
J. Austral. Math. Soc. Ser. B 37(1995), 145-171

USING FRACTAL GEOMETRY FOR SOLVING
DIVIDE-AND-CONQUER RECURRENCES

SIMANT DUBE1

(Received 21 June 1993; revised 23 February 1994)

Abstract

A relationship between the fractal geometry and the analysis of recursive (divide-and-
conquer) algorithms is investigated. It is shown that the dynamic structure of a recursive
algorithm which might call other algorithms in a mutually recursive fashion can be geo-
metrically captured as a fractal (self-similar) image. This fractal image is defined as the
attractor of a mutually recursive function system. It then turns out that the Hausdorff-
Besicovich dimension D of such an image is precisely the exponent in the time complexity
of the algorithm being modelled. That is, if the Hausdorff £>-dimensional measure of the
image is finite then it serves as the constant of proportionality and the time complexity is
of the form &{nD), else it implies that the time complexity is of the form ®{nD log7" n),
where p is an easily determined constant.

1. Introduction

The analysis of the time complexity of algorithms is of fundamental importance to
computer scientists. A great number of useful algorithms use the divide-and-conquer
approach, in which the original problem is reduced to a number of smaller problems
[1,6]. In this paper, we consider a new fractal geometry based approach to analyze
such algorithms, in which the size of a smaller problem is related to that of the original
problem by a multiplicative factor.

The problem of analysis of such recursive algorithms reduces to solving divide-and-
conquer recurrence relations. A number of methods have been developed for solving
such recurrence relations, and also for general recurrence relations [11, 12, 16].

In [6] the Master method to solve divide-and-conquer recurrences is discussed. The
Master Method is based on the Master Theorem, which is adapted from [5]. In past
literature, mutual recurrence relations of more general nature have been considered.
In [16], such recurrence relations are called multi-dimensional linear first order recur-
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rences. Divide-and-conquer recurrences are called extended first order recurrences.
A divide-and-conquer recurrence can be reduced to a (single-dimensional) linear first
order recurrence and a secondary recurrence [16].

In this paper, we present a new approach to solve mutual divide-and-conquer
recurrences, which gives more general results in a simpler manner.

Surprisingly, we make use of the recent developments in fractal geometry, which
has gained a remarkable popularity among scientists and mathematicians since it was
shown by Mandelbrot in [14] that many natural objects possess fractal (self-similar)
geometries. If one magnifies one of the parts of a self-similar object then it resembles
the whole. Clouds, mountains, trees, human circulatory system are examples of fractal
objects.

An important step in the development of "computational fractal geometry" is taken
by Barnsley in [2]. He has developed the theory of Iterated Function Systems (IFS),
originally introduced by Hutchinson in [13]. For image generation and compression
purposes, IFS are generalized to Mutually Recursive Function Systems (MRFS) in [7]
and are also studied in [9]. MRFS are related to Recurrent IFS, introduced in [3]. An
interesting special case of MRFS is studied in [8].

An MRFS consists of n components (images) defined in a mutually recursive
fashion as unions of each others under affine transformations. IFS is a special case of
MRFS when n = 1.

Results on Hausdorff-Besicovich dimension of objects defined by MRFS are shown
in [15], which generalize those in [3]. In this paper, we will be using the results
from [15] to build a relationship between fractal geometry and analysis of recursive
algorithms.

At a conceptual level, the notion of self-similarity is not limited solely to images
but can be used to describe many natural phenomena like distribution of noise on a
channel, Brownian motion of particles in air [4]. In this paper, we show that a divide-
and-conquer algorithm is also "self-similar" as it is made of its smaller "copies". Here
self-similarity is temporal while in case of a natural object it is spatial.

Algor i thm A(B[l...n])
Array B;
if n = 1 then . . . , print("hello");

else call A(B[l...n/2]),
callA(B[«/4...3n/4]),
call A(B[n/2... n]),

end A;

FIGURE 1. A recursive algorithm.
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FIGURE 2. Dynamic structure of the algorithm in Figure 1 captured by the Sierpinski Triangle.

