋1 (𝑆

1) = Z. This construction is equivalent to the ‘thickened double’ construction
𝑍 = 𝑀 (𝐾) for a finite 2-complex of Proposition 3.1 (compare [13, Section 4]).
Example 6.1. The groups𝐺 = Z/𝑝Z×Z/𝑝Z areQ𝑆4-groups, since we can do surgery on an embedded
circle 𝐿3 (𝑝, 1) × 𝑆1 representing p-times a generator of 𝜋1 (𝑆

1) = Z. These examples are not of the
thickened double form 𝑀 (𝐾) because the minimal rank of 𝜋2 (𝐾) representing Ω3(Z) is greater than
|𝐺 | − 1, and hence, the extension describing 𝜋2 (𝑀) is nontrivial (by Proposition 2.3).

Since the quotient of a free finite group action on a rational homology 3-sphere is again a rational
homology 3-sphere, one could use the examples 𝑋 = 𝑌/𝐺 studied by [1], where Y is a Q𝑆3 and G
is a finite group acting freely on Y. However, to obtain a Q𝑆4 with finite fundamental group by this
construction, Y must, itself, have finite fundamental group.
Remark 6.2. The finite fundamental groups of closed, oriented 3-manifolds have periodic cohomology
of period 4, but not all 4-periodic groups arise this way. A complete list of 4-periodic groups is given in
Milnor [32, Section 3], and those which can act freely and orthogonally on 𝑆3 were listed by Hopf [20].
Perelman [26] showed that the remaining groups in Milnor’s list do not arise as the fundamental group
of any closed, oriented 3-manifold, and that the closed 3-manifolds with finite fundamental group are
exactly the 3-dimensional spherical space forms.
Remark 6.3. For every nonperiodic finite subgroup G of 𝑆𝑂 (3), we have 𝜇2 (𝐺) = 2, and hence,
𝑞4 (𝐺) ≤ 4 (see [15, Proposition 2.4]). Note that each such subgroup has a 2-fold central extension
𝐺∗ ⊂ 𝑆𝑈 (2) which acts freely on 𝑆3, and let 𝑋 = 𝑆3/𝐺∗ denote the quotient 3-manifold. On 𝑁 := 𝑋×𝑆1,
we can do surgery on disjoint circles representing (i) a generator of the central subgroup of 𝐺∗ and
(ii) a generator of Z, to reduce the fundamental group from 𝜋1 (𝑁) = 𝐺∗ × Z to G. We thus obtain a
4-manifold M with 𝜒(𝑀) = 4 and 𝜋1 (𝑀) = 𝐺, realising the upper bound for 𝑞4(𝐺). Our estimates give
2 ≤ 𝑞4(𝐺) ≤ 4 for the cases not yet determined, namely, where G is dihedral of order 4𝑛 or G is the
symmetric group 𝑆4.
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Remark 6.4. Teichner [43, 3.7] indicated that topological surgery could produce examples with finite
fundamental group from certain 4-manifolds with infinite fundamental group. This technique should be
investigated further.

Section 6B. Groups of deficiency zero. There are many finite groups with deficiency zero: for example,
Wamsley [51] showed that a metacyclic group G with 𝐻2 (𝐺;Z) = 0 has Def (𝐺) = 0. In particular, the
class of finite groups arising as fundamental groups of rational homology 4–spheres includes groups
with periodic cohomology of arbitrarily high period. There is an extensive literature on this problem:
for example, see [4, 5, 6, 8, 22, 30, 33, 37, 38, 39].

According to Swan, 1 ≤ 𝜇2 (𝐺) ≤ 1 − Def (𝐺) (see [42, Proposition 1, Corollary 1.3]), hence, if G
is a finite group of deficiency zero, we have 𝜇2(𝐺) = 1. Thus, for such groups by Proposition 3.1, we
can construct an orientable 4–manifold M with 𝜋1 (𝑀) = 𝐺 and 𝜒(𝑀) = 2. More generally, this can
be done whenever 𝜇2 (𝐺) = 1 by Theorem B (see Corollary 3.9 and the series of groups 𝐽𝑘 considered
in Example 5.9). Then M is a rational homology 4–sphere, and in these cases, there is a minimal
representative J for the stable module Ω3(Z) with rankZ(𝐽) = |𝐺 | − 1 (compare [13, Corollary 4.4]).
For example, if G is the fundamental group of a closed, oriented 3-manifold, then 𝐽 � 𝐼 (𝐺)∗.

