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Abstract

In oil reservoirs, the less-dense oil often lies over a layer of water. When pumping
begins, the oil-water interface rises near the well, due to the suction pressures
associated with the well. A boundary-integral formulation is used to predict the
steady interface shape, when the oil well is approximated by a series of sources
and sinks or a line sink, to simulate the actual geometry of the oil well. It is found
that there is a critical pumping rate, above which the water enters the oil well. The
critical interface shape is a cusp. Efforts to suppress the cone by using source/sink
combinations are presented.

1. Introduction

An oil reservoir consists of a porous rock, like sandstone or limestone, in
which oil is trapped in the interstices with some form of impermeable layer
above, to keep it trapped (Muskat [14], Bear [2]). Water is often found in
these reservoirs, and since it is more dense, it will lie in a layer below that
of the oil, as shown in Figure l(a). All fluid in the reservoir will be under
a natural pressure due to the rock above. The temperature of the fluid will
be in equilibrium with the rock. It is this natural pressure that, when a well
is drilled, forces some of the oil to the surface, and is known as 'primary oil
recovery'.

Pumping out of oil from the reservoir generates a suction pressure that
acts on both the oil and the water, causing the oil-water interface to rise. To
counterbalance this, we have gravity forces due to fluid density differences
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FIGURE 1 (a). Water coning in an oil reservoir.

pulling the water down. If the well is pumping out oil at a constant rate, and
if the pressure forces acting on the water are in equilibrium with the gravity
forces, the oil-water interface will reach a stable shape below the well. If well
forces are greater, the interface will reach up into the well after a finite time,
and water will become a substantial portion of the well's production, which
is not desirable. We can define the critical pumping rate as that such that a
greater rate causes water to enter the well. At this rate, we would obtain a
stable shape for the oil-water interface, but it is at a position about to break
through to the well. This rising of the water layer towards the oil well, and
sometimes breaking through and producing water, is known as 'water coning'
in an oil reservoir. The objective of this paper is to determine the steady-state
shape of this water cone, based upon a pumping rate or downhole pressure
being specified. This is an extension of the earlier work by Blake and Kucera
[4].

The motion of an interface between two immiscible or density-stratified
fluids, where one is being withdrawn, is not a topic restricted to oil reservoirs.
A similar phenomenon is often found in groundwater hydrology at the inter-
face between fresh and salty water, as in coastal aquifers, where fresh water is
pumped out. Another example, removed from flow in a porous medium, is a
fresh-water reservoir, which can become stratified during long hot summers,
where it is preferred to remove the more saline layers.

An extensive literature has developed on the analogous inviscid potential-
flow problem of a sink near a free surface (see e.g. Craya [7], Tuck and Van-
den-Broeck [16], Hocking [10, 11], Collings [6]). In that work, the limiting
shape for the free surface is a cusp.
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Fluid movement in porous media has been analysed extensively by mod-
els with a modified Darcy's law, using relative permeabilities and saturations.
These models, however, often suffer instabilities near the well itself, requiring
restricted time steps as in MacDonald [13], or application of boundary con-
ditions at some distance from the well [5]. This is due mainly to the vastly
increasing flow rate of fluid as it approaches the sink, or well.

Muskat [14] was the first to suggest that Darcy's law for single-phase flows
could be applied explicitly to each phase in a multiphase flow, which has
subsequently become one of the major assumptions in oil-reservoir models.
It must be noted that Darcy's law is only valid on the macroscopic level.
At the microscopic level, instead of working with an overall permeability
on the rock, we would have to get into the actual flow between interstices,
and capillary forces would become far more important. In more realistic oil-
reservoir simulation models, a modified version of Darcy's law is used, which
incorporates the idea of a relative permeability which is a non-linear function
of the relative saturation of oil and water [8]. Thus, we emphasise that our
water-coning model is on a macroscopic level, where pressure gradients and
permeabilities are the dominant factors.