For example, consider a recursive algorithm A as shown in Figure 1. The algorithm
A calls itself 3 times and at each recursive call the input size is halved. The system of
recurrence relations is

T(n) = 3T(n/2),
= 0(1),

where Tin) denotes the time complexity of the algorithm on input of size n. Note
that we assume that all computation is done at the "trivial-case" n = 1. Therefore
Tin) = ©0iIo&3).

Now A can be modelled by an IFS on 2-D Euclidean space and having the following
three transformations, each with contractivity 0.5,

u>iix,y) = i0.5x,0.5y),
w2ix, y) = (0.5* + 0.5, 0.5v),
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which map the unit square U = [0, I]2 into the lower-left, lower-right and upper-
left quadrants, respectively. The attractor of the DFS is the well-known Sierpinski
Triangle; see Figure 2. Its fractal dimension is log2 3. This is no coincidence as can
be intuitively deduced as follows:

Consider the intuitive definition of fractal dimension of a self-similar image O
which implies that if O has fractal dimension D then

(number of self-similar copies) % C(magnification factor)", (1)

where C is some positive constant.
Now consider the recursive algorithm A such that at each of its recursive calls

the size of the input is reduced by a multiplicative factor. Each such calls creates a
"copy" of A on smaller input. Since we assume that the only computation is done at
the "trivial-case" when the sizeof the input is 1, the total time taken by A on an input
of size n is the total number of recursive calls made with input size equal to 1. How
many such trivial-case recursive calls are made? For this, we rewrite (1) as

(number of recursive calls) «* C(magnification factor)0. (2)

In our case

size of the original input n
magnification factor = = - = n.

size of the trivial-case input 1

Therefore, from (2) the time complexity of the algorithm A is T(n) % CnD.
Now this interrelationship between divide-and-conquer recurrences and fractals

can be generalized to a system of recurrences and in which the multiplicative factor is
any real number. Also, one can easily handle the case in which computation is done
at other recursion levels besides the trivial-case. This generalization is the aim of this
paper.

Consider a group A of n mutually recursive algorithms and let one algorithm be dis-
tinguished as the main algorithm (main "routine" in the terminology of programming
languages) which is called first. An algorithm may call itself or any other algorithm.
In such a recursive call, the size of input is reduced by a multiplicative factor.

Now A can be modelled as an MRFS M with n components, such that the execution
of A corresponds "graphically" with the sequence of images generated while executing
the Deterministic Algorithm on M. Let the attractor of M (the fractal image defined
by M) be O. Then the main theorem states the mathematical relationship between
the Hausdorff-Besicovich dimension D and the Hausdorff D-dimensional measure
of O and the time complexity of A. A number of remarks can be made upon these
results:
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(1) It provides a mathematically rigorous method to analyze mutually recursive
algorithms. It generalizes the known methods to solve recurrence relations, for
example, the Master Theorem as given in [6] is a special case of the main result
of this paper.

(2) The approach in this paper is general as it circumvents any discrete analysis
as has been done in past literature (for example, in [5, 6, 11, 12, 16]) but
instead uses already known sophisticated results from the mathematics of fractal
geometry [2, 3, 15]. It provides a pleasing link between discrete mathematics
and continuous mathematics.

2. Preliminaries

2.1. Euclidean spaces and contractive mappings Throughout this paper, (Rn, Eu-
clidean distance), the n -dimensional real space with the Euclidean metric is the un-
derlying complete metric space that is X = R" for some integer n > 1.

A 2-dimensional affine transformation w : R2 -> R2 is defined by

I" x 1 = f anx + any + bx 1
L y J L fl2i* + any + bi y

where a,/s and 6,'s are real constants [2]. Similarly, a 1-dimensional affine trans-
formation w : R -*• R is defined by w{x) = ax + b, where a and b are real constants.
Likewise, we can define an affine transformation on R" for all integers n > 2. In this
paper, one can restrict oneself to those affine transformations which only scale and
translate (that is, no rotation).