Remark 6.5. We are indebted to Mike Newman and Özgün Ünlü for showing that some of the groups
𝐽𝑘 do have deficiency zero (e.g. at least for 3 ≤ 𝑘 ≤ 6). It is a challenging, open problem to decide
whether this is true for all 𝑘 ≥ 3. Note that any group in this range which does not admit a balanced
presentation would give a negative answer to Wall’s D2 problem.

Example 6.6. Teichner [43, 3.4, 4.15] proved that if G is a finite Q𝑆4-group, then 𝑑 (𝐻1(𝐺)) ≤ 7, and
used a mapping torus construction to produce a nonabelian Q𝑆4-group G with 𝑑 (𝐻1(𝐺)) = 4.

Section 6C. Algebraic questions. For the rational homology 4-spheres M with 𝜋1 (𝑀) = 𝐺 constructed
in Theorem B, we have 𝜋2 (𝑀) = 𝐻2(𝑀;Z) = 𝐽 ⊕ 𝐽∗, where J is a minimal representative for Ω3(Z)
over Z𝐺, with rankZ(𝐽) = |𝐺 | − 1.

Moreover, J is locally, and hence, rationally isomorphic to the augmentation ideal 𝐼 (𝐺), and the
equivariant intersection form 𝑠𝑀 on 𝜋2 (𝑀) = 𝐽 ⊕ 𝐽∗ is metabolic, with totally isotropic submodule
0 ⊕ 𝐽∗. Similar results hold for the higher-dimensional examples constructed in Proposition 3.1.

More generally, for any finite group G, the existence of a representative J for the stable module Ω3(Z)
with rankZ(𝐽) = |𝐺 | − 1 is equivalent to the condition 𝜇2 (𝐺) = 1 (see Proposition 3.7).

Question. Is there a finite group G with 𝜇2 (𝐺) = 1, such that G is neither periodic nor admits a balanced
presentation?

For any closed, oriented 4-manifold M with finite fundamental group G, we have seen in 2.3 that
𝜋2 (𝑀) is stably given by an extension of Ω−3(Z) by Ω3(Z) (see also [13, Proposition 2.4]) and that the
extension class in Ext1

Z𝐺 (Ω
−3(Z),Ω3(Z)) � 𝐻4(𝐺;Z) is given by the image of the fundamental class

of M. For any rational homology 4-sphere M with finite fundamental group G, the condition 𝜒(𝑀) = 2
implies that rankZ(𝜋2 (𝑀)) = 2(|𝐺 | − 1) and 𝐻0 (𝐺; 𝜋2 (𝑀)) = 0.

Question. If M is a Q𝑆4, what is the (unstable) structure of 𝜋2 (𝑀) as an integral representation? Is the
equivariant intersection form 𝑠𝑀 always metabolic (in the sense defined in [14, Section 2])?

Finally, we point out that many questions in the representation theory of finite groups can be
investigated by induction and restriction to proper subgroups. At present, we do not see how to apply
this technique in our setting.

Question. If M is a Q𝑆4-manifold with finite fundamental group G, then its nontrivial finite coverings
have Euler characteristic > 2 (and, hence, are not Q𝑆4-manifolds). How can we decide if proper
subgroups of G are also Q𝑆4-groups?
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7. Appendix A: The Proof of Theorem 3.8

In this section, we give a direct construction of the minimal 4-manifold needed for Theorem 3.8. The
idea is to use a handlebody thickening (see Definition 7.4) of a finite 2-complex K instead of starting
with an embedding of K in R5. The advantage of this thickening is that we can identify the intersection
form of its 4-manifold boundary, and then apply a recent refinement of Freedman’s work due to Teichner,
Powell and Ray (see [35, Corollary 1.4]).

Section 7A. Metabolic forms. To analyse the intersection form of the handlebody thickening, we will
need some algebraic preparations.

Definition 7.1. Let (𝐸, [𝑞]) denote a quadratic metabolic form on a Λ-module 𝐸 = 𝑁 ⊕ 𝑁∗, where N
is a left Λ-module and 𝑁∗ inherits a left Λ-module structure via the standard anti-involution 𝑎 ↦→ �̄� on
Λ = Z𝐺. Then

𝑞((𝑥, 𝜙), (𝑥 ′, 𝜙′)) = 𝜙(𝑥 ′) + 𝑔(𝜙, 𝜙′),

where 𝑥, 𝑥 ′ ∈ 𝑁 , 𝜙, 𝜙′ ∈ 𝑁∗ and 𝑔 ∈ Hom(𝑁∗ ⊗ 𝑁∗,Λ) is a sesquilinear form. We use the notation
(𝐸, [𝑞]) = Met(𝑁, 𝑔) for this metabolic form (see [14, Section 2] for metabolic forms defined on a
nonsplit extension of N and 𝑁∗).

