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Isospectrality for Orbifold Lens Spaces

Naveed S. Bari and EugenieHunsicker

Abstract. We answerMarkKac’s famous question, “Can one hear the shape of a drum?” in the positive
for orbifolds that are 3-dimensional and 4-dimensional lens spaces;we thus complete the answer to this
question for orbifold lens spaces in all dimensions. We also show that the coeõcients of the asymptotic
expansion of the trace of the heat kernel are not suõcient to determine the above results.

1 Introduction

Given a closed Riemannian manifold (M , g), the eigenvalue spectrum of the asso-
ciated Laplace Beltrami operator is referred to as the spectrum of (M , g). he in-
verse spectral problem asks the extent to which the spectrum encodes the geome-
try of (M , g). While various geometric invariants such as dimension, volume, and
total scalar curvature are spectrally determined, numerous examples of isospectral
Riemannian manifolds, i.e., manifolds with the same spectrum, show that the spec-
trum does not fully encode the geometry. Not surprisingly, the earliest examples of
isospectral manifolds were manifolds of constant curvature including �at tori [M],
hyperbolic manifolds [V], and spherical space forms [IY,Gi, I1, I2]. Lens spaces are
spherical space forms that are quotients of round spheres by cyclic groups of orthog-
onal transformations that act freely on the sphere. Lens spaces have provided a rich
source of isospectral manifoldswith interesting properties. In addition to thework of
Ikeda and Yamamoto cited above, see the results of Gornet andMcGowan [GoM].

In this paper we generalize this theme to the category of Riemannian orbifolds.
A smooth orbifold is a topological space that is locally modelled on an orbit space
of Rn under the action of a ûnite group of diòeomorphisms. Riemannian orbifolds
are spaces that are locally modelled on quotients of Riemannian manifolds by ûnite
groups of isometries. Orbifolds have wide applicability, for example, in the study of
3-manifolds and in string theory [DHVW,ALR].

he tools of spectral geometry can be transferred to the setting ofRiemannian orb-
ifolds by using theirwell-behaved local structure (see [Chi,S1,S2]). As in themanifold
setting, the spectrum of the Laplace operator of a compact Riemannian orbifold is a
sequence 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ ⋅ ⋅ ⋅↗∞, where each eigenvalue is repeated according to
its ûnitemultiplicity. We say that two orbifolds are isospectral if their Laplace spectra
agree.

he literature on inverse spectral problems on orbifolds is less developed than that
for manifolds. Examples of isospectral orbifolds include pairswith boundary [BCDS,
BW]; isospectral �at 2-orbifolds [DR]; arbitrarily large ûnite families of isospectral

Received by the editors October 9, 2019.

AMS subject classiûcation: 58J53, 53C20.
Keywords: spectral geometry, global Riemannian geometry, orbifold, lens space.

Canad. J. Math. Vol. 72 (2), 2020 pp. 281–325

Published online on Cambridge Core August 27, 2019.

https://doi.org/10.4153/S0008414X19000178 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000178


N. S. Bari and E. Hunsicker

orbifolds [BSW]; isospectral orbifoldswith diòerentmaximal isotropy orders [RSW];
and isospectral deformation ofmetrics on an orbifold quotient of a nilmanifold [PS].

In the study of inverse isospectral problem spherical space forms provide a rich
and important set of orbifolds with interesting results. For the 2-dimensional case, it
is known [DGGW] that the spectrum determines the spherical orbifolds of constant
curvatureR > 0. Lauret [L] found examples in dimensions 5 through 8 of orbifold lens
spaces (spherical orbifold spaceswith cyclic fundamental groups) that are isospectral
but not isometric. For dimension 9 and higher, the author proved the existence of
isospectral orbifold lens spaces that are non-isometric [Ba]. he problem was un-
solved for 3 and 4-dimensional orbifold lens spaces. For 3-dimensional manifold lens
spaces, Ikeda and Yamamoto (see [IY, Y, I1]) proved that the spectrum determines
the lens space. In [I2], Ikeda further proved that for general 3-dimensional manifold
spherical space forms, the spectrum determines the space form. In themanifold case,
it is also known that even dimensional spherical space forms are only the canonical
sphere and the real projective space. For orbifold spherical space forms, this is not
the case, as there are many even dimensional orbifold spherical space forms. In this
article, we will prove the following results.

heorem 3.1 Any two three-dimensional isospectral orbifold lens spaces are isometric.

heorem 4.3 Any two four-dimensional isospectral orbifold lens spaces are isometric.

heorem 5.6 Let S2n−1/G and S2n−1/G′ be two (orbifold) spherical space forms. Suppose
G is cyclic and G′ is not cyclic. hen S2n−1/G and S2n−1/G′ cannot be isospectral.

he above results will complete the classiûcation of the inverse spectral problem
on orbifold lens spaces in all dimensions.

In addition to the above theorems,we also prove that one of the traditonal methods
of obtaining geomeric invariants from the spectrum, i.e., from the coeõcients of the
trace of the heat kernel, is not suõcient to prove the above results. We will show that
we can have two non-isospectral orbifold lens spaceswith identical coeõcients of the
trace of heat kernel.

2 Orbifold Lens Spaces

In this section, we will generalize the idea of manifold lens spaces to orbifold lens
spaces. Note that lens spaces are special cases of spherical space forms, which are
connected complete Riemannian manifolds of positive constant curvature 1. An m-
dimensional spherical space form can bewritten as Sm/G whereG is a ûnite subgroup
of the orthogonal group O(m+ 1). In fact, the deûnition of spherical space forms can
be generalized to allow G to have ûxed points making Sm/G an orbifold. Manifold
lens spaces are spherical space formswhere them-dimensional sphere Sm of constant
curvature 1 is acted upon by a cyclic group of ûxed point free isometries on Sm . We
will generalize this notion to orbifolds by allowing the cyclic group of isometries to
have ûxed points. For details of spectral geometry on orbifolds, see Stanhope [S1] and
E. Dryden, C. Gordon, S. Greenwald, and D. Webb [DGGW].
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2.1 Orbifold Lens Spaces and their Generating Functions

We now reproduce the background work developed by Ikeda in [I1, I2] for manifold
spherical space forms. For the most part, we will keep the notation used by Ikeda.
Wewill note that,with slight modiûcations, the results are valid for orbifold spherical
space forms. his is the background work we will need to develop our results for
orbifold lens spaces.

Wewill ûrst consider generalm = 2n−1 dimensional lens spaces. Let q be a positive
integer. Set

q0 =
⎧⎪⎪⎨⎪⎪⎩

q−1
2 if q is odd,

q
2 if q is even.

hroughout this section we assume that q0 ≥ 4.
For n ≤ q0, let p1 , . . . , pn be n integers. Note, if gcd(p1 , . . . , pn , q) ≠ 1, we can

divide all the p′i s and q by this gcd to get a case where the gcd is 1. So, without loss of
generality, we can assume that gcd(p1 , . . . , pn , q) = 1. We denote by g the orthogonal
matrix given by

g =
⎛
⎜
⎝

M(p1/q) 0

⋱
0 M(pn/q)

⎞
⎟
⎠
,

where

M(θ) = ( cos 2πθ sin 2πθ
− sin 2πθ cos 2πθ) .

hen g generates a cyclic subgroup G = {g l}q
l=1 of order q of the special orthogonal

group SO(2n), since det g = 1. Note that g has eigenvalues γp1 , γ−p1 , γp2 , γ−p2 , . . . , γpn ,
γ−pn , where γ is a primitive q-th root of unity. We deûne the lens space
L(q ∶ p1 , . . . , pn) as follows:

L(q ∶ p1 , . . . , pn) = S2n−1/G .

Note that if gcd(p i , q) = 1 for all i, then L(q ∶ p1 , . . . , pn) is a smooth mani-
fold; Ikeda and Yamamoto have answered Kac’s question in the aõrmative for
3-dimensional manifold lens spaces [IY, Y]. To get an orbifold in this setting with
non-trivial singularities, we must have gcd(p i , q) > 1 for some i. In such a case
L(q ∶ p1 , . . . , pn) is a good smooth orbifold with S2n−1 as its covering manifold. Let
π be the covering projection of S2n−1 onto S2n−1/G,

π∶S2n−1 Ð→ S2n−1/G .

Since the round metric of constant curvature one on S2n−1 is G-invariant, it induces
a Riemannian metric on S2n−1/G. Henceforth, the term “lens space” will refer to this
generalized deûnition.

Ikeda proved the following result for manifold spherical space forms ([I2, Lemma
1.2]). We note that the proof does not require the groups to be ûxed-point free, and it
reproduces the result for orbifold spherical space forms.
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Lemma 2.1 Let Sm/G and Sm/G′ be spherical space forms for any integer m ≥ 2.
hen Sm/G is isometric to Sm/G′ if and only if G is conjugate to G′ in O(m + 1).

Note that if we have a lens space S2n−1/G = L(q ∶ p1 , . . . , pn), with G = ⟨g⟩,
permuting the p isdoesnot change theunderlying groupG; similarly, ifwemultiply all
the p is by some number ±l , where gcd(l , q) = 1, that simply means we havemapped
the generator g to the generator g l , and so we still have the same group G. Also note
that if two lens spaces S2n−1/G = L(q ∶ p1 , . . . , pn) and S2n−1/G′ = L(q ∶ s1 , . . . , sn)
are isometric, then by the above lemma,G andG′ must be conjugate. So, the li� of the
isometry on S2n−1 maps a generator, g of G to a generator g′ l of G′. his means that
the eigenvalues of g and g′ l are the same, which means that each p i is equivalent to
some l s j or −l s j (mod q). hese facts give us the following corollary for Lemma 2.1.

Corollary 2.2 Let L = L(q ∶ p1 , . . . , pn) and L′ = L(q ∶ s1 , . . . , sn) be lens spaces.
hen L is isometric to L′ if and only if there is a number l coprime with q and numbers
e i ∈ {−1, 1} such that (p1 , . . . , pn) is a permutation of (e1 l s1 , . . . , en l sn) (mod q).

Assume we have a spherical space form Sm/G for any integer m ≥ 2. For any
f ∈ C∞(Sm/G), we deûne the Lapacian on the spherical space form as ∆̃(π∗ f ) =
π∗(∆ f ). Wenow construct the spectral generating function associatedwith theLapla-
cian on S2n−1/G analogous to the construction in the manifold case (see [IY, I1, I2]).
Let ∆̃, ∆, and ∆0 denote the Laplacians of S2n−1, S2n−1/G, and R2n , respectively.

Deûnition 2.3 For any non-negative real number λ, we deûne the eigenspaces Ẽλ
and Eλ as follows:

Ẽλ = { f ∈ C∞(S2n−1)RRRRR ∆̃ f = λ f } ,
Eλ = { f ∈ C∞(S2n−1/G)RRRRR∆ f = λ f } .

he next lemma follows from the deûnitions of ∆ and smooth function.

Lemma 2.4 Let G be a ûnite subgroup of O(2n).
(i) Forany f ∈ C∞(S2n−1/G), we have ∆̃(π∗ f ) = π∗(∆ f ).
(ii) For any G-invariant function F on S2n−1, there exists a unique function

f ∈ C∞(S2n−1/G) such that F = π∗ f .

Corollary 2.5 Let (Ẽλ)G be the space of all G-invariant functions of Ẽλ . hen
dim(Eλ) = dim(Ẽλ)G .

Let ∆0 be the Laplacian on R2n with respect to the �at Kähler metric. Set r2 =
∑2n

i=1 x2
i , where (x1 , x2 , . . . , x2n) is the standard coordinate system on R2n . For k ≥ 0,

let Pk denote the space of complex valued homogeneous polynomials of degree k on
R2n . Let Hk be the subspace of Pk consisting of harmonic polynomials on R2n ,

Hk = { f ∈ PkRRRRR∆0 f = 0} .
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Each orthogonal transformation of R2n canonically induces a linear isomorphism
of Pk .

Proposition 2.6 he spaceHk is O(2n)-invariant, and Pk has the direct sum decom-
position Pk = Hk ⊕ r2Pk−2.

he injectionmap i∶S2n−1→R2n induces a linearmap i∗ ∶C∞(R2n)→C∞(S2n−1).
We denote i∗(Hk) byHk .

Proposition 2.7 Hk is an eigenspace of ∆̃ on S2n−1 with eigenvalue k(k + 2n − 2),
and ∑∞

k=0H
k is dense in C∞(S2n−1) in the uniform convergence topology. Moreover,

Hk is isomorphic to Hk . hat is, i∗∶Hk ≃Ð→Hk .

For proofs of these propositions, see [BGM].
Now Corollary 2.5 and Proposition 2.7 imply that if we denote byHk

G the space of
all G-invariant functions in Hk , then

dim Ek(k+2n−2) = dimHk
G .

Moreover, for any integer k such that dimHk
G ≠ 0, λk = k(k+2n−2) is an eigenvalue

of ∆ on S2n−1/G with multiplicity equal to dimHk
G , and no other eigenvalues appear

in the spectrum of ∆.

Deûnition 2.8 Let O be a closed compact Riemannian orbifold with the Laplace
spectrum, 0 ≤ λ1 < λ2 < λ3 ⋅ ⋅ ⋅↗∞. For each λk , let the eigenspace be

Eλk
= { f ∈ C∞(O)RRRRR∆ f = λk f } .

We deûne the spectrumgenerating function associatedwith the spectrumof theLapla-
cian on O as

FO(z) =
∞

∑
k=0

(dim Eλk
) zk .

In terms of spherical space forms, the deûnition becomes the following.

Deûnition 2.9 he generating function FG(z) associated with the spectrum of the
Laplacian on Sm/G is the generating function associated with the inûnite sequence
{dimHk

G}∞k=0 , i.e.,

FG(z) =
∞

∑
k=0

(dimHk
G) zk .

By Corollary 2.5, Proposition 2.7, and subsequent discussion, we know that the
generating functiondetermines the spectrumofSm/G. his fact gives us the following
proposition.

Proposition 2.10 Let Sm/G and Sm/G′ be two spherical space forms. Let FG(z) and
FG′(z) be their respective spectrum generating functions. hen Sm/G is isospectral to
Sm/G′ if and only if FG(z) = FG′(z).
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Our ûrst goal is to ûnd an alternative expression for FG(z) that will allow us to
compare FG(z) and FG′(z).