A transformation / : X -> X on a metric space (X, d) is called a contractive
mapping if there is a constant 0 < s < 1 such that

d(f(x), f(y)) < s.d(x, y) for all x, y € X.

Any such number s is called a contractility factor of / . If / satisfies the condition

d(f(x), /(y)) < s.d(x, y) for all x, y 6 X,

where s > 0, then / is called a similitude.

2.2. Fractal dimension Let A be an "image" in X = R", that is, A is a nonempty
compact subset of X. The set of all images in X is denoted by Jt?(X). Let e > 0. Let
B(x, e) denote the closed ball of radius e and centre at a point x e X. That is,
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Let <yf( A, 6) be the least number of closed balls of radius € needed to cover A. That
is,

M

J/{A, e) = smallest integer M such that A c |^J B(xn, e),

for some set of distinct points [xn\n = 1,2,..., M] c X.
Let / (e) and g{e) be real valued functions of the positive real variable e. Then

/ ( O % g(e) means that

The intuitive idea behind the definition of fractal dimension is that a set A has fractal
dimension D if J/(A, e) « Ce~D for some positive constant C. Mathematically we
define it as the limit

l i m ,
*-o log(l/f)

if it exists.
Another way to define fractal dimension is using the "Box-counting", that is,

counting the numbers of boxes of a grid overlaying the image, see [2].

2.3. HausdorfT-Besicovich dimension The Hausdorff-Besicovich fractal dimen-
sion of a set A e Jf{X) is a dimensional index of A. Define the diameter of A
as

diam (A) = sup{rf(jc, y)\x, y € A}.

Let 0 < e < oo and 0 < p < oo. Let si denote the set of sequences of subsets
{Ai c A] such that A = U~, A,-. That is, each element of ^ is a "covering" of A.
Then we define a real number describing each covering {A,} = {A,, A2,...} € s& of
A,

In the above we use the convention that (diam (A,))0 = 0 when A, is empty. We
consider the infimum of the above,

Jt(A, p, e) = inf{<*f ({A,}, p)|{A,} e si/, diam (A,) < e, for i = 1, 2 , . . . } .

We now define the Hausdorff p-dimensional measure of A as

, p) = sup{^(A, /?, e)|e > 0}.

Since J((A, p, e) is a nonincreasing function of e, one has to consider "finer" cover-
ings of A to estimate Jl(A, p).
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There is unique real number DH which is less than or equal to the dimension of the
underlying Euclidean space such that

°° ifp < Owand/? G [0, oo),

The real number DH is called the Hausdorff-Besicovich dimension of the set A [2].
However for the images defined by MRFS considered in this paper, the fractal dimen-
sion and Hausdorff-Besicovich dimension are always equal. This is because these
MRFS are "nonoverlapping". As for nonoverlapping IFS these two dimensions are
always same [2], similarly they are same for nonoverlapping MRFS [3, 15].

Hausdorff-Besicovich dimension and Hausdorff /^-dimensional measure can be
used to compare the "sizes" of two fractals A\ and A2. Let A\ and A2 have Hausdorff-
Besicovich dimensions Dx and D2 respectively. Then A | is bigger than A2 if and only
if Di is greater than D2. If D\ = D2 then we compare Hausdorff D\-dimensional
measure C\ of A x and Hausdorff D2-dimensional measure C2 of A2. Then A i is bigger
than A2 if and only if C\ is greater than C2.

2.4. Asymptotic notations We have two cases depending on the domain of the
function. A function f{n) is said to be a function of large reals if n takes values from
the real interval [1, oo]. A function / (e) is said to be a function of small reals if e
takes values from the real interval [0, 1].

Algorithm A (input of size = n)
if n = 1 then {do trivial things};

else
{call other algorithms recursively},
{maybe do some additional computation},

end/I;

FIGURE 3. Structure of a recursive algorithm.

In this paper, the time complexity T(n) of an algorithm on input of size n will be a
function of large reals (we will show that the input size can be treated as real instead
of positive integer). The function <JV(O, e), the least number of e-balls needed to
cover an image O, will be a function of small reals.

