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Simplicial localization of monoidal structures,

and a non-linear version of Deligne’s conjecture

Joachim Kock and Bertrand Toën

Abstract

We show that if (M,⊗, I) is a monoidal model category then REndM (I) is a (weak)
2-monoid in sSet. This applies in particular when M is the category of A-bimodules
over a simplicial monoid A: the derived endomorphisms of A then form its Hochschild
cohomology, which therefore becomes a simplicial 2-monoid.

Introduction

Deligne’s conjecture. Deligne’s conjecture (stated informally in a letter in 1993) states that the
Hochschild cohomology HH(A) of an associative algebra A is a 2-algebra; this means that up to
homotopy it has two compatible multiplication laws.

Various versions of this conjecture have been proved; cf. e.g. [GJ94, GV95, Tam98, Kon99, Vor00,
MS02, KS00, HKV03, BF01]. All these proofs are technical, and a more conceptual proof would
certainly be desirable (we refer for example to [Bat02] for a conceptual point of view on Deligne’s
conjecture based on higher category theory). In the present work we state a non-linear version of
this conjecture, and provide an elementary proof of it based on model category theory and simplicial
localization techniques à la Dwyer and Kan.

The main result of this work is the following. It can reasonably be considered as a model category
version of the well-known fact that the endomorphisms of the unit of a monoidal category form a
commutative monoid.

Theorem. Let (M,⊗, I) be a monoidal model category. The simplicial set of derived endomor-
phisms of the unit, REndM (I), is a simplicial 2-monoid (cf. § 1.2).

The theorem applies in particular when M is the category of A-bimodules over a simplicial
monoid A. Then the Hochschild cohomology HH(A) is naturally identified with REndBimodA

(A),
and hence becomes a 2-monoid in sSet. This is what we refer to as the non-linear analogue of
Deligne’s conjecture.

The proof of our theorem relies heavily on ideas of Segal [Seg74] and of Dwyer and Kan [DK80a].
Once the statements have been formulated in terms of Segal categories, the theorem follows from
two easy observations and an application of a theorem of Dwyer and Kan.

First it is observed that, if a monoidal structure on a category is strictly compatible with a
notion of equivalence, the Dwyer–Kan localization is a monoid in the category of simplicial categories
(see § 1.2), and by taking the endomorphism space of the unit object we get instead a monoid in
the category of simplicial monoids, i.e. what we call a simplicial 2-monoid.

Remark. We warn the reader that the word monoid is used in this work in a much weaker sense
than usual, and always refers to an underlying notion of equimorphisms. See § 1.2 for details.
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Second, in the case of a monoidal model category (in the sense of Hovey [Hov99]), the monoidal
operation does not preserve equivalences, but we observe that Hovey’s ‘unit axiom’ expresses exactly
that a suitable equivalent full subcategory has the strict compatibility and hence we have reduced
to the first case.

The theorem of Dwyer and Kan [DK80a] describes the derived homomorphisms of a model
category (the simplicial function complexes) in terms of its simplicial localization.

It is fair to point out that our viewpoint and proof do not seem to work for the original Deligne
conjecture, since currently the theory of Segal categories does not work well in linear contexts (like
chain complexes), but only in Cartesian monoidal contexts. Also, we did not investigate the relations
between 2-monoids and simplicial sets with an action of the little 2-cube operad, and therefore our
version of Deligne’s conjecture might be considered as a bit far from the original one. However,
our original motivation was not to give an additional proof of Deligne’s conjecture, but rather to try
to understand it from a more conceptual point of view. The new insight provided by our approach
may also shed light on related subjects. We also think it is an interesting application of simplicial
localization techniques.

1. Localization of monoidal coloured categories

1.1 Coloured categories and simplicial localization. By a coloured category we mean a pair
(C,W ) where C is a category and W is a subclass of arrows, called equimorphisms (or coloured
arrows), closed under composition, and comprising all isomorphisms. Key examples are Top, sSet,
and Cat with the usual notions of (weak) equivalences as equimorphisms. For the present purposes,
an equally important example is sCat, the category of simplicial categories (cf. [DK80b]): a simplicial
functor F : A → B is coloured if π0F : π0A → π0B is an equivalence of categories and for each pair
of objects x, y ∈ A, the map A(x, y) → B(Fx,Fy) is a weak equivalence of simplicial sets.