IfG is a ûnite subgroup ofO(2n)with orientation preserving action on S2n−1, then
G is a subgroup of SO(2n). In the sequel, we will consider orientation-preserving
group actions.

he following theorem, proved formanifold spherical space forms in [I2,heorem
2.2], holds true for the orbifold spherical space forms aswell, since the proof does not
require the group action to be free.

heorem 2.11 Let G be a ûnite subgroup of SO(2n), and let S2n−1/G be a spherical
space form with spectrum generating function FG(z). hen, on the domain
{z ∈ C RRRRR ∣z∣ < 1} , FG(z) converges to the function

FG(z) =
1
∣G∣ ∑g∈G

1 − z2

det(I2n − gz) ,

where ∣G∣ denotes the order of G and I2n is the 2n × 2n identity matrix.

We denote the generating function for a lens space L = L(q ∶ p1 , . . . , pn) by
Fq(z ∶ p1 , . . . , pn).

Corollary 2.12 Let L(q ∶ p1 , . . . , pn) be a lens space and let Fq(z ∶ p1 , . . . , pn) be
the generating function associated with the spectrum of L(q ∶ p1 , . . . , pn). hen, on the
domain { z ∈ C RRRRR ∣z∣ < 1} ,

Fq(z ∶ p1 , . . . , pn) =
1
q

q

∑
l=1

1 − z2

∏n
i=1(z − γp i l)(z − γ−p i l) ,

where γ is a primitive q-th root of unity.

Proof Let χk denote the character of the natural representation of SO(2n) on Hk .
hen, in the notation of theheorem 2.11, we get

dimHk
G = 1

∣G∣ ∑g∈G
χk(g) =

1
q

q

∑
l=1
χk(g l).

So

Fq(z ∶ p1 , . . . , pn) =
(1 − z2)

∣G∣ ∑
g∈G

1
∏n

i=1(1 − γp i z)(1 − γ−p i z)

= (1 − z2)
q

q

∑
l=1

1
∏n

i=1(z − γp i l)(z − γ−p i l) ,

since multiplying through by 1 = (−γ−p i l)(−γp i l) gives (1 − γp i l z)(1 − γ−p i l z) =
(z − γ−p i l)(z − γp i l). ∎

Remark By heorem 2.11 and unique analytic continuation, we can consider the
generating function to be a meromorphic function on the whole complex plane C
with poles on the unit circle S1 = {z ∈ C ∣ ∣z∣ = 1}.
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From this remark, we have the following corollary.

Corollary 2.13 Let S2n−1/G and S2n−1/G′ be two spherical space forms. Let E(g)
denote the set of eigenvalues of g, with multiplicity counted. If there is a one to one
mapping ϕ of G onto G′ such that the set E(g) equals the set E(ϕ(g)) for all g ∈ G,
then S2n−1/G is isospectral to S2n−1/G′ .

Proof he proof follows from the fact that

∏
γ∈E(g)

(1−γz) = ∏
γ∈E(g)

(z−γ) = det(I2n−gz). ∎

Corollary 2.14 Let S2n−1/G and S2n−1/G′ be two isospectral spherical space forms.
hen ∣G∣ = ∣G′∣.

3 3-Dimensional Orbifold Lens Spaces

For 3-dimensional manifold lens spaces, it is known that if two lens spaces are isospec-
tral, then they are also isometric ([IY] and [Y]). We will generalize this result to the
orbifold case.

Using the notation adopted in the previous section, we write the two isospectral
lens spaces as L1 = L(q ∶ p1 , p2) and L2 = L(q ∶ s1 , s2). Now there are only ûve
possibilities.
Case 1: Both L1 and L2 are manifolds. In this case, gcd(p i , q) = 1 = gcd(s i , q) for

i = 1, 2.
Case 2: One of the two lens spaces, say L1, is amanifold,while the other, L2 is an orb-

ifoldwith non-trivial isotropy groups. hismeans that gcd(p1 , q) = gcd(p2 , q) = 1,
while at least one of s1 or s2 is not coprime to q.

Case 3: Both L1 and L2 are orbifolds with non-trivial isotropy groups so that exactly
one of p1 or p2 is coprime to q and exactly one of s1 or s2 is coprime to q.

Case 4: Both L1 and L2 are orbifoldswith non-trivial isotropy groups, but in one case,
say for L1, exactly one of p1 or p2 is coprime to q,while for the other lens space, L2,
neither s1 nor s2 is coprime to q.

Case 5: None of p1, p2, s1, and s2 is coprime to q.
With these ûve cases in mind, we will prove our main theorem.

heorem 3.1 Given two 3-dimensional lens spaces L1 = L(q ∶ p1 , p2) and L2 =
L(q ∶ s1 , s2). If L1 is isospectral to L2, then the two lens spaces are isometric.

Proof We will consider each case separately:

Case 1: In this case L1 and L2 are both manifolds. Ikeda and Yamamoto proved this
case (see [IY,Y]).

Case 2:We know that whenever two isospectral good orbifolds share a common Rie-
mannian cover, their respective singular sets are either both trivial or both non-trivial
[GR]. herefore, for orbifold lens spaces we cannot have a situation where two lens
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spaces are isospectral, but onehas a trivial singular setwhile the otherhas anon-trivial
singular set. So this case is not possible.

Case 3: Bymultiplying the entries of L1 and L2 by appropriate numbers coprime to q,
we can rewrite L1 = L(q ∶ 1, x) and L2 = L(q ∶ 1, y), where x and y are not coprime to
q. Let F1(z) (resp. F2(z)) be the generating function associated with the spectrum of
L1 (resp. L2). Let γ be a primitive q-th root of unity.

Now,

lim
z→γ

(z − γ)F1(z)(3.1)

= lim
z→γ

1
q

q

∑
l=1

(z − γ)(1 − z2)
(1 − γ l z)(1 − γ−l z)(1 − γx l z)(1 − γ−x l z)

= lim
z→γ

−γ
q

q

∑
l=1

(1 − γ−1z)(1 − z2)
(1 − γ l z)(1 − γ−l z)(1 − γx l z)(1 − γ−x l z) .

Each term of the sum vanishes unless (1 − γ−1z) cancels one of the four terms in the
denominator. his occurs if one of the following congruences has a solution:
(1) l + 1 ≡ 0 (mod q),
(2) −l + 1 ≡ 0 (mod q),
(3) x l + 1 ≡ 0 (mod q),
(4) −x l + 1 ≡ 0 (mod q).
Congruences (3) and (4) have no solution as x is not coprime to q. he solution to (1)
is l = q − 1, and the solution to (2) is l = 1. Substituting into (3.1), we get

lim
z→γ

(z − γ)F1(z) =
−2γ

q(1 − γ−x+1)(1 − γx+1) .

By the same argument, we get

lim
z→γ

(z − γ)F2(z) =
−2γ

q(1 − γ−y+1)(1 − γy+1) .

Since

lim
z→γ

(z − γ)F1(z) = lim
z→γ

(z − γ)F2(z),

we get

−2γ
q(1 − γ−x+1)(1 − γx+1) = −2γ

q(1 − γ−y+1)(1 − γy+1) ,

Ô⇒ 1
[1 − (γ−x+1 + γx+1) + γ2] =

1
[1 − (γ−y+1 + γy+1) + γ2] ,

Ô⇒ γ−x+1 + γx+1 = γ−y+1 + γy+1 .
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Since γ ≠ 0, we get

γ−x + γx = γ−y + γy ,

Ô⇒ 1
γx

+ γx = 1
γy + γy ,

Ô⇒ 1 + γ2x

γx
= 1 + γ2y

γy ,

Ô⇒ γy + γ2x+y = γx + γx+2y ,

Ô⇒ γy − γx+2y = γx − γ2x+y ,
Ô⇒ γy(1 − γx+y) = γx(1 − γx+y),
Ô⇒ (γy − γx)(1 − γx+y) = 0,
Ô⇒ γy − γx = 0 or 1 − γx+y = 0,
Ô⇒ x ≡ y (mod q) or x ≡ −y (mod q).

hus, by Corollary 2.2, we get that L1 and L2 are isometric.

Case 4: By the same argument as in Case 3, we get

lim
z→γ

(z − γ)F1(z) =
−2γ

q(1 − γ−x+1)(1 − γx+1) .

However,
lim
z→γ

(z − γ)F2(z) = 0,

since the congruences (1)–(4) in Case 3 become
(1′) s1 l + 1 ≡ 0 (mod q),
(2′) −s1 l + 1 ≡ 0 (mod q),
(3′) s2 l + 1 ≡ 0 (mod q),
(4′) −s2 l + 1 ≡ 0 (mod q),
and these congruences have no solutions, because s1 and s2 are not coprime to q.

hus, in this case, L1 cannot be isospectral to L2.

Case 5: his is the hardest of all the cases. First, we can simplify the forms of the two
lens spaces as follows.

Let gcd(p1 , q)= x > 1, gcd(p2 , q)= y > 1, gcd(s1 , q)=u > 1, and gcd(s2 , q)= v > 1.
Also, without loss of generality, we can assume that y > x and v > u, because if x = y
(resp. u = v), then ∣G∣ = q/x (resp. ∣G∣ = q/u), which contradicts our assumption that
∣G∣ = q.

We rewrite L1 = L(q ∶ ax , by) and L2 = L(q ∶ cu, dv). Since gcd(ax , q) =
gcd(x , q) = x and gcd(cu, q) = gcd(u, q) = u, we can multiply the entries of L1
and L2 by appropriate numbers coprime to q and rewrite L1 = L(q ∶ x , py) and
L2 = L(q ∶ u, sv) (see [GP]). We will also assume that gcd(x , py) = 1 = gcd(u, sv),
because if say gcd(x , py) = e > 0, then we could divide x, py, and q by e and get a
lens spacewith fundamental group of order q/e instead of q, which is a contradiction.

In this case, we again want to consider a limit of the spectral generating functions
for L1 and L2.
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Proposition 3.2 Suppose L = L(q ∶ x , py) is an orbifold lens space with spectrum
generating function Fq(z). hen limz→γx (z − γx)Fq(z) ≠ 0, where γ = e2πi/q is a
primitive q-th root of unity.

Proof We denote q/x = q
x and q/y = q

y . hen

lim
z→γx

(z − γx)Fq(z)(3.2)

= lim
z→γx

1
q

q

∑
l=1

(z − γx)(1 − z2)
(1 − γx l z)(1 − γ−x l z)(1 − γpy l z)(1 − γ−py l z)

= lim
z→γx

−γx
q

q

∑
l=1

(1 − γ−xz)(1 − z2)
(1 − γx l z)(1 − γ−x l z)(1 − γpy l z)(1 − γ−py l z) .

As before, the terms in the above sum are non-zero if and only if one of the follow-
ing congruences has a solution:
(1′′) x l + x ≡ 0 (mod q),
(2′′) −x l + x ≡ 0 (mod q),
(3′′) pyl + x ≡ 0 (mod q),
(4′′) −pyl + x ≡ 0 (mod q),

(3′′) implies that pyl + x ≡ 0 (mod y), so, if (3′′) has a solution, it would violate
the fact that gcd(x , y) = 1. herefore, (3′′) has no solution. Similarly, (4′′) has no
solution.

he solution to (1′′) is l = tq/x − 1, and the solution to (2′′) is l = tq/x + 1 for
t ∈ {1, . . . , x}. Note that for l = tq/x ± 1,

lim
z→γx

(1 − γ−xz)(1 − z2)
(1 − γx l z)(1 − γ−x l z) = 1.

We can therefore write (3.2) as

lim
z→γx

(z − γx)Fq(z) =
−2γx
q

x

∑
t=1

1
(1 − γpy(tq/x−1)+x)(1 − γ−py(tq/x−1)+x)

.

Writing αt = py(tq/x − 1), we get
lim
z→γx

(z − γx)Fq(z)

= −2γx
q

x

∑
t=1

1
(1 − γ(α t+x))(1 − γ−(α t−x))

= −2γx
q

x

∑
t=1

1
γ(α t+x)(γ−(α t−x) − γ−(α t+x))

× [ 1
1 − γ−(α t+x)

− 1
1 − γ−(α t−x)

]

= −2γx
q(γ2x − 1)

x

∑
t=1

[ 1
1 − γ−(α t+x)

− 1
1 − γ−(α t−x)

]

= −2
i2q sin 2πx

q

x

∑
t=1

[ 1
1 − e−i2π(α t+x)/q

− 1
1 − e−i2π(α t−x)/q

] .
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By writing at = αt + x and bt = αt − x, we can rewrite the above as

lim
z→γx

(z − γx)Fq(z) =
−2

i2q sin 2πx
q

x

∑
t=1

[ 1
1 − e−i2πa t/q

− 1
1 − e−i2πb t/q

]

= 1
2q sin 2πx

q

x

∑
t=1

[ 2i
1 − e−i2πa t/q

− 2i
1 − e−i2πb t/q

]

Now, using the identity cot θ + i = 2i
1−e−2iθ , we get

(3.3) lim
z→γx

(z − γx)Fq(z) =
1

2q sin 2πx
q

x

∑
t=1

[cot πat

q
− cot πbt

q
] .

he above limit can only be 0 if
x

∑
t=1

[cot πat

q
− cot πbt

q
]

=
x

∑
t=1

[cot π
q
[tpyq/x − (py − x)] − cot π

q
[tpyq/x − (py + x)]] = 0.

Suppose At (resp. Bt) is the remainder when at (resp. bt) is divided by q. hen A t
q

is between 0 and π.
Consider the following two sets of remainders of positive integers (mod q) when

at and bt are divided by q:

A = {At ∶ At = at (mod q), t = 1, 2, . . . , x},
B = {Bt ∶ Bt = bt (mod q), t = 1, 2, . . . , x}.

Supposemin{A} = A j andmin{B} = Bk . Nowwe have the following possibilities:
(i) A j > Bk . hen it is easy to check that A j+t > Bk+t for t = 0, 1, . . . , x − 1, since

a j+t − bk+t = a j − bk . So we can re-write (3.3) as

(3.4) lim
z→γx

(z − γx)Fq(z) =
1

2q sin 2πx
q

x−1

∑
t=0

[cot π
q
A j+t − cot

π
q
Bk+t] .

We know that if 0 < B < A < π, then cotA − cotB < 0. Since in the above
equation 0 < Bk+t < A j+t < π for all t, each pair gives us a negative value, and
therefore (3.4) is negative.