Another point of importance is the actual transition zone that exists be-
tween two fluids flowing in a porous medium. In many cases, this transition
zone is narrow relative to the dimensions of the regions occupied by the flu-
ids. In these cases, we can assume a sharp interface between fluids. This
approximation, which is used in this project, has often been successfully
used in oil-recovery studies (Hinch [9]), and is also valid for fresh-salt water
transitions in coastal aquifers (Bear and Dagan [3]).

In two dimensions, sink-like flows near the interface between two immisci-
ble fluids in a porous medium have been studied using hodograph techniques.
Bear and Dagan [3] showed that at the critical flow rate, the interface forms
a 'cusp' coming up to just below the sink. Throughout this paper, the word
cusp will be used in the mathematical sense, as a singular point of a curve
where the limits of tangents approaching from either side coincide. This
shape is the limiting shape of the interface; any higher flow rates will lead to
a breakthrough of the water into the well.

It should also be noted that most mathematical models (including our
own) produce apparently-stable water-cone curves that, realistically, are not
strictly stable. As oil is removed from the system, since oil reservoirs are
only finite in size, changes both to underground pressure and the quantity of
oil will alter our model. For example, as the oil is pumped out, the water-oil
interface base level will rise, increasing the chance of water breakthrough, as
the water cone itself will rise higher towards the well. Indeed, water is often
pumped into the reservoir to replace the oil that is pumped out. This is one
aspect of what is known as secondary oil recovery.
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FIGURE l(b). Geometry of the model.

The other factor that also needs to be acknowledged is that the 'steady
interface strategy' leading to a maximum pumping rate may not be the op-
timal strategy for maximising oil production. It may be desirable to pump
at rates above this maximum pumping rate until the water cone reaches the
well, and then to alter the pumping rate (see e.g. Ewing [6]). However we
shall not concern ourselves with this problem in this paper, but shall instead
concentrate solely on the steady-state problem.

2. Equations

To simplify the problem, we shall consider an homogeneous medium of
constant permeability k occupying all space. Figure l(b) shows the basic
geometry of the model. Furthermore, we are assuming that the fluids are im-
miscible and that, apart from the interface, all pore spaces are filled with one
of the two fluids. Under these simplifying conditions, Darcy's law can then
be applied independently to each region, assuming a constant permeability
throughout, but allowing for different viscosities and densities.

We shall assume that the upper fluid has density px and viscosity fil, and
the lower fluid has density p2{> px) and viscosity fi2. We have the fluids
separated by an interface z - C(r, t). Darcy's law applied to both fluids
yields

u(/) = -(*/0.)Vp( / ) f o r / = 1 , 2 , (2.1)

where
P{i)=p{i) + Pigz (2.2)

is the modified pressure, with p2> p{ . u(/) is the velocity, p.t the viscosity
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and pt is the density. / = 1 corresponds to the upper fluid (oil) while i — 2
corresponds to the lower fluid (water). The incompressibility condition in
both fluids gives

V u ( / ) = 0. (2.3)

Taking (2.3) with (2.1) gives Laplace's equation for the modified pressures
as

VV; ) = O; (2.4)

with boundary conditions that u(() and p(l) tend to zero at infinity. The
dynamic boundary condition is that

pW=p(2) onz = f ( r , 0 , (2.5)

and we also have the material boundary condition for particles on the inter-
face, which in cylindrical polar co-ordinates is

^ + u ^ - v = 0 onz = C( r ,0 , (2-6)

where u is the radial (r) velocity, and v is the axial (z) velocity.
The final required specification is that of the sink strength. Here the equa-

tions for point and line sinks will be developed (in Section 5, the arrangement
for the constant downhole pressure model will be examined, which is slightly
different from the ensuing analysis). For a single sink of volume flow rate
m, modelled by a point sink and using the convention that m > 0, we have
the expression for p*, the suction pressure in an infinite porous medium, as

where the sink is in the upper fluid at height z = h. If we were considering
the general time-dependent problem, we would need to specify an initial
shape, but since we are only considering a steady-state solution here, we do
not require it. Indeed, the essential unknown quantity in this problem is the
interface shape, which we shall see is only dependent on one dimensionless
parameter, a 'suction or pump parameter' F . In addition, we have p(2) = 0,
since the steady-state problem requires no flow in the lower region. Thus,
dropping the superscript for pressure in the upper fluid, we need to solve for
pressure p given by