The associated Hermitian form ℎ = 𝑞 + 𝑞∗ is nonsingular, and 𝑁 ⊕ 0 ⊂ 𝐸 is a totally isotropic direct
summand. More explicitly,

ℎ((𝑥, 𝜙), (𝑥 ′, 𝜙′)) = 𝜙(𝑥 ′) + 𝜙′(𝑥) + 𝑔(𝜙, 𝜙′) + 𝑔(𝜙′, 𝜙).

In our geometric setting, the metabolic forms arise on modules 𝐸 = 𝐻2 (𝐾) ⊕ 𝐻2(𝐾), where K is
a finite 2-complex with fundamental group G (take coefficients in Λ = Z𝐺). If G is finite, then
𝐻2 (𝐾;Λ) � HomΛ (𝐻2 (𝐾),Λ), and the definition above applies. If G is infinite, then we slightly
generalise our notion of metabolic form.

Definition 7.2. Let 𝐸 = 𝑁⊕𝑁 , and let𝛼 : 𝑁 → 𝑁∗ be aΛ-module homomorphism. Define a generalised
metabolic form (𝐸, [𝑞]) := Met(𝑁, 𝑁, 𝛼, 𝑔) by the formula

𝑞((𝑥, 𝜙), (𝑥 ′, 𝜙′)) = 𝛼(𝜙) (𝑥 ′) + 𝑔(𝜙, 𝜙′),

where 𝑥, 𝑥 ′ ∈ 𝑁 , 𝜙, 𝜙′ ∈ 𝑁 , and 𝑔 ∈ Hom(𝑁 ⊗ 𝑁,Λ) is a given sesquilinear form.

Example 7.3. For a finite 2-complex K, we have the evaluation map 𝛼 : 𝐻2 (𝐾) → HomΛ (𝐻2(𝐾),Λ),
which in general is neither injective nor surjective. In this case, we will shorten the notation of Defini-
tion 7.2 to (𝐸, [𝑞]) = Met(𝐻2 (𝐾), 𝑔), where 𝐸 = 𝐻2(𝐾) ⊕ 𝐻2(𝐾) as above.

Here are some preliminary remarks.

◦ Let (𝐸, [𝑞]) be any quadratic form, and suppose that U is a finitely generated submodule on which the
restriction𝜆0 of𝜆 = 𝑞+𝑞∗ to U is nonsingular. Then there is is orthogonal splitting (𝐸, [𝑞]) � 𝑈 ⊥ 𝐿.

Proof. Consider the following sequence

0 → 𝑈 → 𝐸
ad𝜆
−−−→ 𝐸∗ → 𝑈∗ → 0,

where the composition ad𝜆0 : 𝑈 → 𝑈∗ is an isomorphism by assumption. Therefore, the inclusion
𝑈 ⊂ 𝐸 is a split injection, and 𝐸 = 𝑈 ⊥ 𝐿, where 𝐿 := 𝑈⊥. To check this last point, note that a
splitting map for the inclusion 𝑖 : 𝑈 → 𝐸 is given by

𝑟 := (ad𝜆0)
−1 ◦ 𝑖∗ ◦ ad𝜆 ◦ 𝑖.
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For 𝑒 ∈ 𝐸 , we compute

𝜆(𝑒 − 𝑖(𝑟 (𝑒)), 𝑖(ℎ)) = 𝜆(𝑒, 𝑖(ℎ)) − 𝜆(𝑖(𝑟 (𝑒)), 𝑖(ℎ)) = 𝜆(𝑒, 𝑖(ℎ)) − 𝜆0(𝑟 (𝑒), ℎ) = 0

after substituting the formula for r. Therefore, 𝐸 = 𝑈+𝑈⊥, and𝑈∩𝑈⊥ = 0 since𝜆0 is nonsingular. �

◦ Let (𝐸, [𝑞]) = Met(𝐻, 𝑔) be a metabolic quadratic form on 𝐸 = 𝐻 ⊕ 𝐻∗, where 𝐻 = Λ𝑟 is a finitely
generated free Λ-module. Then (𝐸, [𝑞]) � 𝐻 (Λ𝑟 ) is a hyperbolic form.