For functions of large reals, we have the same standard notations and definitions of
asymptotic bounds as are used for functions of natural numbers [6].

We generalize the definitions of asymptotic bounds to functions of small reals but
with one important difference - for functions of real variable e, the asymptotic case
corresponds when e becomes sufficiently close to 0.
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For functions of small reals, we denote the asymptotic upper, lower and tight bounds
by OR, £lR and @« respectively.

3. Divide-and-conquer algorithms

Consider a group A = {Au A2,..., An] of N algorithms. One algorithm is called
first and therefore is distinguished as the main algorithm. The time complexity of
A is therefore the time complexity of the main algorithm. We assume that there are
no unreachable algorithms in A, that is, it should be possible to call every algorithm
during the execution of A on some input.

The structure of each A, e A, illustrated in Figure 3, is as follows.

1. The algorithm A, can call any algorithm B € A such that the size of the input is
changed by a multiplicative factor. If the size of original input is n and the size
of the input in a recursive call is changed to n/b where \/b is the multiplicative
factor, then we interpret n/b as either \n/b~\ or as [n/b\. This is because the size
of the input must be an integer. (Here \x~\ and [x] denote respectively the least
integer not less than x and the greatest integer not exceeding JC.)

2. The algorithm A, can do some additional computation taking &(nD) steps, where
D is a nonnegative real number. If D = 0 then this computation can be ignored.

3. The algorithm A, performs a constant amount of computation at the trivial case,
when the input size is equal to 1.

If there is a chain of recursive calls Bu B2,..., Bm where B, e A, i = 1,2, . . . ,«,
Bt calls fi,+] and Bx = Bm, then the size of the input in call to Bm should be strictly
less than the size of the input in call to B\. In other words, over every possible loop,
the size of the input is "contracted" by a multiplicative factor.

We need to consider a technicality. Suppose in a recursive call, the size n of the
input is contracted by a factor of \/b. It is possible that b does not divide n. Since
input size can be only integer, we assumed that we interpret n/b as either \n/b~\ or as
\n/b\.

But what if we allow the input size to be a real number?
In this case, let the trivial-case in Figure 3 occur when the input size n < 1. We

now show that this assumption does not affect the analysis of the time complexity.

LEMMA 1. Let T(n) be the time complexity of a group of recursive algorithms A
when the input size is required to be an integer. Let T'(n) be its time complexity
in the hypothetical situation where the input size is allowed to be a positive real
number and the trivial-case occurs if the input size is less than or equal to 1. Then
7"(n) =
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PROOF. The proof is a straightforward generalization of a similar result in [6]. It
follows from the fact that calls are contractive over loops and the inequalities \x~\ <
x + 1 and [xj > x — 1.

Therefore we will now adopt the "real-number" model and let the input size be real
numbers.

EXAMPLE 1 Consider Figure 4 which shows a group of mutually recursive algorithms.
One algorithm is distinguished as the main routine. The main routine and other
"subroutines" call each other recursively. In total, there are four other subroutines. If
a routine calls another on input size n/b then there is an appropriately labeled arc from
the called routine to the calling routine. The "additional" computation performed by
the routines is indicated by nodes drawn as squares. Note that each of the subroutines
2 and 4 perform @(n2) additional computation and the subroutine 3 performs 0(n)
additional computations.

FIGURE 4. A group of mutually recursive algorithms.

4. Mutually recursive function systems

Let X = Rk, the /fc-dimensional Euclidean space, be the underlying metric space.
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Now we generalize Mutually Recursive Function Systems (MRFS) as studied
in [7, 9] or Geometric Graph Directed Construction in [15], to condensation MRFS
just to facilitate our discussion.