The importance of coloured categories is that they can be localized and thus serve as context for
expressing weak structures. Let CCat denote the category whose objects are coloured categories and
whose arrows are functors that preserve equimorphisms. The classical notion of localization [GZ67]
is the functor Ho : CCat → Cat defined by formally inverting all equimorphisms. A much more
sophisticated construction is the simplicial localization introduced by Dwyer and Kan [DK80b],
which can be seen as a derived version of Ho. It is a functor L : CCat → sCat. It reflects much
more homotopy theoretic information than the classical localization, and in many respects it seems
to be the ‘correct’ localization, of which the classical localization is just a truncation. (Indeed, the
category of connected components of LC is equivalent to Ho(C).)

There are several possible ways of turning CCat into a coloured category itself; the crucial desired
property is that L should be colour-preserving. For simplicity we take this as the definition: a (colour-
preserving) functor F : (C,W ) → (C ′,W ′) between coloured categories is called an equifunctor if
LF is an equivalence of simplicial categories.

1.2 Monoids and 2-monoids. Let (S,W ) be any of the coloured categories mentioned above;
in particular S is monoidal with Cartesian product as multiplication and the singleton object ∗ as
unit. A monoid in (S,W ) is a functor X : ∆op → S satisfying the following conditions:

S0) X0 = ∗.
S1) The natural maps Xk → X1 × · · · × X1 are equimorphisms (k � 1).

This last axiom is the Segal condition. It played a crucial role in Segal’s work [Seg74] and was
subsequently named after him by Tamsamani [Tam99]. A monoid homomorphism is a natural
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transformation of such functors. The category Mon(S) of monoids and monoid homomorphisms is
coloured via the forgetful functor to S. A 2-monoid in (S,W ) is by definition a monoid in Mon(S).

In the case S = sSet, a monoid is just a Segal category with a single object, and a 2-monoid
is a Segal category with a single 0-cell and a single 1-cell. For the basic theory of Segal categories,
see [HS98] or [TV02]. Note that this notion of monoid makes sense only in Cartesian monoidal
categories (in the usual sense), since it depends on the universal property of the product.

1.3 Monoidal categories as weak monoids. A monoidal category can be described as a sort of
weak monoid object in Cat. The weakness is usually described in terms of 2-cells subject to coherence
constraints (e.g. as a bicategory with a single object). Here, we will adopt instead the simplicial
viewpoint, and define a monoidal category as a monoid in Cat, in the sense of § 1.2, conveniently
hiding all questions of coherence from the user interface.

This notion is not the same as the usual one defined in terms of coherence, but since monoidal
categories in either sense are equivalent to strict monoidal categories, the two notions lead to the
same homotopy theory. It is not trivial to make specific translation between the two languages
(cf. [Lei00]; see also [Seg74]).

1.4 Monoidal coloured categories. A monoidal coloured category is a monoidal structure on
a coloured category (C,W ) whose structure functors are colour-preserving. Precisely, we define a
monoidal coloured category to be a functor ∆op → CCat satisfying conditions S0 and S1.

1.5 Localization of monoidal coloured categories. The way we have set things up, it is immediate
that the localization of a monoidal coloured category is a monoidal simplicial category. Indeed, it
is just the composite

∆op → CCat L−→ sCat.

Since L preserves the terminal object, preserves products up to equivalence (see [TV02, Corol-
lary 4.1.2]), and preserves equivalences, this composite will again satisfy conditions S0 and S1.
(Similar remarks hold of course for the classical localization.)

1.6 Endomorphisms of the unit. In fact the simplicial categories appearing in the image are
all pointed; the base point is simply the image of [0]. Thus we can in a canonical way compose
with the endomorphism functor sCat∗ → Mon(sSet), associating to each pointed simplicial category
the endomorphism monoid of the base point. This is a strict simplicial monoid, and this functor
preserves products, terminal object, and equimorphisms. The whole composite is therefore a monoid
object in Mon(sSet), i.e. a simplicial 2-monoid. Hence we obtain the following:

Theorem 1. Let ((C,W ),⊗, I) be a monoidal coloured category. Then LC(I, I) is a simplicial
2-monoid.