(ii) A j < Bk . henusing a similar argument as above, equation (3.4)will be positive.
(iii) A j = Bk . his means a j − bk ≡ ( j− k)pyq/x + 2x ≡ 0 (mod q). But this means

that y∣2x, which is not possible, since we are assuming that gcd(x , y) = 1 and
x < y.

his proves the proposition. ∎

We will also need the following results to prove the theorem for Case 5.

Proposition 3.3 Suppose L1 = L(q ∶ x , py) and L2 = L(q ∶ u, sv) are two isospectral
lens orbifolds where gcd(x , q) = x, gcd(py, q) = y, gcd(u, q) = u, and gcd(sv , q) = v.
hen either u = x and v = y, or u = y and v = x.
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Note 1 If u = x and v = y, then L1 = L(q ∶ x , py) and L2 = L(q ∶ x , sy); if u = y and
v = x, then L1 = L(q ∶ x , py) and L2 = L(q ∶ y, sx) = L(q ∶ s−1 y, x) = L(q ∶ x , s−1 y).
In either case, this implies that we can write L1 = L(q ∶ x , py) and L2 = L(q ∶ x , s′y),
where s′ = s or s′ = s−1.

We now prove the above claim.

Proof We denote q/x = q
x and q/y = q

y . hen, writing Fi to denote the spectrum
generating function of L i , we have

lim
z→γx

(z − γx)F1(z) =

lim
z→γx

1
q

q

∑
l=1

(z − γx)(1 − z2)
(1 − γx l z)(1 − γ−x l z)(1 − γpy l z)(1 − γ−py l z) .

Recall that the only non-zero terms in this limit will be the ones where x l + x ≡ 0
(mod q) or −x l + x ≡ 0 (mod q), which gives l = tq/x − 1 or l = tq/x + 1 for t ∈
{1, . . . , x}. Also note that for such a t, we have

1
(1 − γpy(tq/x−1)+x)(1 − γ−py(tq/x−1)+x)

=

1
(1 − γpy[(x−t)q/x+1]+x)(1 − γ−py[(x−t)q/x+1]+x)

.

hese two facts, along with Proposition 3.2, give

0 ≠ −2γx
q

x

∑
t=1

1
(1 − γpy(tq/x−1)+x)(1 − γ−py(tq/x−1)+x)

= lim
z→γx

(z − γx)F1(z).

Since
lim
z→γx

(z − γx)F1(z) = lim
z→γx

(z − γx)F2(z),

we get

0 ≠ −2γx
q

x

∑
t=1

1
(1 − γpy(tq/x−1)+x)(1 − γ−py(tq/x−1)+x)

= lim
z→γx

(z − γx)F2(z)

= lim
z→γx

−γx
q

q

∑
l=1

(1 − γ−xz)(1 − z2)
(1 − γu l z)(1 − γ−u l z)(1 − γsv l z)(1 − γ−sv l z) .

So theremust be an l such that one of the following holds:

ul + x ≡ 0 (mod q),
−ul + x ≡ 0 (mod q),
sv l + x ≡ 0 (mod q),

−sv l + x ≡ 0 (mod q).

Recall that u∣q. hen ul + x ≡ 0 (mod q) or −ul + x ≡ 0 (mod q) imply that u∣x.
Similarly, since v∣q,we can show that if sv l+x ≡ 0 (mod q) or −sv l+x ≡ 0 (mod q),
then v∣x. So either u∣x or v∣x.
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Now by multiplying the elements of L1 by an appropriate number we can rewrite
L1 = L(q ∶ y, p′x). hen applying the same argument as above where we swap the
roles of x and y, we get either u∣y or v∣y.

Suppose u∣x. hen since gcd(x , y) = 1, we cannot have u∣y. Similarly, if v∣x, then
we cannot have v∣y. herefore, either u∣x and v∣y, or v∣x and u∣y, since if u or v divide
both, then it contradicts gcd(q, x , py) = 1.

We can swap the roles of L1 and L2 and repeat the above arguments again to get
either x∣u and y∣v, or y∣u and x∣v.

If u∣x and v∣y, and at the same time x∣v and y∣u, then x∣y, which contradicts the
fact that gcd(q, x , y) = 1. So the only possibilities are the following:
(i) u∣x,v∣y, x∣u, and y∣v. his means x = u and y = v.
(ii) v∣x, u∣y, x∣v, and y∣u. his means x = v and y = u.

his completes the proof of the proposition. ∎

Corollary 3.4 Without loss of generality, we can write the two lens spaces as L1 =
L(q ∶ x , py) and L2 = L(q ∶ x , sy) with gcd(q, py) = y = gcd(q, sy) and y > x.

Note 2 If one of x or y is even (in casewhen q is even),wewill also assume that x is
always odd. his will not violate our assumption that x < y, because if we have a lens
space L(q ∶ x′ , p′y′) with even x′ and odd y′ and x′ > y′, then we can replace x′ and
y′ with y = q− x′ and x = q− y′, respectively; we can then multiply by an appropriate
number to re-write the lens space as L(q ∶ x , py).

Proposition 3.5 Suppose L1 = L(q ∶ x , py) is a lens space as in Corollary 3.4. hen

x

∑
t=1
cot

π
q
[ tpyq/x − (py − x)] =

x

∑
t=1
cot

π
q
[ tq/x − (py − x)] ,(3.5)

x

∑
t=1
cot

π
q
[ tpyq/x − (py + x)] =

x

∑
t=1
cot

π
q
[ tq/x − (py + x)] .(3.6)

Proof We will only prove the proposition for (3.5), as the proof for (3.6) is similar.
We denote z = py − x. Since x and py are coprime, we have gcd(x , z) =

gcd(py, z) = 1 .
We claim that t1zq/x ≡ q/x (mod q) for some t1 ∈ {1, 2, . . . , x − 1}.
Since gcd(z, x) = 1, there exist numbers α and β such that αz + βx = 1, which

means αz ≡ 1 (mod x). Without loss of generality,we can also assume that α < x, for
if α > x, thenwe canwrite α = γx +α′ (with α′ < x); thiswould give us (γx +α′)z ≡ 1
(mod x), which gives α′z ≡ 1 (mod x) with α′ < x. Multiplying both sides of the
congruence by q/x proves our claim; i.e.,we have a t1(≡ α (mod x)) ∈ {1, 2, . . . , x−1}
such that t1zq/x ≡ q/x (mod q).

Now, multiplying the congruence αz ≡ 1 (mod x) by j ∈ {2, 3, . . . , x − 1}, we get
jαz ≡ j (mod x). As before, we can ûnd t j(≡ jα (mod x)) ∈ {1, 2, . . . , x − 1} such
that t jzq/x ≡ jq/x (mod q).

Now suppose that for i > j, we get t i = t j . his implies that i ≡ j (mod x), or
i− j ≡ 0 (mod x); but since i and j are smaller than x, this is not possible. Sowe now
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have a 1− 1 correspondance between the sets {1, 2, . . . , x− 1} and {t1 , t2 , . . . , tx−1}, i.e.
the set {t1 , t2 , . . . , tx−1} is just a permutation of the set {1, 2, . . . , x − 1}.

Now, for each t j ∈ {1, 2, . . . , x − 1}, we get

t jzq/x ≡ jq/x (mod q),
Ô⇒ t j(py − x)q/x ≡ jq/x (mod q),
Ô⇒ t jpyq/x ≡ jq/x (mod q),
Ô⇒ t jpyq/x − (py − x) ≡ jq/x − (py − x) (mod q).

his proves (3.5). ∎

To prove Case 5,wewill use the fact that between 0 and π, the cotangent function is
strictly decreasing. Using this property alongwith the fact that the cotangent function
is periodicwith period π,wewill lineup theminimum values (andhence all the values
due to periodicity) of tq/x + αy + x, tq/x + αy − x, tq/x + βy − x, and tq/x + βy + x,
respectively.

Proposition 3.6 Suppose L1 = L(q ∶ x , py) and L2 = L(q ∶ x , sy) are isospectral lens
spaces as in Corollary 3.4, where y ≠ q/x , with spectrum generating functions F1(z)
and F2(z) respectively. Suppose αy ≡ (q − p)y (mod q) and βy ≡ (q − s)y (mod q).
Consider the following four sets of positive integers (mod q):

A = {At ∶ At ≡ [tq/x + αy + x] (mod q), t = 0, 1, . . . , x − 1},
B = {Bt ∶ Bt ≡ [tq/x + αy − x] (mod q), t = 0, 1, . . . , x − 1},
C = {Ct ∶ Ct ≡ [tq/x + βy − x] (mod q), t = 0, 1, . . . , x − 1},
D = {Dt ∶ Dt ≡ [tq/x + βy + x] (mod q), t = 0, 1, . . . , x − 1}.

hen theminimum values of A and B occur for the same value t′ ∈ {0, 1, . . . , x − 1}, and
theminimum values of C and D occur for the same value t′′ ∈ {0, 1, . . . , x − 1}.

Proof We note that the only time theminimum values for A and B (resp. C and D)
will occur at diòerent values of t is when for some t, tq/x + αy + x > 0 and tq/x +
αy−x < 0. But thiswouldmean that y(tq/x y +α) < x,which cannot be true, because
we are assuming y > x. herefore, for every t, both tq/x + αy + x and tq/x + αy − x
are positive (with the only exception happening when y = q/x , which we will look at
a little later). his implies that theminimum values of tq/x +αy+ x and tq/x +αy− x
occur for the same value of t = t′, and in such a case, the diòerence between the
minimum values would be 2x. he same will be the case for theminimum values of
tq/x + βy + x and tq/x + βy − x, which occur for some value of t = t′′. ∎

Corollary 3.7 Suppose L1 = L(q ∶ x , py) and L2 = L(q ∶ x , sy) are isospectral lens
spaces as above. Also suppose min{A} = At′ , min{B} = Bt′ , min{C} = Ct′′ , and
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min{D} = Dt′′ . hen for all t ∈ {0, 1, . . . , (x−3)
2 },

[cot π
q
(At′ + tq/x) − cot

π
q
(Bt′ + tq/x)]

− [cot π
q
(Ct′′ + tq/x) − cot

π
q
(Dt′′ + tq/x)]

+ [cot π
q
(At′ + (x − t − 1)q/x) − cot

π
q
(Bt′ + (x − t − 1)q/x)]

− [cot π
q
(Ct′′ + (x − t − 1)q/x) − cot

π
q
(Dt′′ + (x − t − 1)q/x)] = 0,

and for t = (x−1)
2 ,

[cot π
q
(At′ +

(x − 1)
2

q/x) − cot
π
q
(Bt′ +

(x − 1)
2

q/x)]

− [cot π
q
(Ct′′ +

(x − 1)
2

q/x) − cot
π
q
(Dt′′ +

(x − 1)
2

q/x)] = 0.

Proof Using a similar argument to that in Proposition 3.2 and the fact that F1(z) =
F2(z), we will get

x−1

∑
t=0

[cot π
q
[ tpyq/x − (py − x)] − cot π

q
[ tpyq/x − (py + x)]] =

x−1

∑
t=0

[cot π
q
[ tsyq/x − (sy − x)] − cot π

q
[ tsyq/x − (sy + x)]] .

Using (3.5) and (3.6), the above equation can be written as

x−1

∑
t=0

[cot π
q
[ tq/x − (py − x)] − cot π

q
[ tq/x − (py + x)]] =

x−1

∑
t=0

[cot π
q
[ tq/x − (sy − x)] − cot π

q
[ tq/x − (sy + x)]] .

Finally, by writing αy ≡ (q − p)y (mod q) and βy ≡ (q − s)y (mod q), we can
rewrite the above equality as

(3.7)
x−1

∑
t=0

[cot π
q
[tq/x + αy + x] − cot π

q
[tq/x + αy − x]] =

x−1

∑
t=0

[cot π
q
[tq/x + βy + x] − cot π

q
[tq/x + βy − x]] .

Since theminimum values for A and B (resp. C and D) occur at the same value of
t, At > Bt (resp. Ct > Dt) for all values of t ∈ {0, 1, . . . , x − 1}.
Also note that πAt′/q, πBt′/q, πCt′′/q, and πDt′′/q lie between 0 and

π/x(= πq/x/q), and each subsequent πAt′+t/q, πBt′+t/q, πCt′′+t/q, and πDt′′+t/q
for t ∈ {1, 2, . . . , x − 1} is simply a translation of πAt′+t−1/q, πBt′+t−1/q, πCt′′+t−1/q,
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and πDt′′+t−1/q, respectively, to the right by π/x. his means that we can re-write
equation (3.7) as

(3.8)
x−1

∑
t=0

[cot π
q
(At′ + tq/x) − cot

π
q
(Bt′ + tq/x)]

− [cot π
q
(Ct′′ + tq/x) − cot

π
q
(Dt′′ + tq/x)] = 0

Further note that the distance between At′+t and Bt′+t = 2x = distance between Ct′′+t
and Dt′′+t for all values of t.

Now we have the following possibilities:

Case I: Suppose At′ > Ct′′ , At′ > Bt′ , and Ct′′ > Dt′′ . We have two possibilities in
this case: At′ > Ct′′ > Bt′ > Dt′′ , or At′ > Bt′ > Ct′′ > Dt′′ .

We will prove the result for the case when At′ > Bt′ > Ct′′ > Dt′′ , and will note
that the case when At′ > Ct′′ > Bt′ > Dt′′ can be proved similarly with a slight
modiûcation.
For t < (x − 1)/2, we have

cot
π
q
(At′ + tq/x) − cot

π
q
(Bt′ + tq/x) < 0,

cot
π
q
(Ct′′ + tq/x) − cot

π
q
(Dt′′ + tq/x) < 0,

And since the distance between At′ + tq/x and Bt′ + tq/x is the same as the distance
between Ct′′ + tq/x and Dt′′ + tq/x , and the slope of the cotangent function is negative
and continuously increasing between 0 and π

2 , we also have

∣ cot π
q
(Ct′′ + tq/x) − cot

π
q
(Dt′′ + tq/x)∣ >

∣ cot π
q
(At′ + tq/x) − cot

π
q
(Bt′ + tq/x)∣ .

hese three conditions imply

(3.9) [cot π
q
(At′ + tq/x) − cot

π
q
(Bt′ + tq/x)]

− [cot π
q
(Ct′′ + tq/x) − cot

π
q
(Dt′′ + tq/x)] > 0.