A condensation MRFS M is a quadruple (V, C, W, G) where:

(a) V = {Vi, V2,..., Vn), n > 1 is a finite set of nonempty compact subsets of X,
(b) C = [C\, C2, . . . , Cm}, m > 0 is a finite set of condensation sets, that is, nonempty

compact subsets of X each of which has fractal dimension,
(c) G is a directed graph with vertex set consisting of integers 1, . . . ,« + m and

similitudes to,,, of X where (/, j) € G with contractivity factor Sjj such that

1. for each i, 1 < / < n, there is some j such that (i, j) e G,
2. for each /, 1 < / < n, if there is some j,n < j <n + m such that (/, j) € G

then Wij is the identity map,
3. for each i,n < i < n + m,witi is the identity map and (j, j) e G if and only

if/ = j , and

4. if the path component of G rooted at the vertex ij, 1 < i'i < n is a cycle,

[ / i , . . . , / , , i9+1 = i"i], then f ]Li sit.iM < !•

(d)The graph G defines a natural mapping W which maps the space J4?(X)n+m, the
vectors of length n + mof compact subsets of X, to itself,

W : ̂ ( X ) " + m -»• J f (X)n

such that if
,, A2,..., An+m) = (fl,, fl2,..., Bn+m),

then for each i,

Therefore IV is a matrix of similitudes such that Wtj = to,,; the similitude which
contributes to component i from component j and the zero function for the rest.
The attractor of the MRFS is obtained by iterating W starting with the vector
(V,C)

( « - , , . . . , Kn+m) = Urn W<">(V,,..., Vn, C, Cm)

and then defining the attractor 0 as

O = U t̂f,-,

where clearly ^Cn+1 = C i , . . . , ^ n + m = Cm. This iteration method to approximate
the attractor is called the Deterministic Algorithm for generation of fractal images.
The set O is the unique fixed point of IV when the last m components are fixed to
be the condensation sets C.
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In this paper, we restrict ourselves to nonoverlapping MRFS. M is called nonover-
lapping if each i,l < i < n,

{wiJ(Kj)\(i,j)eG}

is a nonoverlapping family (that is, it is either totally disconnected or just-touching
and therefore satisfies the open set condition introduced by Hutchinson, see [2, 13]).
A condensation MRFS M = (V, C, W, G) is called simply as an MRFS if C = <\>.
For many interesting fractal images generated by MRFS see [7, 9].

5. The Mauldin-Williams Theorem

In this paper, for the sake of completeness, we present already known results on
Hausdorff-Besicovich dimension of attractors of nonoverlapping MRFS.

LEMMA 2. Let M = (V, C, W, G) be a nonoverlapping condensation MRFS. Let O
be the attractor of M. Let the the Hausdorff-Besicovich dimension of O be a. If the
Hausdorff a-dimensional measure k of O is finite then Jf(O, e) = @R(€~a).

PROOF. If M is nonoverlapping, then there exists a real number e0 > 0 such that for
all e < e0 when, in the definition of fractal dimension, O is covered with jV{0, e)
balls of radius e, then these balls are nonoverlapping. In this case the covering, for
which infimum in the definition of Hausdorff-Besicovich dimension is achieved,
is the one found by letting each At in the covering {A,} be a subset of one of
these JY{0,€) balls. Therefore, for all € < eo, ^(O,a,e) = jV{O,€)€a. Let
D' = diam(O). Since ^(O,a, e) is a nonincreasing function of e, and since
k = ^(O, a) = s u p { ^ ( 0 , a, e)\e > 0}, thus for all e > 0,

,a, D')e-a <Jf(O,e) <k€~a. (3)

Therefore, if k is finite, then Jf(O, e) = 0ft(<r°).

In the above proof, if k is finite then from (3) and the fact that M{0, a, e) is a
nonincreasing function of e, k can be considered as the constant of proportionality in

for the asymptotic case when e is sufficiently small. Later we will see in Theorem 6
that if k is infinite, then ^(O,e) = 0(e~" logpe~')» which incidentally proves
the known fact that for nonoverlapping MRFS, fractal dimension and Hausdorff-
Besicovich dimension are always same. For this just check that

a = lim-
«-0 lOg(l/6)
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Let M = (V, <p, W, G) be an MRFS where |V| = n. Define an n x n matrix
5 = faj) where Sjj is the contractivity factor of similitude Wjj. If (/, j) £ G then
Sij = 0. For any nonnegative real fi, define Sp as ŝ .,-,- = sfj. Let <&(/?) be the
modulus of the largest eigenvalue of Sp, which is also its spectral radius from the
Perron-Frobenius Theorem [10].