P=P*+P, (2.8)

where p is the pressure variation from that due to a sink in an infinite fluid
(p*). The dynamic boundary condition (2.5) becomes, using (2.2),

gC(p2-pl)+P = 0 on z = t(r,t). (2.9)
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If we scale all lengths with respect to h, and pressure with respect to
mp.l/kh ,we get the dimensionless form of the dynamic boundary condition
from (2.9) as

Z + Fp = 0 on z = {(r,t), (2.10)

where £. P are dimensionless height and pressure respectively, and

F = —= ^ (2.11)
kh (p2-pl)g

is the only dimensionless parameter, which represents the balance between
the suction force of the sink and the gravitational restoring force of the denser
fluid. Finally, of importance is the dimensionless suction pressure, which
from (2.7) becomes

where z, r are now both dimensionless lengths.

3. Boundary integral development

We have, for a smooth function <f> that satisfies Laplace's equation in a
domain Q with a piecewise smooth surface S, Green's integral formula
(Blake, Taib and Doherty [5], Blake and Kucera [4]) as

(3.1)

where p G Gl + S, q G S, with d/dn being the normal derivative outward
from S,

= I 1c = I 1 and G = —^ r . (3.2)

For our problem, we can rewrite (3.1) as

£) (3-3)
where a e Q + 5 and b e S. Since we are considering a steady-state problem,
there is no motion normal to the interface, therefore dp/dn — 0 . If we then
multiply (3.3) throughout by (—F), and then apply the dynamic boundary
condition (2.10), we obtain the integral representation for the interface shape
as

'fci£ds> (3-4)

https://doi.org/10.1017/S0334270000006858 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006858


[7] Water coning in oil reservoirs 267

where S is the surface z - £(r) = 0 for r : 0 —» oo. Our domain Q is
here the upper (oil) fluid, so the outward normal will be down into the lower
liquid.

Using cylindrical polar co-ordinates with a = (r0, 0, z0) , b - (r, 6, z),
then

4nJ(rcosd - r0cos0)2 + (rsinfl - rQsin0)2 + (z - zo)2

l

r0)
2 + (z- zof - 4 / r 0 cos 2 6/2

Our surface is

F(r,6,z) = z-C(r), (3.6)

so that F(r, 8, z) = 0, and the unit normal (downwards) is

-VF
n = \VF\

After extensive manipulation we may express

[r™dS= f°°
Js dn Jo n[(r + ro)

2

(3.8)

where K and E are complete elliptic integrals of the 1st and 2nd kinds,
(Abramowitz and Stegun [1]) and

±Z (3 9)
a))2'

Now since we are interested in points on the boundary z = £(r), which we
actually want to find, we take c = j . Changing the variables so that the given
point is at radius r and the dummy variable is X, we then have

= -Fp* - fXCWK(r, k)dk, (3.10)
Jo
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where

and

The problem is now specified as a nonlinear Fredholm integral equation
of the second kind for the unknown interface shape z = £(r). in which the
suction pressure p* is specified by the parameter F.

Equation (3.10) can be solved using a standard fixed-point type iteration
technique, starting with the 1st order small-parameter approximation (Blake
and Kucera [4]) as an initial approximation £°(r), where

C0(r) = f r (3-14)
2 ( 2 l ) i

Our method is to substitute (°(r) into the right-hand side of (3.10), and so
find the next function £'(r) as the left-hand side. This process will generate
a sequence of functions {C(^)}^L\ , that will converge pointwise to £(r)» our
final interface solution. Table 1 shows that few iterations are required for
this convergence to be achieved.

The integration in (3.10) was performed using QUADPACK (a numeri-
cal integration package—see Piessens et al [15]). Investigation of the kernel
function K from (3.11) shows a singularity when A — r. Because of this, the
integral was split into two parts: 0 < A < r and r < A < oo, placing the sin-
gularity in the integral at the endpoints. These integrations were performed
using DQAGS and DQAGI respectively. QUADPACK readily achieved the
accuracy required for both integrals. £"(/•) was interpolated using a clamped
cubic spline from 0 to rmax with end conditions being C'"(0) = 0 (since it
is only at the critical rate that a cusp occurs) and C"Vmax) = C°(r

max) where
C'°(/') is taken from the 1st order small-parameter expansion above. Further,
we take for r > rmax , f"(r) = C°(r).