Proof. This is a standard fact (see [50, Lemma 5.3]). �

Section 7B. A handlebody thickening. Let K be a finite 2-complex with 𝜋1 (𝐾) = 𝐺. We construct a
suitable thickening of K to be used in the proof of Theorem 3.8.

Definition 7.4. We first consider a 4-dimensional parallelisable thickening 𝐴(𝐾) of K constructed by
attaching suitable 2-handles to a connected sum ♯ ℓ(𝑆1 ×𝐷3). Then 𝐴(𝐾) is a compact 4-manifold with
boundary, and we let 𝑁 (𝐾) = 𝐴(𝐾) × 𝐼. Note that 𝑁 (𝐾) is a 5-dimensional thickening of K but may
not embed in R5, and that 𝜕𝑁 (𝐾) = 𝐴(𝐾) ∪ −𝐴(𝐾) is the double of A along the common boundary.

Then 𝑀 := 𝜕𝑁 (𝐾) has the intersection form 𝜆𝑀 = Met(𝐻2 (𝐾), 𝑔), since 𝐻2(𝜕𝑁 (𝐾)) = 𝐻2 (𝐾) ⊕
𝐻2 (𝐾) and the direct summand 𝐻2(𝐾) is totally isotropic (compare [24, Section 2]). All the homology
groups have coefficients in Λ := Z𝐺.

Remark 7.5. Note that the quadratic intersection form Met(𝐻2 (𝐾), 𝑔) is a generalisedmetabolic form
(see Example 7.3). It is nonsingular if 𝜋1 (𝐾) = 𝐺 is a finite group. If G is infinite, this form has radical
𝐻2 (𝐺;Λ), and the cokernel of its adjoint is 𝐻3(𝐺;Λ) by the exact sequence

0 → 𝐻2 (𝐺;Λ) → 𝐻2(𝑀;Λ)
ad𝜆𝑀
−−−−−→ HomΛ (𝐻2(𝑀),Λ) → 𝐻3(𝐺;Λ) → 0

arising from the universal coefficient theorem.

Section 7C. A self-homotopy equivalence. Let 𝑁 (𝐾)𝑟 := 𝑁 (𝐾)♮ 𝑟 (𝑆2×𝐷3) denote this new thickening
of 𝐾 ∨ 𝑟 (𝑆2). We recall the construction of a useful homotopy self-equivalence of 𝐾 ∨ 𝑟 (𝑆2).

Lemma 7.6 [12, Lemma 2.1]. Let X be a finite D2-complex, and let 𝑢 : 𝐾 ⊂ 𝑋 denote the 2-skeleton
of X. Then, for 𝑟 = 𝑏3(𝑋), there is a simple self-homotopy equivalence ℎ : 𝐾 ∨ 𝑟 (𝑆2) → 𝐾 ∨ 𝑟 (𝑆2)
inducing a simple homotopy equivalence 𝑓 : 𝑋 ∨ 𝑟 (𝑆2)  𝐾 .

Proof. We recall some of the notation from [12, Section 2]. There is an identification

𝜋2 (𝐾 ∨ 𝑟 (𝑆2)) � 𝜋2 (𝐾) ⊕ Λ𝑟 � 𝜋2 (𝑋) ⊕ 𝐶3 (𝑋) ⊕ 𝐹, (7.1)

and we fix free Λ-bases {𝑒1, . . . , 𝑒𝑟 } for 𝐶3 (𝑋) � Λ𝑟 and { 𝑓1, . . . , 𝑓𝑟 } for 𝐹 � Λ𝑟 . The same notation
{𝑒𝑖} and { 𝑓 𝑗 } will also be used for continuous maps 𝑆2 → 𝐾 ∨ 𝑟 (𝑆2) in the homotopy classes of
𝜋2 (𝐾∨𝑟 (𝑆2)) defined by these basis elements. Notice that the maps 𝑓 𝑗 : 𝑆2 → 𝐾∨𝑟 (𝑆2) may be chosen
to represent the inclusions of the 𝑆2 wedge factors.