Similarly, for t < (x − 1)/2, we have

cot
π
q
(At′ + (x − t − 1)q/x) − cot

π
q
(Bt′ + (x − t − 1)q/x) < 0,

cot
π
q
(Ct′′ + (x − t − 1)q/x) − cot

π
q
(Dt′′ + (x − t − 1)q/x) < 0, and

∣ cot π
q
(At′ + (x − t − 1)q/x) − cot

π
q
(Bt′ + (x − t − 1)q/x) ∣

> ∣ cot π
q
(Ct′′ + (x − t − 1)q/x) − cot

π
q
(Dt′′ + (x − t − 1)q/x) ∣ .
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hese three conditions imply that

(3.10) [cot π
q
(At′ + (x − t − 1)q/x) − cot

π
q
(Bt′ + (x − t − 1)q/x)]

− [cot π
q
(Ct′′ + (x − t − 1)q/x) − cot

π
q
(Dt′′ + (x − t − 1)q/x)] < 0.

Adding the two le� sides of (3.9) and (3.10), we get the following expression for t <
(x − 1)/2:

[cot π
q
(At′ + tq/x) − cot

π
q
(Bt′ + tq/x)](3.11)

− [cot π
q
(Ct′′ + tq/x) − cot

π
q
(Dt′′ + tq/x)]

+ [cot π
q
(At′ + (x − t − 1)q/x) − cot

π
q
(Bt′ + (x − t − 1)q/x)]

− [cot π
q
(Ct′′ + (x − t − 1)q/x) − cot

π
q
(Dt′′ + (x − t − 1)q/x)] .

We know that the distance between At′ + tq/x and Bt′ + tq/x (resp. Ct′′ + tq/x and
Dt′′ + tq/x ) is 2x. Suppose the distance between Bt′ + tq/x and Ct′′ + tq/x is r. We
can thus write Ct′′ + tq/x = Dt′′ + tq/x + 2x, Bt′ + tq/x = Dt′′ + tq/x + 2x + r, and
At′+ tq/x = Dt′′+ tq/x+4x+r. Now, letting d = Dt′′+ tq/x ,we can view the expression
(3.11) as a function of d as follows:

f (d) = [cot π
q
(d + 4x + r) − cot π

q
(d + 2x + r) − [cot π

q
(d + 2x) − cot π

q
(d)]

+ [cot π
q
(d + 4x + r + (x − 2t − 1)q/x)

− cot π
q
(d + 2x + r + (x − 2t − 1)q/x)]

− [cot π
q
(d + 2x + (x − 2t − 1)q/x) − cot

π
q
(d + (x − 2t − 1)q/x)] .

Now, using the property

cotY ± cotX = cotX cotY ∓ 1
cot(X ± Y) ,

we can rewrite the above function as

f (d) = 1
cot π

q (2x)
[ − cot π

q
(d + 4x + r) cot π

q
(d + 2x + r)

+ cot π
q
(d + 2x) cot π

q
(d)

− cot π
q
(d + 4x + r + (x − 2t − 1)q/x)

× cot π
q
(d + 2x + r + (x − 2t − 1)q/x)

+ cot π
q
(d + 2x + (x − 2t − 1)q/x) cot

π
q
(d + (x − 2t − 1)q/x)] .

297

https://doi.org/10.4153/S0008414X19000178 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000178


N. S. Bari and E. Hunsicker

We claim that the function f (d) is decreasing. To see this, we look at the ûrst deriv-
ative of this function as follows:

f ′(d) = 1
cot π

q (2x)
[cot π

q
(d + 4x + r) csc2 π

q
(d + 2x + r)

+ csc2 π
q
(d + 4x + r) cot π

q
(d + 2x + r)

− cot π
q
(d + 2x) csc2 π

q
(d) − csc2 π

q
(d + 2x) cot π

q
(d)

+ cot π
q
(d + 4x + r + (x − 2t − 1)q/x) csc2

π
q
(d + 2x + r + (x − 2t − 1)q/x)

+ csc2 π
q
(d + 4x + r + (x − 2t − 1)q/x) cot

π
q
(d + 2x + r + (x − 2t − 1)q/x)

− cot π
q
(d + 2x + (x − 2t − 1)q/x) csc2

π
q
(d + (x − 2t − 1)q/x)

− csc2 π
q
(d + 2x + (x − 2t − 1)q/x) cot

π
q
(d + (x − 2t − 1)q/x)] .

It will be easier to see that between 0 and π, f ′(d) < 0 if we rewrite f ′(d) back in
terms of Dt′′ , Ct′′ , Bt′ , and At′ :

f ′(d) = 1
cot π

q (2x)
[cot π

q
(At′ + tq/x) csc2

π
q
(Bt′ + tq/x)

+ csc2 π
q
(At′ + tq/x) cot

π
q
(Bt′ + tq/x)

− cot π
q
(Ct′′ + tq/x) csc2

π
q
(Dt′′ + tq/x)

− csc2 π
q
(Ct′′ + tq/x) cot

π
q
(Dt′′ + tq/x)

+ cot π
q
(At′ + (x − t − 1)q/x) csc2

π
q
(Bt′ + (x − t − 1)q/x)

+ csc2 π
q
(At′ + (x − t − 1)q/x) cot

π
q
(Bt′ + (x − t − 1)q/x)

− cot π
q
(Ct′′ + (x − t − 1)q/x) csc2

π
q
(Dt′′ + (x − t − 1)q/x)

− csc2 π
q
(Ct′′ + (x − t − 1)q/x) cot

π
q
(Dt′′ + (x − t − 1)q/x)] .

Recall that we are assuming At′ > Bt′ > Ct′′ > Dt′′ . his implies the following two
facts:
(a) π

2 > At′ + tq/x > Bt′ + tq/x > Ct′′ + tq/x > Dt′′ + tq/x > 0, and
(b) π > At′+(x−t−1)q/x > Bt′+(x−t−1)q/x > Ct′′+(x−t−1)q/x > Dt′′+(x−t−1)q/x .
We know that csc2 is positive, decreasing between 0 and π

2 , and increasing between
π
2 and π. We also know that cot is positive and decreasing between 0 and π

2 , and
cot is negative and decreasing between π

2 and π. Combining these facts with our as-
sumptions noted above, we can now easily conclude that between 0 and π

2 , f
′(d) < 0,
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and that f (d) is a decreasing function. his implies that if the distance between 0 and
Dt′′ is greater than (resp. less than) the distance between At′ + (x − 1)q/x and π, then
the expression (3.11) is greater than (resp. less than) 0.

We note that the case where At′ > Ct′′ > Bt′ > Dt′′ is similar with the only dif-
ference being that in this case, Bt′ + tq/x = Dt′′ + tq/x + 2x − r, and At′ + tq/x =
Dt′′ + tq/x + 4x − r. he remaining arguments will be the same.

Since x is odd, then we can rewrite (3.8) as

(3.12)
(x−3)/2

∑
t=0

{[cot π
q
(At′ + tq/x) − cot

π
q
(Bt′ + tq/x)]

− [cot π
q
(Ct′′ + tq/x) − cot

π
q
(Dt′′ + tq/x)]

+ [cot π
q
(At′ + (x − t − 1)q/x) − cot

π
q
(Bt′ + (x − t − 1)q/x)]

− [cot π
q
(Ct′′ + (x − t − 1)q/x) − cot

π
q
(Dt′′ + (x − t − 1)q/x)]}

+ [cot π
q
(At′ +

(x − 1)
2

q/x) − cot
π
q
(Bt′ +

(x − 1)
2

q/x)]

− [cot π
q
(Ct′′ +

(x − 1)
2

q/x) − cot
π
q
(Dt′′ +

(x − 1)
2

q/x)] = 0.

If (3.11) is greater than (resp. less than) for some t, then (3.11) is greater than (resp. less
than) for all t, since if the distance between 0 and Dt′′ is greater than (resp. less than)
the distance betweenAt′+(x−1)q/x and π, then the distance between 0 andDt′′+tq/x
will be greater than (resp. less than) the distance between At′ + (x − t − 1)q/x and π.
Further, it can be easily seen that if (3.11) is greater than (resp. less than) 0 for all t,
then

[cot π
q
(At′ +

(x − 1)
2

q/x) − cot
π
q
(Bt′ +

(x − 1)
2

q/x)]

− [cot π
q
(Ct′′ +

(x − 1)
2

q/x) − cot
π
q
(Dt′′ +

(x − 1)
2

q/x)] > 0

(resp. < 0). his wouldmean that (3.12) will not be satisûed. herefore, we conclude
that for all t, (3.11) equals 0. his also means that from (3.12), we have

[cot π
q
(At′ +

(x − 1)
2

q/x) − cot
π
q
(Bt′ +

(x − 1)
2

q/x)]

− [cot π
q
(Ct′′ +

(x − 1)
2

q/x) − cot
π
q
(Dt′′ +

(x − 1)
2

q/x)] = 0.

Case II: Suppose At′ > Ct′′ , At′ > Bt′ and Ct′′ < Dt′′ . We have two possibilities in
this case: At′ > Dt′′ > Bt′ > Ct′′ or At′ > Bt′ > Dt′′ > Ct′′ .
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Since the cotangent function is strictly decreasing, we have, for t < (x − 1)/2,

cot
π
q
(At′ + tq/x) − cot

π
q
(Bt′ + tq/x) < 0,

cot
π
q
(Dt′′ + tq/x) − cot

π
q
(Ct′′ + tq/x) < 0.

his means that

[cot π
q
(At′ + tq/x) − cot

π
q
(Bt′ + tq/x)]

− [cot π
q
(Ct′′ + tq/x) − cot

π
q
(Dt′′ + tq/x)] < 0.

Similarly, for t < (x − 1)/2, we have

cot
π
q
(At′ + (x − t − 1)q/x) − cot

π
q
(Bt′ + (x − t − 1)q/x) < 0,

cot
π
q
(Dt′′ + (x − t − 1)q/x) − cot

π
q
(Ct′′ + (x − t − 1)q/x) < 0.

his means that

[cot π
q
(At′ + (x − t − 1)q/x) − cot

π
q
(Bt′ + (x − t − 1)q/x)]

− [cot π
q
(Ct′′ + (x − t − 1)q/x) − cot

π
q
(Dt′′ + (x − t − 1)q/x)] < 0.

Rewriting (3.8)) as (3.12) as in Case I, we can see that the entire expression will be
negative, unless (3.11) equals 0 for every value of t. Reasoning as in Case I,we also get

[cot π
q
(At′ +

(x − 1)
2

q/x) − cot
π
q
(Bt′ +

(x − 1)
2

q/x)]

− [cot π
q
(Ct′′ +

(x − 1)
2

q/x) − cot
π
q
(Dt′′ +

(x − 1)
2

q/x)] = 0.

Case III: Bt′ > At′ > Dt′′ > Ct′′ , or Bt′ > Dt′′ > At′ > Ct′′ . In this case, we can take
the minus sign out of expression (3.11) and swap the roles of Bt′ and At′ (resp. Dt′′

and Ct′′) to see that the function g(c) (deûned very similarly to the function f (d) in
Case I) is increasing. his wouldmean again that (3.12) would not be satisûed unless
(3.11) equals 0 for all t, and subsequently

[ cot π
q
(At′ +

(x − 1)
2

q/x) − cot
π
q
(Bt′ +

(x − 1)
2

q/x)]

− [cot π
q
(Ct′′ +

(x − 1)
2

q/x) − cot
π
q
(Dt′′ +

(x − 1)
2

q/x)] = 0.

Case IV: Bt′ > Ct′′ > At′ > Dt′′ , or Bt′ > At′ > Ct′′ > Dt′′ . In this case we notice that
(3.12) will be positive unless (3.11) = 0 for every value of t. Reasoning, as in Case II,
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we also get

[ cot π
q
(At′ +

(x − 1)
2

q/x) − cot
π
q
(Bt′ +

(x − 1)
2

q/x)]

− [cot π
q
(Ct′′ +

(x − 1)
2

q/x) − cot
π
q
(Dt′′ +

(x − 1)
2

q/x)] = 0.

Note 3 Wewill get fourmore possible cases,where the roles ofAt′ andCt′′ (resp. Bt′

and Dt′′) are swappedwith each other. With slightmodiûcations, these four cases can
be proved in the samemanner as the above four cases.

his proves the result. ∎

Corollary 3.8 One of the following holds for all t ∈ {0, 1, . . . , (x−1)
2 }:

(i) cot π
qAt′+t = cot π

qCt′′+t and cot π
q Bt′+t = cot π

qDt′′+t ,

(ii) cot π
qAt′+t = − cot π

qDt′′−(t+1) and cot π
q Bt′+t = − cot π

qCt′′−(t+1).

Proof Recall that between 0 and π
x the slope of the cotangent function is strictly and

continuously increasing, and since the distance between A′t and B′t = 2x = distance
between C′′t and D′′t , the only way for

[cot π
q
(At′ + tq/x) − cot

π
q
(Bt′ + tq/x)] − [cot π

q
(Ct′′ + tq/x) − cot

π
q
(Dt′′ + tq/x)]

+[cot π
q
(At′ + (x − t − 1)q/x) − cot

π
q
(Bt′ + (x − t − 1)q/x)]

−[cot π
q
(Ct′′ + (x − t − 1)q/x) − cot

π
q
(Dt′′ + (x − t − 1)q/x)] = 0

is if one of the following conditions (a) or (b) is met:

(a)
cot

π
q
(At′ + tq/x) = cot

π
q
(Ct′′ + tq/x),

cot
π
q
(Bt′ + tq/x) = cot

π
q
(Dt′′ + tq/x).

Note that these two statements are equivalent to

cot
π
q
(At′ + (x − t − 1)q/x) = cot π

q
(Ct′′ + (x − t − 1)q/x) ,

cot
π
q
(Bt′ + (x − t − 1)q/x) = cot π

q
(Dt′′ + (x − t − 1)q/x) .

(b)
cot

π
q
(At′ + tq/x) = − cot

π
q
(Dt′′ + (x − t − 1)q/x) ,

cot
π
q
(Bt′ + tq/x) = − cot

π
q
(Ct′′ + (x − t − 1)q/x) .
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Note that these two statements are equivalent to

cot
π
q
(At′ + (x − t − 1)q/x) = − cot π

q
(Dt′′ + tq/x),

cot
π
q
(Bt′ + (x − t − 1)q/x) = − cot π

q
(Ct′′ + tq/x).