For the QUADPACK numeric integration package to work, a function
defining the integrand is required as the integrand, rather than a set of points.
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TABLE 1. Iterations required for the various situations to converge.
Point

F

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-1.0

-3.0

-5.0

-7.0

-9.0

Sink

its

2

3

3

3

4

4

4

5

5

11

3

4

4

5

6

A Point

F

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.5

2.5

Sink

h\

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

and a Point Source

F

-0.2

-0.2

-0.2

-0.2

-0.2

-0.2

-0.2

-0.2

-0.3

-0.3

-0.3

-0.3

hi

1.0

0.9

0.8

0.7

0.6

0.6

0.4

0.8

0.7

0.6

0.5

0.4

its

11

10

8

7

6

6

10

10

8

6

9

14

F

2.0

2.0

2.0

2.0

2.0

2.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Line

h\

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Sink

hi

1.0

1.5

2.0

2.5

3.0

3.5

2.0

2.0

2.0

2.0

2.0

2.0

2.0

its

11

4

4

4

4

4

3

3

4

4

5

7

7

We used a cubic spline interpolation method to produce a smooth differen-
tiable piecewise polynomial S, where cubic polynomials are found between
successive points. A cubic spline gives enough undetermined constants so
that the curve is not only continuously differentiable on the interval, but has
a continuous second derivative as well. Linear interpolation was tried be-
tween points, but was found to be unacceptable. The discontinuities in the
derivative of £ caused QUADPACK to be much slower, and the convergence
of the iteration was not as successful for the curves produced close to critical
F. Since this is where, most interest is, it was decided that linear interpola-
tion was too inaccurate for our problem. The cubic spline has the advantage
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of producing both a continuous curve and derivative, and gives a far superior
level of accuracy.

However, there are problems with the above procedure. When r = 0,
the integral becomes split into the two parts: 0 —• 0 and 0 —> oo with
the singularity at 0. On the UNI VAC 1100, this was not a problem since the
bitsize is large enough, while the accuracy is not enough to ensure exact values
of 0. However, problems were introduced when the program was moved to
an NEC APC IV. Errors of 0/0 type were encountered on the identical code
that worked on UNIVAC. An attempt was made to get around this problem
when r — 0 by making the integration range 0 -+ oo, and assuming the
0 —• 0 integral is zero. This allowed the program to run, but introduced
different values for £(0). The errors are normally so small as to be invisible
graphically. However, for the large values of negative F (see Section 4),
this error became large enough to cause a significant and highly visible spike
at r = 0, which was not valid. For F = - 9 , an error of ~ 0.03 (roughly
3%) was found, which was clearly not supportable. Our way around this
problem was to simplify the integration when r = 0, which is on the axis of
symmetry. Setting r = 0 in (3.10) gives the expression

cC(O) = -Fp* - !°° AC(A)K(0 ,X)dk, (3.15)
Jo

where

EjO.X). f W { ( 0 ) * g (3.16,
2[A2 + (CW-C(0))2]3'2

This integrand is singular at the origin only, and when used gave identical
results to those of the UNIVAC. This method was used throughout for ax-
isymmetric problems.

4. Point and line sinks

(i) Point sink Figure 2(a) reproduces the results of Blake and Kucera [4],
showing the interface shape and slope for F = 0.2, 0 .4 , . . . , 2.0. The slope
graph is useful in recognising cusping. The graphs were produced with a 100-
point spline in the range 0 —* 5.0, and then reproduced on the negative axis
for aesthetic reasons. Table 1 shows the number of iterations required for
convergence for each F . 100-point splines were used, since investigation of
accuracy of various numbers of points showed this to be acceptable. Table 2
indicates how convergence varies away from under the sink.