2. Localization of monoidal model categories

Model categories are prominent examples of coloured categories, and their richer structure allows
for important variations on the localization theme.

2.1 The pushout product axiom. Localization of monoidal structure in a model category M
was considered from the very beginning of model category theory: Quillen [Qui67] observed that, in
order to induce a monoidal structure on Ho(M), it is not necessary for a monoidal structure on M
to preserve equivalences on the nose, as in the general coloured case of § 1.4. It is enough that the
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unit is cofibrant and that ⊗ satisfies the pushout product axiom: given cofibrations A1 → A2 and
B1 → B2, the induced map

(A1 ⊗ B2)
∐

A1⊗B1

(A2 ⊗ B1) −→ A2 ⊗ B2

is again a cofibration, and if furthermore one of the two original maps is a trivial cofibration then
the induced map is too. Indeed, in this case it follows easily from Ken Brown’s Lemma that the full
subcategory of cofibrant objects M c is a monoidal coloured category, and in any case M c and M
have the same homotopy type, so one can induce a monoidal structure on Ho(M) by taking it from
Ho(M c).

2.2 The unit axiom. Later, Hovey [Hov99] remarked that the requirement that the unit be
cofibrant can be relaxed. Assuming the pushout product axiom holds, it is enough that M satisfies
the unit axiom: for a given cofibrant replacement functor Q : M → M c, and for every cofibrant
X, the composite QI ⊗ X → I ⊗ X → X is an equivalence (and similarly from the right). In this
situation, even though the multiplication law on M c is not unital, the induced multiplication on
Ho(M) � Ho(M c) does in fact acquire a unit. This justifies the terminology of [Hov99], which has
become standard:

Definition. A monoidal model category is a model category with a monoidal structure satisfying
the pushout product axiom and the unit axiom.

The following simple observation seems not to have been made before. Assume that the pushout
property axiom holds in (M,⊗, I), and let M c denote the full subcategory of all cofibrant objects
together with the unit.

Lemma 2.3. The unit axiom holds in (M,⊗, I) if and only if (M c,⊗, I) is a monoidal coloured
category (i.e. the monoidal operation preserves equivalences).

Proof. Simply note that the unit axiom holds for QI ∼→ I if and only if for any cofibrant Z
with an equivalence Z ∼→ I the conclusion of the unit axiom holds: for cofibrant X, the map
Z ⊗ X → I ⊗ X → X is an equivalence.

Now an equivalence in M c is either one between cofibrant objects (which case is covered by
the pushout product axiom), or of the type Z ∼→ I (the situation just analysed), or I ∼→ Z. But
this last type of equivalence is preserved under ⊗, provided the unit axioms holds, as it readily
follows by taking a cofibrant replacement of the map and invoking the 2-out-of-3 axiom for a model
category.

It is easy to see that the monoidal structure induced on Ho(M) by Hovey’s arguments
(respectively on LM) is merely the one coming from Ho(M c) (respectively from LM c) via the
direct construction of § 1.5. One observation is due for this to make sense:

Lemma 2.4. The full embedding F : M c ↪→ M induces an equivalence LM c ∼→ LM of simplicial
categories.

Proof. In fact this is true for any full subcategory sandwiched between M c and M . A cofibrant
replacement functor Q : M → M c ↪→ M c comes with natural transformations Q ◦ F ⇒ idM c and
F ◦Q ⇒ idM , whose components are equivalences. By standard arguments (see [HS98, Lemma 8.1]
for all details), this induces an equivalence after simplicial localization.

2.5 Derived endomorphisms. The derived hom set (simplicial function complex) of a pair of
objects in a model category is usually defined in terms of fibrant–cofibrant resolution functors
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(see e.g. [DK80a]). We will denote them by RHomM (−,−). For two objects A and B in M ,
RHomM (A,B) is an object in sSet defined up to equivalence. Of course, RHomM (A,A) is denoted
by REndM (A).

A deep result of Dwyer and Kan [DK80a] states that this simplicial set is equivalent to the
simplicial hom sets of the simplicial localization:

RHomM (A,B) � LM(A,B) � LM c(A,B).

(This was actually the original motivation for introducing simplicial localization.) In particular,
by Lemma 2.4 we have REndM (I) � LM c(I, I), and in combination with Theorem 1 we get the
following theorem.