Also note that for t = (x−1)
2 , since

[cot π
q
(At′ +

(x − 1)
2

q/x) − cot
π
q
(Bt′ +

(x − 1)
2

q/x)]

− [cot π
q
(Ct′′ +

(x − 1)
2

q/x) − cot
π
q
(Dt′′ +

(x − 1)
2

q/x)] = 0,

we again get

cot
π
q
(At′ + tq/x) = cot

π
q
(Ct′′ + tq/x), and

cot
π
q
(Bt′ + tq/x) = cot

π
q
(Dt′′ + tq/x).

his means one of the following two conditions must be true for all values of t ∈
{0, 1, . . . , (x−1)

2 }:
(I) cot π

qAt′+t = cot π
qCt′′+t and cot π

q Bt′+t = cot π
qDt′′+t when A′t > B′t and C′′t >

D′′t or when A′t < B′t and C′′t < D′′t .
(II) cot π

qAt′+t = − cot π
qDt′′−(t+1) and cot π

q Bt′+t = − cot π
qCt′′−(t+1) when A′t > B′t

and C′′t < D′′t or when A′t < B′t and C′′t > D′′t . ∎

We are now ready to prove that isospectrality inCase 5 implies that the lens spaces
are isometric.

Proposition 3.9 Under Corollary 3.8(i), L1 and L2 are isometric.

Proof Condition (i) implies thatAt′+t ≡ Ct′′+t (mod q) andBt′+t ≡ Dt′′+t (mod q),
i.e., ∃t1 , t2 ∈ {0, 1, . . . , (x−1)

2 } with

pyt1q/x − py + x ≡ At′ (mod q),
pyt1q/x − py − x ≡ Bt′ (mod q),
syt2q/x − sy + x ≡ Ct′′ (mod q),
syt2q/x − sy − x ≡ Dt′′ (mod q)

such that

py(t1 + t)q/x − py + x ≡ sy(t2 + t)q/x − sy + x (mod q),
∀t ∈ {0, 1, . . . , x − 1},

py(t1 + t)q/x − py − x ≡ sy(t2 + t)q/x − sy − x (mod q),
∀t ∈ {0, 1, . . . , x − 1}
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hese congruences imply that for all t ∈ {0, 1, . . . , x − 1}

py[(t1 + t)q/x − 1] ≡ sy[(t2 + t)q/x − 1] (mod q).

Now, if t = x − t1, then by writing t3 = x − t1 + t2, the above congruence can be
written as

py(q − 1) ≡ sy(t3q/x − 1) (mod q).
We know that gcd(q − 1, q) = 1. We claim that gcd(t3q/x − 1, q) = 1. To see this,

suppose gcd(t3q/x − 1, q) = d > 1. But this means

py(q − 1) ≡ sy(t3q/x − 1) (mod d) ≡ 0 (mod d)).

Now d does not divide q/x , since d∣(t3q/x−1),whichmeans d∣x, since d∣q. Now, since
gcd(x , py) = 1, this would imply that (q − 1) ≡ 0 mod d, which is a contradiction.
herefore, gcd(t3q/x − 1, q) = 1. Now we see that the corresponding lens spaces are
isometric, because

L(q; x , py) ∼ L(q;−x ,−py) ∼ L(q;−x , (t3q/x − 1)sy) ∼ L(q; x , sy). ∎

Proposition 3.10 Under Corollary 3.8(ii), L1 and L2 are isometric.

Proof Condition (ii) implies that At′+t ≡ −Dt′′+t (mod q) and Bt′+t ≡ −Ct′′+t

(mod q), i.e., ∃t1 , t2 ∈ {0, 1, . . . , (x−1)
2 } with

pyt1q/x − py + x ≡ At′ (mod q),
pyt1q/x − py − x ≡ Bt′ (mod q),
syt2q/x − sy + x ≡ Ct′′ (mod q),
syt2q/x − sy − x ≡ Dt′′ (mod q)

such that

py(t1 + t)q/x − py + x ≡ −sy(t2 − t − 1)q/x + sy + x (mod q),
∀t ∈ {0, 1, . . . , x − 1},

py(t1 + t)q/x − py − x ≡ −sy(t2 − t − 1)q/x + sy − x (mod q),
∀t ∈ {0, 1, . . . , x − 1}.

hese congruences imply that for t ∈ {0, 1, . . . , x − 1},

py[(t1 + t)q/x − 1] ≡ −sy[(t2 − t − 1)q/x + 1] (mod q).

As before, if t = x − t1, then, by writing t3 = x + 1 − t1 − t2, the above congruence can
be written as

py(q − 1) ≡ −sy(t3q/x + 1) (mod q).
With a similar argument as in Proposition 3.9, we get that gcd(t3q/x + 1, q) = 1, and,
as before, the corresponding lens spaces are isometric because

L(q; x , py) ∼ L(q;−x ,−py) ∼ L(q;−x ,−(t3q/x+1)sy) ∼ L(q; x , sy). ∎
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We note that in the above setting, when y = q/x , the minimum positive value for
tq/x + x is x, which occurs when t = 0, and theminimum positive value for tq/x − x
is q/x − x, which occurs when t = 1. If q/x > 2x (resp. q/x < 2x), then theminimum
value of tq/x − x (i.e., q/x − x) is greater than (resp. less than) theminimum value of
tq/x + x (i.e., x). Consequently, At < Bt+1 and Ct < Dt+1 for all t ∈ {0, 1, . . . , x − 1}
(resp. At > Bt+1 and Ct > Dt+1 for all t ∈ {0, 1, . . . , x − 1}). his means that for each
t, Bt+1 − At = q/x − 2x = Dt+1 − Ct (resp. At − Bt+1 = 2x − q/x = Ct − Dt+1). Now
by substituing 0 (resp. 1) in place of t′ and t′′ in the subscripts of A (resp. B) and C
(resp. D), respectively, we can prove the previous results with similar arguments for
the case when y = q/x .

Proposition 3.11 Suppose lens spaces L1 = L(q ∶ x , py) and L2 = L(q ∶ x , sy) are
isospectral where gcd(q, py) = y = gcd(q, sy) and y = q/x ; then for all t ∈
{0, 1, . . . , (x−3)

2 },

[cot π
q
(A0 + tq/x) − cot

π
q
(B1 + tq/x)]

− [cot π
q
(C0 + tq/x) − cot

π
q
(D1 + tq/x)]

+ [cot π
q
(A0 + (x − t − 1)q/x) − cot

π
q
(B1 + (x − t − 1)q/x)]

− [cot π
q
(C0 + (x − t − 1)q/x) − cot

π
q
(D1 + (x − t − 1)q/x)] = 0,

and for t = (x−1)
2 ,

[cot π
q
(A0 +

(x − 1)
2

q/x) − cot
π
q
(B1 +

(x − 1)
2

q/x)]

− [cot π
q
(C0 +

(x − 1)
2

q/x) − cot
π
q
(D1 +

(x − 1)
2

q/x)] = 0.

Corollary 3.12 One of the following holds for all t ∈ {0, 1, . . . , (x−1)
2 }:

(i) cot π
qAt = cot π

qCt and cot π
q Bt+1 = cot π

qDt+1,
(ii) cot π

qAt = − cot π
qD−t and cot π

q Bt+1 = − cot π
qC−t−1.

Proof he proof is similar to the proof of Corollary 3.8. ∎

Proposition 3.13 Under Conditions (i) and (ii) of Corollary 3.12, lens spaces L1 and
L2 are isometric.

Proof he proof is similar to the proofs of Propositions 3.9 and 3.10. ∎

his completes the proof of our theorem for Case 5. ∎
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4 4-Dimensional Orbifold Lens Spaces

It is known that in themanifold case, even-dimensional spherical space forms are only
the sphere and the real projective spaces [I2]. It is also known that the sphere Sn is
not isospectral to the real projective space Pn(R) [BGM].

In the orbifold case, there aremany even dimensional spherical space forms with
ûxed points. We will focus on the 4-dimensional orbifold lens spaces. In [L], Lau-
ret classiûed cyclic subgroups of SO(2n + 1) up to conjugation. According to this
classiûcation, any cyclic subgroup G of SO(2n + 1) is represented by G = ⟨γ⟩, where
γ = diag(M( 2πp1

q ), . . . ,M( 2πpn
q ), 1) and M(θ) = ( cos θ sin θ

− sin θ cos θ ).
In order to prove our theorem for 4-dimensional orbifold lens spaces, we need a

couple of results from [Ba]. We deûne

g̃W+ =
⎛
⎜⎜⎜
⎝

M(p1/q) 0

⋱
M(pn/q)

0 IW

⎞
⎟⎟⎟
⎠

and

g̃′W+ =
⎛
⎜⎜⎜
⎝

M(s1/q) 0

⋱
M(sn/q)

0 IW

⎞
⎟⎟⎟
⎠
,

where IW is the W × W identity matrix for some integer W . We can deûne G̃W+

= ⟨g̃W+⟩ and G̃′
W+ = ⟨g̃′W+⟩. hen G̃W+ and G̃′

W+ are cyclic groups of order q. We
deûne lens spaces L̃W+ = S2n+W−1/G̃W+ and L̃′W+ = S2n+W−1/G̃′

W+. Further suppose
that the corresponding 2n− 1-dimensional orbifold lens spaces are given by L = L(q ∶
p1 , p2 , . . . , pn) and L′ = L(q ∶ s1 , s2 , . . . , sn). hen by [Ba, Lemma 3.2.2], we get the
following lemma.

Lemma 4.1 Let L, L′, L̃W+, and L̃′W+ be as deûned above. hen L is isometric to L′

if and only if L̃W+ is isometric to L̃′W+.

And by [Ba,heorem 3.2.3] we get the following theorem.

heorem 4.2 Let FW+
q (z ∶ p1 , . . . , pn , 0) be the generating function associated with

the spectrum of L̃W+. hen on the domain { z ∈ CRRRRR ∣z∣ < 1} ,

FW+
q (z ∶ p1 , . . . , pn , 0) =

(1 + z)
(1 − z)W−1 ⋅

1
q

q

∑
l=1

1
∏n

i=1(z − γp i l)(z − γ−p i l) .

Now suppose n = 2. Let

g̃1 =
⎛
⎜
⎝

M(p1/q) 0

M(p2/q)
0 1

⎞
⎟
⎠
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and

g̃2 =
⎛
⎜
⎝

M(s1/q) 0

M(s2/q)
0 1

⎞
⎟
⎠
.

Suppose there are 4-dimensional orbifold lens spaces O1 = S4/G̃1 (denoted by L(q ∶
p1 , p2 , 0)) and O2 = S4/G̃2 (denoted by L(q ∶ s1 , s2 , 0)), where G̃1 = ⟨g̃1⟩ and G̃2 =
⟨g̃2⟩. Further suppose the corresponding 3-dimensional orbifold lens spaces are given
by L1 = L(q ∶ p1 , p2) and L2 = L(q ∶ s1 , s2).

We now prove the following theorem for 4-dimensional orbifold lens spaces.

heorem 4.3 We have O1, O2, G̃1, and G̃2 as above. If O1 and O2 are isospectral,
then they are isometric.

Proof From heorem 4.2 we know that on the domain { z ∈ CRRRRR ∣z∣ < 1} , the spec-
trum generating functions of O1 and O2, respectively, are,

Fq(z ∶ p1 , p2 , 0) =
1
q

q

∑
l=1

(1 + z)
∏2

i=1(z − γp i l)(z − γ−p i l)
,

Fq(z ∶ s1 , s2 , 0) =
1
q

q

∑
l=1

(1 + z)
∏2

i=1(z − γs i l)(z − γ−s i l)
.

Notice that Fq(z ∶ p1 , p2) = (1 − z)Fq(z ∶ p1 , p2 , 0) and Fq(z ∶ s1 , s2) = (1 − z)
Fq(z ∶ s1 , s2 , 0), where Fq(z ∶ p1 , p2) and Fq(z ∶ s1 , s2) are respectively the spectrum
generating functions for the 3-dimensional orbifold lens spaces L1 = L(q ∶ p1 , p2) and
L2 = L(q ∶ s1 , s2). his means that if O1 and O2 are isospectral, then L1 and L2 are
also isospectral.

Now, from heorem 3.1, we know that L1 and L2 are isometric. By Lemma 4.1 we
know that L1 is isometric to L2 if and only if O1 is isometric to O2. his proves the
theorem. ∎

5 Lens Spaces and Other Spherical Space Forms

One question still remains: Is an orbifold lens space ever isospectral to an orbifold
spherical space form that has non-cyclic fundamental group?

Our next result proves that an orbifold lens space cannot be isospectral to a general
spherical space form with non-cyclic fundamental group. We will use some results
from [I2] noting that in some cases his assumption that the acting group is ûxed-point
free is not used in certain proofs, and therefore, the results hold true for orbifolds. he
notation is also borrowed from [I2].

Deûnition 5.1 Let G be ûnite group and let Gk be the subset of G consisting of all
elements of order k in G. Let σ(G) denote the set consisting of orders of elements in
G. hen we have

G = ⋃
k∈σ(G)

Gk (disjoint union).
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he following lemma is proved in [I2, Lemma 2.5] for ûxed-point free subgroups of
SO(2n), butwe note that the proof does not require this condition, andwe reproduce
the proof from [I2].

Lemma 5.2 Let G be a ûnite subgroup of SO(2n) (n ≥ 2). hen the subset Gk is
divided into the disjoint union of subsets C1

k , . . . ,C
ik
k such that each C t

k (t = 1, 2, . . . , ik)
consists of all generic elements of some cyclic subgroup of order k in G.

Proof For any g ∈ Gk , we denote by Ag the cyclic subgroup of G generated by g.
Now, for g , g′ ∈ Gk the cyclic group Ag ∩ Ag′ is of order k if and only if Ag = Ag′ .
Now the lemma follows from this observation immediately. ∎

We now state another lemma (see [I2, Lemma 2.6] for proof) that will be used to
prove our result.

Lemma 5.3 Let g be an element in SO(2n) (n ≥ 2) and of order q (q ≥ 3). Set
γ = e2π

√
−1/q . Assume g has eigenvalues γ, γ−1 , γp1 , γ−p1 , . . . , γpk , γ−pk , with multiplic-

ities l , l , i1 , i1 , . . . , ik , ik , respectively, where p1 , . . . , pk are integers prime to q with p i /≡
±p j(modq) ( for 1 ≤ i < j ≤ k), p i /≡ ±1(modq) ( for i = 1, . . . , k) and l+ i1+⋅ ⋅ ⋅+ ik = n.
hen the Laurent expansion of themeromorphic function 1−z2

det(12n−gz) at z = γ is

1
(z − γ)l

(
√
−1)n+lγ l

2n−l(1 − γ2)n−1

k
∏
j=1

{ cot π
q
(p j + 1) − cot π

q
(p j − 1)}

i j

+ lower order terms.

he following proposition is proved by Ikeda for a group G that acts freely. How-
ever, we note that the proposition is true even if G does not act freely since the proof
does not use the property that G acts freely.