An examination of the proof of [12, Lemma 2.1] shows that the simple homotopy equivalence
𝑓 : 𝑋 ∨ 𝑟 (𝑆2)  𝐾 is obtained by extending a certain simple homotopy equivalence ℎ : 𝐾 ∨ 𝑟 (𝑆2) →
𝐾 ∨ 𝑟 (𝑆2) over the (stabilised) inclusion

𝑋 ∨ 𝑟 (𝑆2)
ℎ′ ��������� 𝐾 ′

𝐾 ∨ 𝑟 (𝑆2)
��
𝑢∨id

��

ℎ �� 𝐾 ∨ 𝑟 (𝑆2)
��

��
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by attaching the 3-cells of X in domain by the maps 𝑒𝑖 = [𝜕𝐷3
𝑖 ], 1 ≤ 𝑖 ≤ 𝑟 , and 3-cells in the range via

the maps 𝑓𝑖 = [𝜕𝐷3
𝑖 ], 1 ≤ 𝑖 ≤ 𝑟 , which homotopically cancel the 𝑆2 wedge factors, to obtain a complex

𝐾 ′  𝐾 .
Then we have ℎ ◦ [𝜕𝐷3

𝑖 ] = 𝑓𝑖 by the construction of h (see [12, p. 364]). Hence, we can extend h over
X by the identity on the 3-cells attached in domain and range along the maps { 𝑓𝑖 : 𝑆2 → 𝐾 ∨ 𝑟 (𝑆2)}.
We obtain a map

ℎ′ : 𝑋 ∨ 𝑟 (𝑆2) → 𝐾 ′ := 𝐾 ∨ 𝑟 (𝑆2) ∪
⋃

{𝐷3
𝑖 : [𝜕𝐷3

𝑖 ] = 𝑓𝑖 , 1 ≤ 𝑖 ≤ 𝑟}

extending h. From the construction of the map h (see [12, p. 364]), it follows that ℎ′ is a (simple) homotopy
equivalence, which induces a simple homotopy equivalence 𝑓 : 𝑋 ∨ 𝑟 (𝑆2)  𝐾 , after composition with
the obvious projection 𝐾 ′ → 𝐾 . �

Section 7D. Topological surgery. We will now apply some results of topological surgery due to
Freedman. Recall that 𝑁 (𝐾) is the 5-dimensional thickening of K constructed above and 𝑁 (𝐾)𝑟 =
𝑁 (𝐾)♮ 𝑟 (𝑆2 × 𝐷3) is its stabilisation. We have introduced the notation 𝑀 = 𝜕𝑁 (𝐾), and let 𝑀𝑟 =
𝜕𝑁 (𝐾)𝑟 = 𝜕𝑁 (𝐾)#𝑟 (𝑆2 × 𝑆2).

Lemma 7.7. Suppose that 𝜋1 (𝐾) is a good group. There is a self-homeomorphism 𝛽 : 𝜕𝑁 (𝐾)𝑟 ≈

𝜕𝑁 (𝐾)𝑟 extending the simple homotopy self-equivalence ℎ : 𝐾 ∨ 𝑟 (𝑆2) → 𝐾 ∨ 𝑟 (𝑆2).

Proof. Since 𝜋1 (𝐾) is a good group, the topological s-cobordism theorem [9, Theorem 7.1A] implies that
the given simple homotopy self-equivalence ℎ : 𝐾∨𝑟 (𝑆2) → 𝐾∨𝑟 (𝑆2) extends to a self-homeomorphism
ℎ̂ : 𝑁 (𝐾)𝑟 → 𝑁 (𝐾)𝑟 . This follows since we may assume (by general position) that the image ℎ(𝐾 ∨

𝑟 (𝑆2)) ⊂ 𝑁 (𝐾))𝑟 is embedded in the interior of the 5-manifold 𝑁 (𝐾))𝑟 . Since h is a simple homotopy
self-equivalence, the complement of a small tubular neighbourhood of ℎ(𝐾 ∨ 𝑟 (𝑆2)) will then be an
s-cobordism, and hence, a product. Since 𝑁 (𝐾))𝑟 is a thickening of 𝐾 ∨ 𝑟 (𝑆2), we can construct the
self-homeomorphism ℎ̂ by identifying the tubular neighbourhoods in domain and range, and then using
the product structures. Let 𝛽 := 𝜕ℎ̂ denote the restriction of ℎ̂ to 𝜕𝑁 (𝐾)𝑟 . �

We now combine these ingredients. Recall that 𝑋 ∨ 𝑟 (𝑆2)  𝐾 , so that 𝐻2(𝐾) � 𝐻2 (𝑋) ⊕ 𝐻, where
𝐻 � Λ𝑟 . We have the isomorphism

𝐻2(𝑁 (𝐾)𝑟 ) = 𝐻2 (𝐾 ∨ 𝑟 (𝑆2)) � 𝐻2(𝐾) ⊕ 𝐹 � 𝐻2(𝑋) ⊕ 𝐻 ⊕ 𝐹, (7.2)

where 𝐹 � Λ𝑟 . We fix free Λ-bases {𝑒1, . . . , 𝑒𝑟 } for 𝐻 � Λ𝑟 , and { 𝑓1, . . . , 𝑓𝑟 } for 𝐹 � Λ𝑟 . It follows
that 𝑀𝑟 := 𝜕𝑁 (𝐾)𝑟 has intersection form

𝜆𝑀𝑟 = 𝜆𝑀 ⊕ 𝐻 (𝐹) = Met(𝐻2 (𝐾), 𝑔) ⊕ 𝐻 (Λ𝑟 ),

where the classes { 𝑓1, 𝑓2, . . . , 𝑓𝑟 } and their duals provide a standard hyperbolic base for the second
summand 𝐻 (𝐹). By construction, ℎ∗(𝑒𝑖) = 𝑓𝑖 , ℎ∗( 𝑓𝑖) = 𝑒𝑖 for 1 ≤ 𝑖 ≤ 𝑟 , and ℎ∗(𝑥) = 𝑥 for all
𝑥 ∈ 𝐻2(𝑋). Note that 𝐻2(𝐾) = 𝐻2(𝑋) ⊕ 𝐻∗ is totally isotropic under 𝜆𝑀 , and orthogonal to, the
summand 𝐻 (𝐹).

Lemma 7.8. There is a closed, topological 4-manifold 𝑀0 and a homeomorphism 𝑀𝑟 = 𝜕𝑁 (𝐾)𝑟 ≈

𝑀0 ♯ 2𝑟 (𝑆2 × 𝑆2), such that 𝜒(𝑀0) = 2𝜒(𝑋).

Proof. We have the decomposition:

𝐻2(𝑀𝑟 ) = 𝐻2(𝑋) ⊕ 𝐻2(𝑋) ⊕ 𝐻 ⊕ 𝐻∗ ⊕ 𝐹 ⊕ 𝐹∗

in the notation introduced in (7.2).
The metabolic intersection form 𝜆𝑀𝑟 = 𝜆𝑀 ⊕𝐻 (𝐹) admits a self-isometry 𝛽∗ (induced from the map

𝛽 constructed in Lemma 7.7) extending the map ℎ∗ : 𝐻2 (𝐾) ⊕ Λ𝑟 → 𝐻2 (𝐾) ⊕ Λ𝑟 constructed above.
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Since the images of the basis elements ℎ∗(𝑒𝑖) = 𝑓𝑖 ∈ 𝐹 have dual classes 𝑓 ∗𝑖 ∈ 𝐹∗, it follows that

𝜆𝑀𝑟 (𝛽∗( 𝑓
∗
𝑖 ), 𝑒 𝑗 ) = 𝜆𝑀𝑟 (𝛽∗( 𝑓

∗
𝑖 ), 𝛽∗( 𝑓 𝑗 )) = 𝜆𝑀𝑟 ( 𝑓

∗
𝑖 , 𝑓 𝑗 ) = 𝛿𝑖 𝑗 . (7.3)

Similarly, we have the formulas

𝜆𝑀𝑟 (𝛽∗( 𝑓
∗
𝑖 ), 𝛽∗( 𝑓

∗
𝑗 )) = 𝜆𝑀𝑟 ( 𝑓

∗
𝑖 , 𝑓

∗
𝑗 ) = 0, for all 1 ≤ 𝑖, 𝑗 ≤ 𝑟, (7.4)

and

𝜆𝑀𝑟 (𝑒𝑖 , 𝑒 𝑗 ) = 𝜆𝑀𝑟 (𝛽∗( 𝑓𝑖), 𝛽∗( 𝑓 𝑗 )) = 𝜆𝑀𝑟 ( 𝑓𝑖 , 𝑓 𝑗 ) = 0, for all 1 ≤ 𝑖, 𝑗 ≤ 𝑟. (7.5)