Theorem 2. Let (M,⊗, I) be a monoidal model category. Then REndM (I) is a simplicial 2-monoid.

Of course, the expression ‘is’ in the above theorem really means ‘is equivalent to the underlying
simplicial set of a 2-monoid in sSet’.

Remark 2.6. In some cases the trick of just adding the non-cofibrant unit by hand is not appropriate:
for example in K-theory one studies Waldhausen categories, which are subcategories of the category
of cofibrant objects, and one cannot just add the unit. In a similar vein, Spitzweck [Spi01] works
with a notion of monoidal model category with pseudo-unit: this pseudo-unit does not act as a
unit, but its cofibrant replacements do, up to homotopy. In these cases the important structure is
not the ‘unit’ itself but rather the space of cofibrant replacements. These cases are accounted for
by the theory of monoidal categories with weak units, and more generally higher categories with
weak identity arrows, where instead of a strict identity each object has a contractible space of up-
to-homotopy identity arrows. The basics of this theory are worked out elsewhere; see [Koc04] for an
introduction. In fact our original approach to the theorem was with weak units, but for the present
purpose the M c trick seems simpler.

3. A simplicial version of Deligne’s conjecture

3.1 Bimodules. Let A be a simplicial monoid (in the strict sense, i.e. a simplicial object in the
category of monoids), then A×Aop is again a simplicial monoid, and we can consider the category
of (A × Aop)-modules (i.e. simplicial sets with an (A × Aop)-action). (A × Aop)-modules will be
called A-bimodules, and the category of A-bimodules is denoted by BimodA. This category carries
a natural model structure whose fibrations and equivalences are induced via the forgetful functor
BimodA → sSet (this is standard, see e.g. Schwede and Shipley [SS00]). There is a tensor product
defined on BimodA as the coequalizer M × A× N ⇒ M × N → M ⊗A N . The bimodule A itself is
the unit for ⊗A.

Lemma 3.2. (BimodA,⊗A, A) is a monoidal model category.

Proof. The proof of the lemma relies on a small object argument, using the standard generating
sets of cofibrations and trivial cofibrations (described in [SS00]), as explained in [Hov99, § 4.3].

Let us recall that the forgetful functor BimodA → sSet possesses a left-adjoint F : sSet →
BimodA, sending a simplicial set X to the free A-bimodule F (X) = A × X × A. If I0 (respec-
tively J0) is a set of generating cofibrations (respectively trivial cofibrations) in sSet then I = F (I0)
(respectively J = F (J0)) is a set of generating cofibrations (respectively trivial cofibrations) in
BimodA.

To prove the pushout product axiom in BimodA it is enough by [Hov99, § 4.3] to notice that for
two simplicial sets X and Y one has a natural isomorphism of A-bimodules

F (X) ⊗A F (Y ) � F (X × A × Y ).
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The pushout product axiom in BimodA is then a direct consequence of the well-known facts that
the functor F is left-Quillen and that the pushout product axiom holds in sSet.

It remains to prove the unit axiom in BimodA. For this we use the standard free resolution
associated to the forgetful functor BimodA → sSet (see e.g. [Ill71]). Let us recall that for any
A-bimodule M , one constructs a simplicial object P∗(M) in BimodA, together with an augmentation
P0(M) → M such that the natural morphism

hocolim
n∈∆op

Pn(M) −→ M

is an equivalence in BimodA. Furthermore, each A-bimodule Pn(M) is free and given by Pn(M) :=
F (Pn−1(M)), and the various face and degeneracy morphisms are given by using the adjunction
between the forgetful functor and F . Since each Pn(M) is a cofibrant object in BimodA (as it is
free), we can use Hirschhorn [Hir03, Theorem 19.4.2] to see that hocolimn Pn(M) is a cofibrant
model for M . To check the unit axiom it is therefore enough by [Hov99, § 4.3] to prove that for any
simplicial set X the natural morphism

(hocolimn Pn(A)) ⊗A F (X) −→ A ⊗A F (X) � F (X)

is an equivalence. Clearly this morphism is isomorphic to

hocolimn(Pn(A) ⊗A F (X)) −→ A ⊗A F (X) � F (X).