Proposition 5.4 Let G be a ûnite subgroup of SO(2n) (n ≥ 2), and let k ∈ σ(G).
We deûne a positive integer k0 by

k0 = 2n − 1 if k = 1 or 2,
= max

g∈Gk
{multiplicities of eigenvalues of g} if k ≥ 3.

hen the generating function FG(z) has a pole of order k0 at any primitive k-th root of 1.

Proof At z = 1, we notice that for g = I2n ∈ G1, we get

lim
z→1

(1 − z)2n−1FG(z) =
2
∣G∣ ,

as g has eigenvalue 1 with multiplicity 2n. So FG(z) has a pole of order 2n − 1 at z = 1.
At z = −1 we notice that for g = −I2n ∈ G2, we get

lim
z→−1

(1 + z)2n−1FG(z) =
2
∣G∣ ,

as g has eigenvalue −1withmultiplicity 2n. Also, for any other g′ ∈ G2, the eigenvalue
−1 has multiplicity at most 2n. So FG(z) has a pole of order 2n − 1 at z = −1 as well.
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We now assume k ≥ 3. Now let Gk ,C1
k , . . . ,C

ik
k be as in Lemma 5.2. hen we have

∣G∣FG(z) = ∑
g∈Gk

1 − z2

det(I2n − gz) + ∑
g∈G−Gk

1 − z2

det(I2n − gz)(5.1)

=
ik
∑
j=1
∑
g∈C j

k

1 − z2

det(I2n − gz) + ∑
g∈G−Gk

1 − z2

det(I2n − gz) .

Set γ = e2π
√
−1/k . For any primitive k-th root γt of 1, where t is an integer prime to

k, let
ak0(t)

(z − γt)k0
+ ak0−1(t)

(z − γt)k0−1 + ⋅ ⋅ ⋅ +
a1(t)

(z − γt)
be the principal part of theLaurent expansion of FG(z) at z = γt . hen each coeõcient
a i(t) is an element in the k-th cyclotomic ûeld Q(γ) over the rational number ûeld
Q. he automorphisms σt of Q(γ) deûned by γ → γt transforms a i(1) to a i(t) by
equation (5.1). Hence, it is suõcient to show that the generating function FG(z) has
a pole of order k0 at z − γ, that is, to show that ak0(1) ≠ 0.

Recall that if 0 < b < a < π, then cot a − cot b < 0. Now the proposition follows
immediately from Lemma 5.3 and equation (5.1). ∎

From Proposition 5.4, we get the following corollary.

Corollary 5.5 Let S2n−1/G and S2n−1/G′ be two isospectral orbifold spherical space
forms. hen σ(G) = σ(G′).

We now prove our result.

heorem 5.6 Let S2n−1/G and S2n−1/G′ be two (orbifold) spherical space forms. Sup-
pose G is cyclic and G′ is not cyclic. hen S2n−1/G and S2n−1/G′ cannot be isospectral.

Proof By Corollary 2.14, we already know that if ∣G∣ ≠ ∣G′∣, then S2n−1/G and
S2n−1/G′ cannot be isospectral. So let us assume that ∣G∣ = ∣G′∣ = q.

Suppose S2n−1/G and S2n−1/G′ are isospectral. IfG is cyclic, then it has an element
of order q. Now, by Corollary 5.5, G′ must also have an element of order q, but since
∣G′∣ = q, that implies that G′ is cyclic, which is not true by assumption, and we arrive
at a contradiction. his proves the theorem. ∎

he above results will complete the classiûcation of the inverse spectral problem
on orbifold lens spaces in all dimensions, and alsowill imply that orbifold lens spaces
cannot be isospectral to any other spherical space forms.

6 Heat Kernel For Orbifold Lens Spaces

In themathematical study ofheat conduction and diòusion, a heat kernel is the funda-
mental solution to theheat equation on a speciûed domainwith appropriate boundary
conditions. It is also one of themain tools in the study of the spectrum of the Laplace
operator, and is thus of some auxiliary importance throughout mathematical physics.
he heat kernel represents the evolution of temperature in a region whose boundary
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is held ûxed at a particular temperature (typically zero), such that an initial unit of
heat energy is placed at a point at time t = 0.

In this section we will show that the coeõcients of the asymptotic expansion of
the heat trace of the heat kernel are not suõcient to obtain the results in the previ-
ous sections. More speciûcally, if two orbifold lens spaces have the same asymptotic
expansion of the heat trace, that does not imply that the two orbifolds are isospectral.

Deûnition 6.1 Let M be a Riemannian manifold. A heat kernel, or alternatively, a
fundamental solution to the heat equation, is a function

K∶ (0,∞) ×M ×M Ð→ M

that satisûes
(i) K(t, x , y) is C1 in t and C2 in x and y;
(ii) ∂K/∂t + ∆2(K) = 0, where ∆2 is the Laplacian with respect to the second vari-

able (i.e., the ûrst space variable);
(iii) limt→0+ ∫M K(t, x , y) f (y)dy = f (x) for any compactly supported function f

on M.

he heat kernel exists and is unique for compact Riemannian manifolds. Its im-
portance stems from the fact that the solution to the heat equation

∂u
∂t

+ ∆(u) = 0,

u∶ [0,∞) ×M Ð→ R,

(where ∆ is the Laplacian with respect to the second variable) with initial condition
u(0, x) = f (x) is given by

u(t, x) = ∫
M

K(t, x , y) f (y)dy.

If {λ i} is the spectrum of M and {ζ i} are the associated eigenfunctions (normalized
so that they form an orthonormal basis of L2(M)), then we can write

K(t, x , y) =∑
i
e−λ i tζ i(x)ζ i(y).

From this, it is clear that the heat trace,

Z(t) =∑
i
e−λ i t ,

is a spectral invariant. he heat trace has an asymptotic expansion as t → 0+,

Z(t) = (4πt)dim(M)/2
∞

∑
j=1
a j t j ,

where the a j are integrals over M of universal homogeneous polynomials in the cur-
vature and its covariant derivatives ([G], see [Gi2] or [CPR] for details). he ûrst few
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of these are

a0 = vol(M),

a1 =
1
6 ∫M

τ,

a2 =
1

360 ∫M
(5τ2 − 2∣ρ∣2 − 10∣R∣2),

where τ = ∑dim(M)

a ,b=1 Rabab is the scalar curvature, ρ = ∑dim(M)

c=1 Racbc is the Ricci ten-
sor, and R is the curvature tensor. he dimension, the volume, and the total scalar
curvature are thus completely determined by the spectrum. IfM is a surface, then the
Gauss–Bonnet heorem implies that the Euler characteristic of M is also a spectral
invariant.

6.1 Heat Trace Results for Orbifolds

In the case of a good Riemannian orbifold, Donnelly [D] proved the existence of the
heat kernel and also proved the following results.

heorem 6.2 Let f ∶M → M be an isometry of amanifoldM, with ûxed point set Ω.
(i) here is an asymptotic expansion as t ↓ 0

∑
λ

Tr( fλ♯)e tλ ≈ ∑
N∈Ω

(4πt)−n/2
∞

∑
k=0

tk ∫
N
bk( f , a)d volN(a),

where N is a subset of Ω (and a submanifold of M), λ is an eigenvalue of ∆, fλ♯ is a
linear map from λ-eigenspace to itself induced by f, and the functions bk( f , a) depend
only on the germ of f and the Riemannian metric ofM near the points a ∈ N.

(ii) he coeõcients bk( f , a) are of the form bk( f , a) = ∣detB∣b′k( f , a) where
b
′
k( f , a) is an invariant polynomial in the components of B = (I − A)−1 (where A de-

notes the endomorphism induced by f on the ûber of the normal bundle over a ∈ N) and
the curvature tensor R and its covariant derivatives at a.

In particular,

b0( f , a) = ∣detB∣,

b1( f , a) = ∣detB∣ ( τ
6
+ 1

6
ρkk +

1
3
R i kshBkiBhs

+ 1
3
R i k thBk tBhi − RkαhαBksBhs) .

In [DGGW] Donnelly’s work is extended to general compact orbifolds, where the
heat invariants are expressed in a form that clariûes the asymptotic contributions of
each part of the singular set of the orbifold. Borrowing their notation, we will sum-
marise the construction used in [DGGW] in the following remarks before stating
their main theorem.
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Remarks and Notation

(i) An Orbifold O was identiûed with the orbit space F(O)/O(n), where F(O)
(a smoothmanifold) is the orthonormal frame bundle ofO andO(n) is the orthogonal
group, acting smoothly on the right and preserving the ûbers. It can be shown that
the action of O(n) on the frame bundle F(O) gives rise to a (Whitney) stratiûcation
of O. he strata are connected components of the isotropy equivalence classes in O.
he set of regular points ofO intersects each connected component O0 ofO in a single
stratum that constitutes an open dense submanifold ofO0. he strata ofO are referred
to as O-strata.

(ii) If (Ũ ,GU , πU) is an orbifold chart on O, then it can be shown that the action
of GU on Ũ gives rise to stratiûcations both of Ũ and of U . hese are referred to as
Ũ-strata and U-strata, respectively.

(iii) Let O be a Riemannian orbifold and let (Ũ ,GU , πU) be an orbifold chart. Let
Ñ be a Ũ-stratum in Ũ . hen it can be shown that all the points in Ñ have the same
isotropy group in GU ; this group is referred to as the isotropy group of Ñ , denoted
Iso(Ñ).

(iv) Given a Ũ-stratum Ñ , denote by Isomax(Ñ) the set of all γ ∈ Iso(Ñ) such that
Ñ is open in the ûxed point set Fix(γ) of γ. For γ ∈ GU , it can be shown that each
component W of the ûxed point set Fix(γ) of γ (equivalently, the ûxed point set of
the cyclic group generated by γ) is a manifold stratiûed by a collection of Ũ-strata,
and the strata inW ofmaximal dimension are open and their union has full measure
in W . In particular, the union of those Ũ-strata Ñ for which γ ∈ Isomax(Ñ) has full
measure in Fix(γ).

(v) Let γ be an isometry of a Riemannian manifold M and let Ω(γ) denote the
set of components of the ûxed point set of γ. Each element of Ω(γ) is a submanifold
of M. For each non-negative integer k, Donnelly [D] deûned a real-valued function
(cited above), which we temporarily denote bk((M , γ), ⋅ ), on the ûxed point set of
γ. For each W ∈ Ω(γ), the restriction of bk((M , γ), ⋅ ) to W is smooth. Two key
properties of the bk are:

(a) Locality. For a ∈ W , bk((M , γ), a) depends only on the germs at a of the
Riemannian metric of M and of the isometry γ. In particular, if U is a γ-invariant
neighborhood of a in M, then bk((M , γ), a) = bk((U , γ), a).

(b) Universality. IfM andM′ are Riemannian manifolds admitting the respective
isometries γ and γ′, and if σ ∶ M → M′ is an isometry satisfying σ ○ γ = γ′ ○ σ , then
bk((M , γ), x) = bk((M′ , γ′), σ(x)) for all x ∈ Fix(γ).

In view of the locality property, we will usually delete the explicit reference to M
and rewrite these functions as bk(γ, ⋅ ), as they are written in [D].

(vi) Let O be an orbifold and let (Ũ ,GU , πU) be an orbifold chart. Let Ñ be a Ũ-
stratum and let γ ∈ Isomax(Ñ). hen Ñ is an open subset of a component of Fix(γ)
and thus, bk(γ, ⋅ )(= bk((Ũ , γ), ⋅ )) is smooth on Ñ for each nonnegative integer k.
Deûne a function bk(Ñ , ⋅ ) on Ñ by

bk(Ñ , x) = ∑
γ∈Isomax(Ñ)

bk(γ, x).
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Deûnition 6.3 Let O be a Riemannian orbifold and let N be an O-stratum.
(i) For each nonnegative integer k, deûne a real-valued function bk(N , ⋅ ) by set-

ting bk(N , p) = bk(Ñ , p̃) where (Ũ ,GU , πU) is any orbifold chart about p,
p̃ ∈ πU

−1(p), and Ñ is the Ũ-stratum through p̃.
(ii) he Riemannian metric on O induces a Riemannian metric, and thus a volume

element, on themanifold N . Set

IN ∶= (4πt)−dim(N)/2
∞

∑
k=0

tk ∫
N
bk(N , x)d volN(x),

where d volN is the Riemannian volume element.
(iii) Set

I0 = (4πt)−dim(O)/2
∞

∑
k=0
ak(O)tk ,

where the ak(O) (which we will usually write simply as ak) are the familiar
heat invariants. In particular, a0 = vol(O), a1 = 1

6 ∫O τ(x)d volO(x), and so
forth. Observe that if O is ûnitely covered by a Riemannian manifold M (say,
O = G/M), then ak(O) = 1

∣G∣
ak(M).

We now state themain theorem that was proved in [DGGW].

heorem 6.4 Let O be a Riemannian orbifold and let λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ be the spectrum
of the associated Laplacian acting on smooth functions on O. he heat trace∑∞

j=1 e−λ j t

of O is asymptotic as t → 0+ to

I0 + ∑
N∈S(O)

IN
∣Iso(N)∣ ,

where S(O) is the set of all O-strata, ∣Iso(N)∣ is the order of the isotropy at each p ∈ N ,
and Iso(p) is the conjugacy class of subgroups of O(n). his asymptotic expansion is of
the form

(4πt)−dim(O)/2
∞

∑
j=0
c j t j/2

for some constants c j .

We will be using this theorem later to calculate the ûrst few coeõcients of the as-
ymptotic expansion of the heat trace.