Of most interest here is the critical pumping rate Fc, the maximum al-
lowable rate of withdrawal that produces a stable cone beneath the well. For
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FIGURE 2. (a) Interface shape and (b) slope of interface for F = 0.2, 0.4, . . . , 2.0 , lOOpt
spline over range 0 —• 5 .

F > Fc, the cone is drawn into the well, and this breakthrough causes wa-
ter production, which is undesirable. The value of Fc has been found by
a simple testing process to find at what maximum value of F a converged
cone shape is possible. Table 3 shows the values of Fc determined to vari-
ous accuracies, as well as the height of the interface directly under the sink.
The values shown are the largest values of F, to the required accuracy, that
give a stable cone. Note that when F was too large, our model produced an
iteration with £ greater than our dimensionless point-sink height 1.0 when
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TABLE 2. Values of £ on sucessive iterations; lOOpt spline, range 5.

N

0

1

2

3

4

5

6

7

8

9

10

N

0

1

2

3

4

5

6

7

8

9

10

C(0)

0.0796

0.0851

0.0853

0.0853

0.0853

0.0853

0.0853

0.0853

0.0853

0.0853

0.0853

C(0)

0.2387

0.3014

0.3154

0.3173

0.3173

0.3173

0.3173

0.3173

0.3173

0.3173

0.3173

F = 0.5

C(l)

0.0563

0.0572

0.0572

0.0572

0.0572

0.0572

0.0572

0.0572

0.0572

0.0572

0.0572

F = 1.5

C(l)

0.1688

0.1779

0.1766

0.1765

0.1766

0.1766

0.1766

0.1766

0.1766

0.1766

0.1766

CO)
0.0252

0.0251

0.0251

0.0251

0.0251

0.0251

0.0251

0.0251

0.0251

0.0251

0.0251

CO)
0.0755

0.0751

0.0751

0.0751

0.0751

0.0751

0.0751

0.0751

0.0751

0.0751

0.0751

C(0)

0.1592

0.1838

0.1862

0.1863

0.1863

0.1863

0.1863

0.1863

0.1863

0.1863

0.1863

C(0)

0.3183

0.4453

0.5092

0.5424

0.5579

0.5635

0.5645

0.5640

0.5637

0.5636

0.5437

F = 1.0

CO)
0.1125

0.1165

0.1162

0.1162

0.1162

0.1162

0.1162

0.1162

0.1162

0.1162

0.1162

F = 2.0

CO)
0.2251

0.2415

0.2380

0.2374

0.2375

0.2376

0.2376

0.2376

0.2376

0.2376

0.2376

CO)
0.0503

0.0502

0.0502

0.0502

0.0502

0.0502

0.0502

0.0502

0.0502

0.0502

0.0502

C(3)

0.1007

0.1000

0.0998

0.0998

0.0998

0.0998

0.0998

0.0998

0.0998

0.0998

0.0998

r was near zero, indicating fluid breakthrough. Also, getting any more than
3 decimal places would be difficult; F = 2.049 had C(0) > 1.0 after 33
iterations, which took about five and a half hours on an NEC APC IV.

Observing the slope graph in Figure 2(b), we can also get some insight into
the limiting shape of the interface. We can see how the maximum slope, as
well as getting larger as F increases, is at a point that is moving inwards
towards r = 0 , under the sink. This indicates that the interface shape is
approaching a cusp, a result also obtained by Bear and Dagan [3] using the
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TABLE 3. Critical Suction and C(0) to increasing accuracy.

dp accuracy

0

1

2

3

2

2.0

2.04

2.048

C(0)

0.5637

0.5637

0.6247

0.6540

Iterations required

11

11

15

18

= 5 . - 4 . - 3 . - 2 . - I - 0 . 1 . 2 - 3 . 4 . 5 .
- 1 . 0 ,

FIGURE 3. Interface shape for F = -1, - 3 , . . . , — 9 , lOOpt spline over range 0 —» 5 .

hodograph method. We should note that the hodograph method is only a
2-D method, and would not be applicable to general 3-D problems.