But, Pn(A) ⊗A F (X) � Pn(A) × X × A, at least in sSet, and therefore the morphism is in fact
isomorphic, as a morphism in sSet, to

hocolimn(Pn(A) × X × A) −→ A × X × A = F (X).

The fact that this last morphism is an equivalence follows simply from the fact that P∗(A) is a
simplicial resolution of A and that homotopy colimits commute, up to equivalences, with products.

Note that the unit object A of the model category BimodA is not cofibrant. Indeed, cofibrant
means roughly ‘free’, i.e. direct sum of copies of A × Aop, but A is rather a quotient.

3.3 The Hochschild cohomology. The Hochschild cohomology of a simplicial monoid A can
naturally be defined as

HH(A) := REndBimodA
(A).

More explicit descriptions can be given in the style of the Hochschild complex of an associative
algebra; these can be obtained by taking explicit cofibrant replacement of A as an A-bimodule.

The following non-linear version of Deligne’s conjecture is now an immediate consequence of
Theorem 2.

Theorem 3. Let A be a simplicial monoid. Then the Hochschild cohomology HH(A) is a simplicial
2-monoid.

Remark 3.4. The Hochschild cohomology of a simplicial monoid is a homotopy version of its centre.
Indeed, if M is a monoid (in the category of sets), the endomorphisms of M as an M -bimodule
is naturally isomorphic to the centre of M . In this sense, Deligne’s conjecture can be seen as a
homotopy analogue of the tautology that the centre of a monoid in Set is a commutative monoid
(i.e. a 2-monoid in Set). It is also a homotopical version of the fact that the centre of a monoidal
category is a braided monoidal category (i.e. a weak 2-monoid in Cat); cf. [JS93, Example 2.3].
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4. Higher-dimensional generalization

There is also a higher version of Deligne’s conjecture which states that the Hochschild complex
HH(A) of a d-algebra A is itself a (d + 1)-algebra (see for example [Tam00, KS00, HKV03]). Such
d-algebras are complexes endowed with an action of the little d-disc operad, and are usually inter-
preted as complexes with d multiplication laws, compatible with each other up to coherent
homotopies.

The higher version of Deligne’s conjecture also has a simplicial analogue. Indeed, our Theorem 3
can be generalized in the following way in terms of Segal categories (starting from the observation
that a simplicial monoid is a Segal 1-monoid). First of all, the definition of monoids in a coloured
category as described in § 1.2 can be iterated. Starting by letting 0-SeMon be the coloured category
of simplicial sets, one defines (for d � 1) the coloured category d-SeMon of Segal d-monoids as

d-SeMon := Mon((d − 1)-SeMon),

in the sense of § 1.2.
Any Segal d-monoid M has an underlying Segal 1-monoid, which up to equivalence can be chosen

to be a simplicial monoid in the usual sense (i.e. a simplicial object in the category of monoids);
cf. e.g. [HS98, § 8]. We define the Hochschild cohomology of a Segal d-monoid to be the Hochschild
cohomology of its underlying simplicial monoid, as defined in § 3.3. Theorem 3 now has the following
generalization.

Theorem 4. Let A be a Segal d-monoid. Then the Hochschild cohomology HH(A) is a Segal
(d + 1)-monoid.

We will not include the proof of this theorem as it uses the theory of Segal categories and
the so-called strictification theorem stated in [TV02] (some more details can be found in [Toë03,
Theorem 2.13]). It would be interesting however to have a model category proof of Theorem 4.
A possible approach would be through a suitable notion of iterated model category, which roughly
would be an iterated monoidal category in the sense of [BFSV03], together with a compatible model
category structure. Our Theorem 2 should then generalize as follows: if M is a d-times iterated
monoidal model category then REndM (I) is a (d + 1)-monoid.

Acknowledgements
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Ill71 L. Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, vol. 239 (Springer,

Berlin, 1971).
JS93 A. Joyal and R. Street, Braided tensor categories, Adv. Math. 102 (1993), 20–78.
Koc04 J. Kock, A notion of weak identity arrows in higher categories, Preprint (2004). Available from the

author’s web page.
Kon99 M. Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999),

35–72.
KS00 M. Kontsevich and Y. Soibelman, Deformations of algebras over operads and the Deligne conjec-
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