6.2 Heat Kernel For 3-Dimensional Lens Spaces

Using the notation from [Iv], we deûne the normal coordinates for a three-sphere as
follows. Consider a three-sphere of radius r,

S3(r) = {(v1 , v2 , v3 , v4) ∈ R4 ∶ (v1)2 + (v2)2 + (v3)2 + (v4)2 = r2},

and let (w ,ψ, θ , ϕ) be the spherical coordinates in R4 where w ∈ (0,∞), ψ ∈ (0, π],
θ ∈ (0, π] and ϕ ∈ [0, 2π). hese coordinates are connected with the standard
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coordinate system (u1 , u2 , u3 , u4) in R4 by the following equations:

(6.1)

u1 = w sinψ sin θ cos ϕ,
u2 = w sinψ sin θ sin ϕ,
u3 = w sinψ cos θ ,
u4 = w cosψ.

he equation of S3(r) in these coordinates is w2 = r2. he functions x1 = ψ, x2 = θ,
and x3 = ϕ provide an internal coordinate system on S3(r) (without one point) in
which themetric g induced on S3(r) from E3 has components g i j such that

(g i j) =
⎛
⎜
⎝

r2 0

r2 sin2 ψ
0 r2 sin2 ψ sin2 θ

⎞
⎟
⎠
.

hen g induces on S3(r) a Riemannian connection▽. Using the formula
Γm
i j = 1

2 g
ml [∂ j g l i + ∂ i g l j − ∂ l g i j],

we can calculate the Christoòel symbols, which are as follows:
Γ2
21 = Γ2

12 = cotψ, Γ3
31 = Γ3

13 = cotψ,
Γ3
32 = Γ3

23 = cot θ , Γ1
22 = − sinψ cosψ,

Γ1
33 = − sinψ cosψ sin2 θ , Γ2

33 = − sin θ cos θ .

All the other symbols are zero.
Now let γ ∶ [0, 2π]→ S3(r) be a path in S3(r) such that x i ○γ = π/2 for i = 1, 2 and

x3 ○γ = id∣[0,2π]. Since cos π/2 = cot π/2 = 0 and sin π/2 = 1,we have Γ i
jk ∣γ([0,2π]) = 0,

and consequently, if we take w = r = 1, we get g i j = δ j
i . herefore, the coordinate

system {x1 , x2 , x3} and the frame {∂/∂x1 , ∂/∂x2 , ∂/∂x3} are normal for ▽ along the
path γ.
From equations (6.1) it is clear that the set γ([0, 2π]) is a circle obtained by inter-

secting S3(r) with the (v1 , v2)-plane {v ∈ R4 ∶ v i(p) = 0 for i ≥ 3} in R4. In fact, we
have

γ([0, 2π]) = {(v1 , v2 , 0, 0) ∈ R4 ∶ v2
1 + v2

2 = r2} = S1(r) × (0, 0).
It is clear if C is a circle on S3(r) obtained by intersecting S3(r) by a 2-plane

through its origin, then there are coordinates on S3(r) normal along C for the Rie-
mannian connection considered above.

We will assume r = 1. hen, using the above normal coordinate system and the
formulas

R i
j lm = ∂ lΓ i

m j − ∂mΓ i
l j + Γk

m jΓ
i
l k − Γk

l jΓ
i
km ,

Rabcd = ga jR
j
bcd ,

we calculate the values of the curvature as follows:
R1212 = Rψθψθ = sin2 ψ,

R1313 = Rψϕψϕ = sin2 ψ sin2 θ ,

R2323 = Rθϕθϕ = sin4 ψ sin2 θ .
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All other values are zero. he values of the Ricci tensor, calculated by ρab = Rcacb , are
as follows:

ρ11 = ρψψ = 2,

ρ22 = ρθθ = 2 sin2 ψ,

ρ33 = ρϕϕ = 2 sin2 ψ sin2 θ .

All other values are zero. We then calculate the scalar curvature as follows:

τ = gψψρψψ + gθθρθθ + gϕϕρϕϕ = 6.

Since τ is constant, all its covariant derivatives τ; j are zero. Using ρab ;m = ∂mρab −
ρ lbΓ l

ma − ρa lΓ l
mb , we also calculate all the covariant derivatives of the Ricci tensor,

which turn out to be zero as well.
Let e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1) be the

standard basis in R4. We deûne the following two subsets:

Na = {(x , y, 0, 0) ∶ x2 + y2 = 1} ⊂ R4 ,

Nb = {(0, 0, z,w) ∶ z2 +w2 = 1} ⊂ R4 .

he tangent space Te1S3, has basis vectors {e2 , e3 , e4} such that {e2} is a basis for
Te1Na and {e3 , e4} is a basis for Te1N

⊥
a . Similarly, the tangent space Te4S3, has basis

vectors {e1 , e2 , e3} such that {e3} is a basis for Te4Nb and {e1 , e2} is a basis for Te4N⊥b .
We will now calculate the values for b0( f , a) and b1( f , a).

Suppose O = S3/G is an orbifold lens space where G = ⟨γ⟩ and

γ =
⎛
⎝
M( p̂1

q ) 0
0 M( p̂2

q )
⎞
⎠
,

where

M(θ) = ( cos 2πθ sin 2πθ
− sin 2πθ cos 2πθ)

is the rotationmatrix and p̂1 /≡ ±p̂2 (mod q). Suppose gcd(p̂1 , q) = q1 and gcd(p̂2 , q)
= q2, so that p̂1 = p1q1, p̂2 = p2q2, and q = α̂q1 = β̂q2. Suppose gcd(α̂, β̂) = g so that
α̂ = αg, β̂ = βg and gcd(α, β) = 1. his means we can write γ as

γ =
⎛
⎜⎜
⎝

M( p1
α g ) 0

0 M( p2
βg )

⎞
⎟⎟
⎠
.

Now

γ α̂ =
⎛
⎜
⎝

I2 0

0 M( p2α
β )

⎞
⎟
⎠
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ûxes Na , and

γ β̂ =
⎛
⎜
⎝

M( p1β
α ) 0

0 I2

⎞
⎟
⎠

ûxes Nb , where I2 is the 2 × 2 identity matrix.
Note that since the group action is transitive and the ûxed point sets are S1, the

functions bk( ⋅ , ⋅ ) are constant along these ûxed circles. herefore, it suõces to con-
sider just a single point in these ûxed point sets to calculate the values of the functions.
We will choose the points e1 ∈ Na and e4 ∈ Nb to calculate the values of functions.

In the notation of the heorem 6.4, Ña ≅ S1 × {(0, 0)} and Ñb ≅ {(0, 0)} × S1.
Also,

Iso(Na) = {1, γ α̂ , γ2α̂ , . . . γ(β−1)α̂}, ∣Iso(Na)∣ = β,

Iso(Nb) = {1, γ β̂ , γ2β̂ , . . . γ(α−1)β̂}, ∣Iso(Nb)∣ = α.

We now use heorem 6.4 to calculate the heat trace asymptotic for O using the
formula I0 + INa

β + INb
α , where

I0 = (4πt)−dim(O)/2
∞

∑
k=0
ak(O)tk = (4πt)−dim(O)/2

∞

∑
k=0

1
∣G∣ ak(S3)tk

= (4πt)−3/2

q

∞

∑
k=0

√
π

4k!
tk = (4t)−3/2

4qπ

∞

∑
k=0

tk

k!
= t−3/2

32qπ
e t ,

and for i ∈ a, b,

IN i = (4πt)−dim(N i)/2
∞

∑
k=0

tk ∫
N i

bk(N i , x)d volN i (x)

= (πt)−1/2

2

∞

∑
k=0

tk ∫
Ñ i

bk(Ñ i , x)d volÑ i
(x),

since Ñ i → N i is trivial in this case

= (πt)−1/2

2

∞

∑
k=0

tk2πbk(Ñ i , x) (for any choice of x by homogeneity)

=
√

πt−1/2
∞

∑
k=0

tkbk(Ñ i , x) , where bk(Ñ i , x) = ∑
γ∈Isomax Ñ i

bk(γ, x).

Now for a = e1 and r ∈ {1, 2, . . . (β − 1)},

Bγr α̂(a) = (I − Aγr α̂(a))−1 = 1
4 sin2 p2παr

β

⎛
⎝
1 − cos 2p2παr

β − sin 2p2παr
β

sin 2p2παr
β 1 − cos 2p2παr

β

⎞
⎠

= 1
2
(

1 − cot p2παr
β

cot p2παr
β 1 ) .

So ∣detBγr α̂(a)∣ = 1
4 (1 + cot

2 p2παr
β ) = 1

4 sin2 p2παr
β

.
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Similarly we can show that for b = e4 and r ∈ {1, 2, . . . (α − 1)},

Bγr β̂(b) =
1
2
( 1 − cot p1πβr

α
cot p1πβr

α 1
) ,

and ∣detBγr β̂(b)∣ = 1
4 (1 + cot

2 p1πβr
α ) = 1

4 sin2 p1πβr
α

.

We will now calculate b i(Ñ j , ⋅ ) for i = 0, 1 and j = a, b:

b0(γr α̂ , a) = ∣detBγr α̂(a)∣ = 1
4
( 1 + cot2 p2παr

β
) = 1

4 sin2 p2παr
β

.

So

b0(Ña , a) = ∑
f ∈Isomax Ña

b0( f , a)

=
β−1

∑
r=1
b0(γr α̂ , a) =

β−1

∑
r=1

1
4
( 1 + cot2 p2παr

β
)

=
β−1

∑
r=1

1
4
( 1 + cot2 πr

β
) , since gcd(p2α, β) = 1

=
β−1

∑
r=1

1
4 sin2 πr

β

= β
2 − 1
12

, by [DGGW, lemma 5.4].

We can similarly show that

b0(Ñb , b) =
α−1

∑
r=1

1
4
( 1 + cot2 πr

α
) = α

2 − 1
12

.

We will now calculate b1(Ña , a) and b1(Ñb , b). Note that for both Bγr α̂(a) and
Bγr β̂(b), B13 = B23 = B31 = B32 = B33 = 0. Using the formula in heorem 6.2, we get

b1(γr α̂ , a) =
∣det (Bγr α̂(a))∣

3
× {R1212[2 − (B12 + B21)2 − (B11 + B22)2 − 2(B11

2 + B22
2)]

+ R1313[2 − (B11 + B33)2 − 2(B11
2 + B33

2) − 3(B12
2 + B32

2)]

+ R2323[2 − (B22 + B33)2 − 2(B22
2 + B33

2) − 3(B21
2 + B31

2)]} .
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his gives

b1(γr α̂ , a) =
∣det (Bγr α̂(a))∣

3

× {R1212[2 −
1
4
(cot θr − cot θr)2 − ( 1

2
+ 1

2
)

2
− 2( 1

4
+ 1

4
)]

+ R1313[2 − ( 1
2
+ 0)

2
− 2( 1

4
+ 0) − 3( 1

4
cot2 θr + 0)]

+ R2323[2 − ( 1
2
+ 0)

2
− 2( 1

4
+ 0) − 3( 1

4
cot2 θr + 0)]} ,

which gives

b1(γr α̂ , a) = 1
12

(1+ cot2 θr){R1313(2− 3
4
− 3

4
cot2 θr) +R2323(2− 3

4
− 3

4
cot2 θr))}

= 1
12

(1 + cot2 θr)(R1313 + R2323)[2 −
3
4
(1 + cot2 θr)]

= (R1313 + R2323)[
1
6
(1 + cot2 θr) −

1
16

(1 + cot2 θr)2]

= (R1313 + R2323)[
1

6 sin2 θr
− 1

16 sin4 θr
] ,

where θr = p2παr
β .

So

b1(Ña , a) =
β−1

∑
r=1
b1(γr α̂ , a)

=
β−1

∑
r=1

(R1313 + R2323)[
1

6 sin2 p2παr
β

− 1
16 sin4 p2παr

β

]

= (R1313 + R2323)[
1
6

β−1

∑
r=1

1
sin2 πr

β

− 1
16

β−1

∑
r=1

1
sin4 πr

β

] ,

since gcd(p2α, β) = 1.
Also,∑β−1

r=1
1

sin2 πr
β
= β2−1

3 and∑β−1
r=1

1
sin4 πr

β
= β4

+10β2−11
45 (see [DGGW] for the simpli-

ûcation of their expression (5.9),which uses this result for evaluation of this geometric
sum). So we get

b1(Ña , a) = (R1313 + R2323)(
β2 − 1
18

− β
4 + 10β2 − 11

720
)

= −(R1313 + R2323)
(β2 − 29)(β2 − 1)

720
.
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We can similarly show that

b1(Ñb , b) = (R1313 + R2323)(
α2 − 1
18

− α
4 + 10α2 − 11

720
)

= −(R1313 + R2323)
(α2 − 29)(α2 − 1)

720
.

Using heorem 6.4 we now calculate the ûrst few coeõcients of the asymptotic ex-
pansion as follows:

I0 +
INa

∣Iso(Na)∣
+ INb

∣Iso(Nb)∣

= t−3/2

32qπ
e t + (πt)−1/2

β
[ t0πb0(Ña , a) + t1πb1(Ña , a) + ⋅ ⋅ ⋅ ]

+ (πt)−1/2

α
[ t0πb0(Ñb , b) + t1πb1(Ñb , b) + ⋅ ⋅ ⋅ ]

= t−3/2

32qπ
( 1 + t + t2

2
+ t3

6
+ t4

24
+ ⋅ ⋅ ⋅ ) + ( b0(Ña , a)

β
+ b0(Ñb , b)

α
)
√

πt−1/2

+ ( b1(Ña , a)
β

+ b1(Ñb , b)
α

)
√

πt1/2 + ⋅ ⋅ ⋅ .

From this, the coeõcient of t−3/2 is 1
32qπ ; the coeõcient of t−1/2 is

1
32qπ

+ b0(Ña , a)
β

√
π + b0(Ñb , b)

α
√

π = 1
32qπ

+
√

π
12β

(β2 − 1) +
√

π
12α

(α2 − 1);

and the coeõcient of t1/2 is

1
64qπ

−
√

π(R1313 + R2323)[α(β2 − 29)(β2 − 1) + β(α2 − 29)(α2 − 1)]
720αβ

.

he above results show that the coeõcients are dependent on q, α, β, the curva-
ture tensor, and its covariant derivatives. Since all lens spaces are ûnitely covered by
S3, the parts of the coeõcients that consist of the curvature tensor and its covariant
derivativeswill be the same for all lens spaces. he only diòerencewill therefore be in
the terms containing α and β. We can rewrite

b0(Ña , a) =
β−1

∑
r=1

1
4
( 1 + cot2 p2παr

β
) =

β−1

∑
r=1

1
4
+
β−1

∑
r=1

1
4
cot2

p2παr
β

,

b0(Ñb , b) =
α−1

∑
r=1

1
4
( 1 + cot2 p1πβr

α
) =

α−1

∑
r=1

1
4
+
α−1

∑
r=1

1
4
cot2

p1πβr
α

,
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b1(Ña , a) =
β−1

∑
r=1

(R1313 + R2323)[
1
6
( 1 + cot2 p2απr

β
) − 1

16
( 1 + cot2 p2απr

β
)

2
]

=
β−1

∑
r=1

5(R1313 + R2323)
48

+
β−1

∑
r=1

( R1313 + R2323

24
) cot2 p2απr

β

−
β−1

∑
r=1

( R1313 + R2323

16
) cot4 p2απr

β
,

b1(Ñb , b) =
α−1

∑
r=1

(R1313 + R2323)[
1
6
( 1 + cot2 p1βπr

α
) − 1

16
( 1 + cot2 p1βπr

α
)

2
]

=
α−1

∑
r=1

5(R1313 + R2323)
48

+
α−1

∑
r=1

( R1313 + R2323

24
) cot2 p1βπr

α

−
α−1

∑
r=1

( R1313 + R2323

16
) cot4 p1βπr

α
.