(ii) Point source Instead of a point sink which is used to model the removal
of oil from the reservoir, by making F negative we produce a point source
which pumps liquid into the reservoir. This will have the effect of depressing
the interface near the source, and will avoid the cusping effect which occurs
for positive F, since distance from the source increases as F increases
(in a negative direction). Figure 3 shows shape and slope graphs for F —
- 1 , - 3 , . . . , - 9 . We can see that the ratio of successive interface depths
(C(0)) gets smaller as we increase F , that is,

C(Q)U, „ C(Q)U3.
e t c (4.1)

which is expected when we consider the equations relating pressure to dis-
tance. Further discussion on this example may be found in Lucas [8].
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(Hi) Multiple sinks/sources When (3.10) is examined, we can see that the
integrand has no dependence on F . In fact, the only place where F and
the height of the sink are found is in the portion -Fp*. Note that scaling
of lengths was done so that height was taken as 1. Since this is such a simple
expression for sink strength and position, it is not difficult to extend this to
multiple sinks and/or sources. Scaling in this case is done so that one of
the sinks/sources is placed at 1, and others can be scaled with respect to it.
Therefore, for multiple sink/source case, (3.10) becomes

, X)dk, (4.2)
u=i J Jo

where there are n sinks at height ht, each sink has a sink strength of Ft,
and

P> =
2 2

The summation is to take into account the contribution to the pressure of
each sink or source. Note that these multiple sinks/sources are such that
they are placed at position (0, 0 , h() in Cartesian coordinates, so that the
axisymmetric nature of the problem is retained.

Figures 4(a) and (b) show two slightly different cases, having a smaller
source directly under a sink. The reason for these choices is an attempt to
suppress the water cone directly under the well. In Figure 4(a), we can see
that the sum of F ' s is 2.0, which is just under the critical F for a single
sink, and so having both sink and source at h = 1.0 is possible. In an effort
to extract oil at a greater than critical amount we may consider Figure 4(b),
where the sum of F ' s is greater than the critical Fc; in other words, having
both the source and sink at 1.0 is not going to give a stable interface. Indeed
F — - 0 . 3 at 0.9 also doesn't produce a stable cone for F = 2.5 at height
1.0, but other examples of a stable cone are shown in Figure 4(b).

Note that in both Figures, we have stopped with the lower source at height
0.4. When the source is lower (e.g. at 0.3), the model breaks down. This is
due to the fact that, as the source goes down between the humps produced by
this configuration, its push outwards will be more significant than its effect
downwards. This ballooning out will cause the interface near this low source
to become many-valued in r. Our model as it stands is unable to cope with
this extreme situation, and so breaks down.

(iv) Line sink The last extension to the axisymmetric model is to extend the
point sink to a vertical line with a total suction F over its length. This is an
attempt to improve our model, since an oil well is more of a line of suction,
rather than just a point. The line sink is the limiting case of having n sinks
of suction F/n equally spaced along our finite vertical line segment, and then
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0. 1.
RADIUS

FIGURE 4. Interface shape for (a) F = 2.2 at h = 1.0 and F = -0.2 at h = 1.0, 0.9,
. . . , 0.4, and (b) F = 2.5 at A = 1.0 and F = -0 .3 at h = 0.8, 0.7, . . . , 0.4, lOOpt spline
over range 0 —• 5 .

taking the limit as n -* oo. We use the endpoints of the line as (0, 0, A,)
and (0, 0, h2)(h2 > A,). Using the parametric representation of this line

as / : 0

z - hl +t(h2 - A ,

1, then we have our basic equation

(4.4)

= -F f p\t) dt - f
Jo Jo

(4.5)
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- 5 . - 4 . - 3 . - 2 . - 1 . 0 . 1 . 2 - 3 . 4 .

- 5 . - 4 . - 3 . - 2 . - I - 0 . 1 . 2 - 3 - 4 .

FIGURE 5. Interface shape for (a) F = 2.0 over line sink from 1 to 1 + n , n =
0.0, 0.5, . . . , 2.5, and (b) F = 0.5, 1.0, . . . , 3.5 over line sink from 1 to 2, lOOpt spline
over range 0 —> 5 .

where

P*(t) =
- 1

47rx/(C-(/21+f(fc2-/?1)))2
(4.6)

For scaling considerations, taking hx = 1 and finding h2 in an appropriate
manner is a simple solution.