Let𝑈 = 〈𝛽∗(𝐹
∗);𝐻; 𝐹⊕𝐹∗〉 denote the submodule of𝐻2(𝑀𝑟 ) generated by𝐻 (𝐹) = 𝐹⊕𝐹∗, together

with the classes {𝛽∗( 𝑓 ∗𝑖 )}, and the classes {𝑒𝑖}, for 1 ≤ 𝑖 ≤ 𝑟 . Then we claim that𝑈 � 𝛽∗(𝐹∗)⊕𝐻⊕𝐻 (𝐹)
is a free direct summand of 𝐻2 (𝑀𝑟 ), with indicated basis elements, on which the restriction of 𝜆𝑀𝑟 is
a nonsingular form.

We check that𝑈 � 𝛽∗(𝐹∗) ⊕𝐻 ⊕ 𝐹 ⊕ 𝐹∗ is a free submodule (of rank 4𝑟) in 𝐻2 (𝑀𝑟 ) by first showing
that

𝛽∗(𝐹
∗) ∩ (𝐻 ⊕ 𝐹 ⊕ 𝐹∗) = 0.

We then observe that the restriction 𝜆𝑈 of the intersection form to 𝑈 ⊂ 𝐻2 (𝑀𝑟 ) is nonsingular. It
follows that (𝑈, 𝜆𝑈 ) is an orthogonal direct summand of (𝐻2 (𝑀𝑟 ), 𝜆𝑀𝑟 ).

Here are the details: suppose that 𝑢 ∈ 𝛽∗(𝐹
∗) ∩ (𝐻 ⊕ 𝐹 ⊕ 𝐹∗). We can express

𝑢 =
∑

𝑎𝑖𝛽∗( 𝑓
∗
𝑖 ) =

∑
𝑏𝑖𝑒𝑖 +

∑
𝑐𝑖 𝑓𝑖 +

∑
𝑑𝑖 𝑓

∗
𝑖

as Λ-linear combinations of the basis elements. Then by the formula (7.3) above, we have
𝜆𝑀𝑟 (𝛽∗( 𝑓

∗
𝑖 ), 𝑒 𝑗 ) = 𝛿𝑖 𝑗 , and hence, 𝜆𝑀𝑟 (𝑢, 𝑒𝑖) = 𝑎𝑖 . Since H is totally isotropic by (7.5), the summand

𝐻 ⊕ 𝐹 ⊕ 𝐹∗ is orthogonal to H, and it follows that 𝜆𝑀𝑟 (𝑢, 𝑒𝑖) = 0. Hence, all the 𝑎𝑖 are zero and 𝑢 = 0.
Now let 𝜆𝑈 denote the restriction of 𝜆𝑀𝑟 to U. The submodule 𝐻 ⊕ 𝐹 is a totally isotropic-based

free direct summand of rank 2𝑟 in U, and the dual basis elements under 𝜆𝑈 form the basis of the
complementary direct summand 𝛽∗ (𝐹∗)⊕𝐹∗. Hence,𝜆𝑈 is nonsingular, and in fact,𝜆𝑈 � Met(𝐻⊕𝐹, 𝑔),
where g encodes the intersections of 𝛽∗(𝐹∗) with 𝐹∗ (which may be nonzero). In this situation, it follows
that 𝜆𝑈 � 𝐻 (Λ2𝑟 ) is isomorphic to a nonsingular hyperbolic form (see [50, Lemma 5.3]).

Hence, there is a splitting for the intersection form

𝜆𝑀𝑟 = Met(𝐻2 (𝐾), 𝑔) ⊥ 𝐻 (𝐹) � (𝐸, 𝜆0) ⊥ 𝜆𝑈

with respect to the orthogonal complement (𝐸, 𝜆0) = (𝜆𝑈 )
⊥. Since M has good fundamental group and

𝜆𝑀𝑟 contains the hyperbolic subform

𝜆𝑈 � 𝐻 (Λ2𝑟 ) � 𝐻 (Λ𝑟 ) ⊥ 𝐻 (𝐹),

topological surgery [35, Corollary 1.4] shows that 𝑀 ≈ 𝑀0 ♯ 2𝑟 (𝑆2 × 𝑆2). The resulting closed, topo-
logical 4-manifold 𝑀0 has 𝜒(𝑀0) = 2𝜒(𝑋). �

The construction of the manifold 𝑀 (𝑋) := 𝑀0 completes the proof of Theorem 3.8.
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