Note that each b j(Ña , a), ( j = 0, 1) is of the form

b j(Ña , a) =
β−1

∑
r=1

A j

∑
i=1
Cai j(R) cotλ i

p2απr
β

,

where A j is the ûnite number ofmonomials in the powers of cot p2απr
β , and for each

i, Cai j(R) are constant functions in terms of the curvature tensor and its covariant
derivatives of the covering space, i.e., the sphere. Since gcd(p2α, β) = 1, and we are
summing over r as it ranges from 1 to β − 1, we can write

b j(Ña , a) =
β−1

∑
r=1

A j

∑
i=1
Cai j(R) cotλ i

πr
β

.

Similarly, since gcd(α, p1β) = 1, we can write

b j(Ñb , b) =
α−1

∑
r=1

A j

∑
i=1
Cbi j(R) cotλ i

πr
α

.

More generally, for any k, the functions bk(γr α̂ , a) and bk(γr β̂ , a) are universal
polynomials in the components of the curvature tensor, its covariant derivatives and
the elements of Bγr α̂(a) and Bγr β̂(b), respectively. Since the elements of Bγr α̂(a) are
B11 = B22 = 1/2, B12 = − 1

2 cot
p2απr
β and B21 = 1

2 cot
p2απr
β , every bk(γr α̂ , a) will be of

the form∑A j
i=1 C

a
i j(R) cotλ i p2απr

β . his means that for each k, we will have

bk(Ña , a) =
β−1

∑
r=1

Ak

∑
i=1
Cai k(R) cotλ i

πr
β
,

and similarly,

bk(Ñb , b) =
α−1

∑
r=1

Ak

∑
i=1
Cbi k(R) cotλ i

πr
α

.

his observation gives us the following lemma for three-dimensional orbifold lens
spaces.
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Lemma 6.5 Given two orbifold lens spaces O1 = S3/G1 and O2 = S3/G2, such that
G1 = ⟨γ1⟩ and G2 = ⟨γ2⟩ where

γ1 =
⎛
⎝
M( p̂1

q ) 0
0 M( p̂2

q )
⎞
⎠

with p̂1 /≡ ±p̂2 (mod q), gcd(p̂1 , q) = q11, gcd(p̂2 , q) = q21, p̂1 = p1q11, p̂2 = p2q21,
q = α̂1q11 = β̂1q21, gcd(α̂1 , β̂1) = g1, α̂1 = α1g1, β̂1 = β1g1, and

γ2 =
⎛
⎝
M( ŝ1

q ) 0
0 M( ŝ2

q )
⎞
⎠
,

with ŝ1 /≡ ±ŝ2 (mod q), gcd(ŝ1 , q) = q12, gcd(ŝ2 , q) = q22, ŝ1 = s1q12, ŝ2 = s2q22,
q = α̂2q12 = β̂2q22, gcd(α̂2 , β̂2) = g2, α̂2 = α2g2, β̂2 = β2g2. hen O1 = S3/G1 and
O2 = S3/G2 will have the exact same asymptotic expansion of the heat kernel if α1 = α2
and β1 = β2.

his lemma gives us a tool to ûnd examples of 3-dimensional orbifold lens spaces
that are non-isometric (hence non-isospectral) but have the exact same asymptotic
expansion of the heat kernel.

Example 6.6 Suppose q = 195, and consider the two lens spaces O1 = L(195 ∶ 3, 5)
and O2 = L(195 ∶ 6, 35). Since there is no integer l coprime to 195 and no e i ∈ {1,−1}
such that {e1 l3, e2 l5} is a permutation of {6, 35} (mod q), O1 and O2 are not iso-
metric (and hence non-isospectral). However, in the notation of the lemma above,
p̂1 = 3, p̂2 = 5, ŝ1 = 6, ŝ2 = 35, gcd(p̂1 , q) = 3 = gcd(ŝ1 , q), gcd(p̂2 , q) = 5 = gcd(ŝ2 , q),
and q = 195 = 3 × 65 = 5 × 39. So α̂1 = α̂2 = 65 and β̂1 = β̂2 = 39, with gcd(α̂ i , β̂ i) = 13
(for i = 1, 2) giving α1 = α2 = 5 and β1 = β2 = 3. herefore, O1 = L(195 ∶ 3, 5) and
O2 = L(195 ∶ 6, 35) have the exact same asymptotic expansion.

6.3 Heat Kernel For 4-Dimensional Lens Spaces

Similar to the three-dimensional case, we can show the construction of examples in
four-dimensional lens spaceswhere the lens spaceswill not be isospectral butwill have
the exact same asymptotic expansion of the trace of the heat kernel. Again, borrowing
the notation from [Iv], we deûne the normal coordinates for a four-sphere as follows.
Consider a four-sphere of radius r,

S4(r) = {(v1 , v2 , v3 , v4 , v5) ∈ R5 ∶ (v1)2 + (v2)2 + (v3)2 + (v4)2 + (v5)2 = r2} ,

and let (w ,ψ, θ , ϕ, t) be the spherical coordinates inR5 wherew ∈ (0,∞), ψ ∈ (0, π],
θ ∈ (0, π], ϕ ∈ (0, π], and t ∈ [0, 2π]. hese coordinates are connected with the
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standard coordinate system (u1 , u2 , u3 , u4 , u5) in R5 by the following equations:

u1 = w sinψ sin θ sin ϕ cos t,
u2 = w sinψ sin θ sin ϕ sin t,
u3 = w sinψ sin θ cos ϕ,
u4 = w sinψ cos θ ,
u5 = w cosψ.

he equation of S4(r) in these coordinates is w2 = r2. he functions x1 = ψ, x2 = θ,
x3 = ϕ and x4 = t provide an internal coordinate systemon S4(r) (without one point)
in which themetric g induced on S4(r) from E4 has components g i j such that

(g i j) =
⎛
⎜⎜⎜
⎝

r2 0

r2 sin2 ψ
r2 sin2 ψ sin2 θ

0 r2 sin2 ψ sin2 θ sin2 ϕ

⎞
⎟⎟⎟
⎠
.

As before, we calculate the values of the curvature tensor as follows:

R1212 = Rψθψθ = sin2 ψ,

R1313 = Rψϕψϕ = sin2 ψ sin2 θ ,

R1414 = Rψtψt = sin2 ψ sin2 θ sin2 ϕ,

R2323 = Rθϕθϕ = sin4 ψ sin2 θ ,

R2424 = Rθ tθ t = sin4 ψ sin2 θ sin2 ϕ,

R3434 = Rϕtϕt = sin4 ψ sin4 θ sin2 ϕ.

All other values are zero. he values of the Ricci tensor, calculated by ρab = Rcacb , are
as follows:

ρ11 = ρψψ = 3,

ρ22 = ρθθ = 3 sin2 ψ,

ρ33 = ρϕϕ = 3 sin2 ψ sin2 θ ,

ρ44 = ρt t = 3 sin2 ψ sin2 θ sin2 ϕ.

All other values are zero. We then calculate the scalar curvature as follows:

τ = gψψρψψ + gθθρθθ + gϕϕρϕϕ + g t tρt t = 12.

Now, let e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0), e3 = (0, 0, 1, 0, 0), e4 = (0, 0, 0, 1, 0),
e5 = (0, 0, 0, 0, 1) be the standard basis in R5. We can then deûne the following two
subsets:

Na = {(x , y, 0, 0, v) ∶ x2 + y2 + v2 = 1} ⊂ R5 ,

Nb = {(0, 0, z,w , v) ∶ z2 +w2 + v2 = 1} ⊂ R5 .

he tangent space Te1S4, has basis vectors {e2 , e3 , e4 , e5} such that {e2 , e5} is a
basis for Te1Na and {e3 , e4} is a basis for Te1N

⊥
a . Similarly, the tangent space Te4S4,
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has basis vectors {e1 , e2 , e3 , e5} such that {e3 , e5} is a basis for Te4Nb and {e1 , e2} is a
basis for Te4N

⊥
b .

Suppose O = S4/G is an orbifold lens space where G = ⟨γ⟩ and

γ =
⎛
⎜⎜
⎝

M( p̂1
q ) 0

M( p̂2
q )

0 1

⎞
⎟⎟
⎠
,

where p̂1 /≡ ±p̂2 (mod q). Suppose gcd(p̂1 , q) = q1 and gcd(p̂2 , q) = q2, so that
p̂1 = p1q1, p̂2 = p2q2 and q = α̂q1 = β̂q2. Suppose gcd(α̂, β̂) = g so that α̂ = αg,
β̂ = βg and gcd(α, β) = 1. his means we can write γ as

γ =
⎛
⎜⎜
⎝

M( p1
α g ) 0

M( p2
βg )

0 1

⎞
⎟⎟
⎠
.

Now

γ α̂ =
⎛
⎜
⎝

I2 0

M( p2α
β )

0 1

⎞
⎟
⎠

ûxes Na , and

γ β̂ = (M( p1β
α ) 0

0 I3
)

ûxes Nb . Here I2 and I3 are the 2 × 2 and 3 × 3 identity matrices respectively.
As before, it suõces to consider just a single point in these ûxed point sets to cal-

culate the values of the functions. We will choose the points e1 ∈ Na and e4 ∈ Nb to
calculate the values of functions.

We have, in thenotation ofheorem 6.4, Ña ≅ S2×{(0, 0)} and Ñb ≅ {(0, 0)}×S2.
Also, IsoNa = {1, γ α̂ , γ2α̂ , . . . , γ(β−1)α̂}, ∣IsoNa ∣ = β, IsoNb = {1, γ β̂ , γ2β̂ , . . . , γ(α−1)β̂},
and ∣IsoNb ∣ = α.

Now, as in the case of three-dimensional lens spaces, we have for a = e1 and r ∈
{1, 2, . . . , (β − 1)},

Bγr α̂(a) = 1
2
(

1 − cot p2παr
β

cot p2παr
β 1 ) .

So ∣detBγr α̂(a)∣ = 1
4 (1 + cot

2 p2παr
β ) = 1

4 sin2 p2παr
β

.

Similarly we can show that for b = e4 and r ∈ {1, 2, . . . , (α − 1)},

Bγr β̂(b) =
1
2
( 1 − cot p1πβr

α
cot p1πβr

α 1
) ,

and ∣detBγr β̂(b)∣ = 1
4 (1+cot

2 p1πβr
α ) = 1

4 sin2 p1πβr
α

. Note again that for both Bγr α̂(a) and
Bγr β̂(b), B13 = B23 = B31 = B32 = B33 = B41 = B14 = B42 = B24 = B43 = B34 = B44 = 0.
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his means that, just as in the case of three-dimensional lens spaces, for each k, we
will have,

bk(Ña , a) =
β−1

∑
r=1

Ak

∑
i=1
Cai k(R) cotλ i

πr
β
,

bk(Ñb , b) =
α−1

∑
r=1

Ak

∑
i=1
Cbi k(R) cotλ i

πr
α

.

Similar to the three-dimensional case, this observation gives us the following lemma.

Lemma 6.7 Given two orbifold lens spaces O1 = S4/G1 and O2 = S4/G2, such that
G1 = ⟨γ1⟩ and G2 = ⟨γ2⟩ where

γ1 =
⎛
⎜⎜
⎝

M( p̂1
q ) 0

M( p̂2
q )

0 1

⎞
⎟⎟
⎠

with p̂1 /≡ ±p̂2 (mod q), gcd(p̂1 , q) = q11, gcd(p̂2 , q) = q21, p̂1 = p1q11, p̂2 = p2q21,
q = α̂1q11 = β̂1q21, gcd(α̂1 , β̂1) = g1, α̂1 = α1g1, β̂1 = β1g1, and

γ2 =
⎛
⎜⎜
⎝

M( ŝ1
q ) 0

M( ŝ2
q )

0 1

⎞
⎟⎟
⎠
,

with ŝ1 /≡ ±ŝ2 (mod q), gcd(ŝ1 , q) = q12, gcd(ŝ2 , q) = q22, ŝ1 = s1q12, ŝ2 = s2q22,
q = α̂2q12 = β̂2q22, gcd(α̂2 , β̂2) = g2, α̂2 = α2g2, β̂2 = β2g2.

hen O1 = S4/G1 and O2 = S4/G2 will have the exact same asymptotic expansion of
the heat kernel if α1 = α2 and β1 = β2.

his lemma gives us a tool to ûnd examples of 4-dimensional orbifold lens spaces
that are non-isometric (hence non-isospectral) but have the exact same asymptotic
expansion of the heat kernel.

Example 6.8 Suppose q = 195, and consider the two lens spaces O1 = L̃1+ =
L(195 ∶ 3, 5, 0) and O2 = L̃′1+ = L(195 ∶ 6, 35, 0) (using the notation from Lemma 4.1).
Since there is no integer l coprime to 195 and no e i ∈ {1,−1} such that {e1 l3, e2 l5}
is a permutation of {6, 35} (mod q), O1 and O2 are not isometric (and hence non-
isospectral). However, in the notation of the lemma above, p̂1 = 3, p̂2 = 5, ŝ1 = 6,
ŝ2 = 35, gcd(p̂1 , q) = 3 = gcd(ŝ1 , q), gcd(p̂2 , q) = 5 = gcd(ŝ2 , q) and q = 195 =
3 × 65 = 5 × 39. So α̂1 = α̂2 = 65 and β̂1 = β̂2 = 39, with gcd(α̂ i , β̂ i) = 13 (for i = 1, 2)
giving α1 = α2 = 5, and β1 = β2 = 3. herefore, O1 and O2 have the exact same
asymptotic expansion.
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