Two sets of runs for a line sink have been shown here. Figure 5 (a) shows
the effect of increasing the length of the line sink, while keeping the overall
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value of F constant (at 2.0). The effect is as expected; the height is reduced
as a greater proportion of the suction occurs further from the interface. Note
also that for a line length of zero (the line degenerates into a point), we obtain
identical results to those obtained using the point-sink program. Figure 5(b)
shows results for a line sink of length one, with endpoints at heights 1 and
2, with varying values of F. Naturally, F values can go higher than for the
point sink, but of interest is the fact that the curve is far smoother than for
the point sink for values of F leading to equivalent interface heights.

5. Constant downhole-pressure formulation

Previously, we have modelled our oil well by point sinks, point sources,
or line sinks with a constant mass flow over them. In reality, an oil well
is more like a cylinder upon which a suction (negative) pressure generates
an oil flow towards the well. A better model, then, would be a cylinder
of small radius, upon which some constant downhole pressure will operate.
The downhole pressure is usually very much less (e.g. 10-100 atm less) than
the local ambient pressure and will be represented as a negative quantity in
the ensuing analysis. Additionally, the downhole pressure would not truly
be constant, due to varying depth, but this change can be assumed to be
negligible compared to the ambient pressure (e.g. 1 atm in 100 atm). Figure
6 shows this more realistic model. We will simulate a constant downhole
pressure by a line sink at r = (0, 0, z ) , where h < z < h + L. This will give
us, outside the pipe, the pressure due to the line sink as

where m(£) is the (positive) flow rate per unit length into the pipe at position
h < £ < h + L along the pipe. We shall specify the pipe radius as rQ, and
assume rQ <§: L.

We defined previously

P=P +P, (5.2)

where p is the variation in pressure from that caused by the sink distribution
in an infinite fluid. Since rQ/h is small, we can neglect p on the pipe to
arrive at the approximation that p — p*. This approximation has the effect
of simplifying the problem to two decoupled integral equations (5.3 and 5.8).
This applied to (5.1) will give us, with pdh being the (constant and negative)
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A z

Oil h

2rn

[18]

Water

FIGURE 6. Geometry of the constant-downhole-pressure model.

downhole pressure,

Pdh = - for h < z < h + L. (5.3)

Equation (5.3) implies that m{£,) will not be constant over the entire length of
the cylinder, as has been the basis of previous work. Since downhole pressure,
pdh , is the parameter that will cause interface height variation, rather than
the mass flow m, we shall scale length with respect to h as before, scale
mass flow m per unit length with respect to -kpdh/fil (negative since pdh

is negative, and we want to keep m positive), and scale pressure with respect
t o Pdh •

This scaling will alter (2.9) to

r . Pdh = 0 (5.4)
* gh(p2-pxY

which, on defining F' = —pdfl/{gh(p2 — />,)), a positive quantity since pdh <
0 , leads to

Z-F'p = 0. (5.5)

Equation (5.1) will become

1
P = T~

\+L
(5.6)
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and (5.3) will become

1 fl+^

4K" /
= 1 for 1 < z < 1 + L.

Using this altered scaling, and dropping the tildes, (3.10) will become

1 „ . F' ri+L

(5.7)

(5.8)

Comparison with (3.10) indicates that an increasingly positive value of F1

will give an increasingly higher water-oil interface. The mass-flow integral
can be calculated from (5.7).

This final requirement to solve (5.8) numerically is to solve (5.7) for m.
We discretise m into n intervals of length h = L/n and solve (5.7) for the
mass flow mj at points zl•=• 1 + ih for / = 0, 1 , . . . , « . We evaluate m(£)
as constant between our z('s, and since now there are only n unknowns
{mj; / = 1, 2, . . . , n), we can form a set of n equations in n unknowns by
evaluating at the points z = (zk_{ + zk)/2, for k — 1, 2, . . . , n . The ith
integral of the jth equation (j — 1, 2, . . . , n; i — 1, 2, . . . , n) will be

f ••dt =

a-er + rt

where

Thus,

where

and A

we

m

=

shall solve

= {m0, mx, ... ,

(ay 7), where

a - In

a

mn)T

a- z

z -

In
111

a

- -
j -

Am

+
i— l

zi +

-

a

I

2

=

b

JV
y/

-Zi + y/{a-z.

b

= ( 4 K , 4 K , . . . ,

r a _ z )2 + r 2 '
(—1 0

- i ) 2 "

)2 + r

4n)T

0

j

(5.10)

(5.11)

(5.12)

(5 13)

Equation (5.8) can then be used to check the left-hand side of (5.7).
In the calculations, we use L = 1, r0 = 0.005 and n = 100, which yields

an almost constant value of m over the pipe, except near the ends where m

https://doi.org/10.1017/S0334270000006858 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006858


280 S. K. Lucas, J. R. Blake and A. Kucera [20]

increases rapidly, as would be expected from slender-body theory. A more
detailed discussion of this solution technique and the errors involved can be
found in Lucas [12].

6. Constant downhole-pressure solution

We solve

1 F' fl+L m(£) f°°
" ) = — / —=J±L=d£- JiC(X)K(r,X)dX (6.1)

4nJ\ , Itr _ rt j . r2 Jo
2"

as before, using

r = mi In

For the case when r = 0, we find

d£, = ml In

(6.2)

(6.3)

where we are assuming zk > £, or else breakthrough would have occurred,
and the model would be invalid anyway. To obtain the numerical solution, we
also require the small-parameter approximation to first order, to get anywhere
near the accuracy of previous results. The derivation and results used are as
in Lucas [12].

Figure 7 shows the interface shapes produced for various values of F',
with a 100-interval discontinuous mass flow approximation, and Table 4 sum-
marises some of the details of the results. We can see that interface heights
are less than for previous results, but it must be remembered that we are
dealing with a different dimensionless parameter. Also, this program is sig-
nificantly slower than previous models; a 50-point spline took up to thirty
minutes per iteration, indicating this program is about six times slower than
our previous one.

7. Conclusions

A boundary-integral method has been developed which predicts the steady-
state height of the interface between oil and water in an oil reservoir under
the influence of an oil well pumping out oil to the surface. The models of
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- 4 . - 3 . -2. - 1 . 0 . 1 . 2 . 3 . 4 . 5 .

FIGURE 7. Interface shape for F1 = 0.2, 0.4, . . . , 2.8 , 50pt spline over range 0 -• 5 .

TABLE 4. Data from the constant downhole pressure model.

F'

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

C(0)

0.0288

0.0585

0.0850

0.1217

0.1554

0.1908

0.2282

0.2680

0.3107

0.3570

0.4084

0.4666

0.5360

0.6281

Iterations

2

2

3

3

3

3

4

4

4

5

5

6

7

9

a point sink, a point source, a line sink of constant mass flow, and a line
sink with variable mass flow to simulate a constant downhole pressure on a
cylinder representing the actual well, have been used. While the point sink
gave the most straightforward model for a numerical solution and discussion
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on critical flow rates, it can be seen that the more complicated constant-
downhole-pressure model is a more realistic representation of the problem.

It must be emphasised that this is far from a complete model of the oil-
reservoir water-coning problem. We have only dealt with the steady-state
problem, and so the important problem of the time taken for breakthrough
to occur when pumping in excess of the critical time has not been addressed.
In addition, the basic assumptions for the model are a major simplification.
Of most importance is the assumption of a homogeneous medium of constant
permeability k . In reality, the vertical permeability is roughly 1/10 to 1/100
of the horizontal permeability. This can be resolved by a simple stretching
of the vertical coordinates, leading to a geometry with a constant k. Our
major problem is that oil-bearing rock is rarely homogeneous, and is not of
infinite size. Detailed knowledge of a particular rock layer's characteristics
would be required for a more exact answer, which is often not feasible in a
practical situation.
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