A digraph is called strongly connected if there exists a directed path between any of
its two nodes. A strongly connected component of a digraph G is a maximal subgraph
H of G such that H is strongly connected. Thus, the strongly connected components
of G are pairwise disjoint. It is possible that they do not cover G. It is also possible
for such a component to consist of a single vertex looped on itself. A vertex is not
considered to be strongly connected unless it is looped on itself.

THEOREM 1 Let M = (V, <j>, W, G) be an MRFS and let G be strongly connected.
Then the Hausdorff-Besicovich dimension of the attractor of M is the nonnegative
real number a such that <t>(a) = 1.

PROOF. This can be found in [3].

Given a digraph G, let SC (G) denote the set of strongly connected components
of G. Also for a strongly connected component H e SC(G), let aH denote the
Hausdorff-Besicovich dimension of the attractor of the MRFS whose underlying
digraph is H.

Now we state the generalization of Theorem 1.

THEOREM 2 [The Mauldin-Williams Theorem] Let M = (V, </>, W, G) be a non-
overlapping MRFS. Then the Hausdorff-Besicovich dimension of the attractor of M
is given by

a = max{aw|// € SC(G)}

and its Hausdorff a-dimensional measure is finite if and only if between any two
elements of

{H £SC(G)\aH =a}

there exists no path in G.

PROOF. This can be found in [15].

The definition of condensation MRFS can be generalized to the case when a
component j can contribute multiply to another component /. Then there can be
multiple arcs from one vertex to another in the underlying digraph. However such a
condensation MRFS can be still simulated by another one in which there is at most
one arc from one vertex to another.
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THEOREM 3 Let M be a condensation MRFS in which a component can contribute
multiply to another component under different similitudes. Then there exists an
equivalent condensation MRFS with the same attractor in which a component can
contribute to another only once under a similitude, that is, there is at most one arc
from one vertex to another in the underlying digraph.

PROOF. The proof is simple and can be found in [7] where the equivalence of MRFS
and recurrent IFS defined in [3] is proved.

Considering such generalized MRFS, two interesting special cases are as follows.

COROLLARY 1 Consider a nonoverlapping IFS with N similitudes wu w2, • •., wN.
Let the contractivity factors ofw\, w2, • • •, wN be S\, s2,.. •, sN respectively. Then the
Hausdorjf-Besicovich dimension of the attractor of the IFS is the nonnegative unique
real number satisfying the equation

Note that the IFS is equivalent to generalized MRFS ({V}, <j>, W, G), where G is a
single node with N self-loops and W : Jf (X) -» JP{X) is

W(A) = to,(A) U w2{A) U . . . U wN{A).

COROLLARY 2 Suppose M is a condensation MRFS in which there can be mutiple
arcs from one vertex to another in its underlying digraph G. Suppose each of the
similitudes labeling an arc in G has a contractivity factor equal to s, where s is real
number in the open real unit interval (0, 1). Let k be the eigenvalue of the maximum
modulus of the connection matrix C where C, y is the number of arcs from vertex i to
vertex j . Then the Hausdorjf-Besicovich dimension of the attractor of M is log,, |A.|,
where b = l/s.

These special cases can be derived from the Mauldin-Williams Theorem or found
in [2, 13]. In [17], the case 2 is proved for an integer b.

EXAMPLE 2 Consider a nonoverlapping MRFS with components A, B and C and the
contribution of corresponding components to others shown by the following mutually
recursive definitions:

A = Wi(A) U w2{A) U w3(A),

S = id(A) U w4(C),

C = w5(B) U u/6(C).
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Let the connectivity factors of to, be | if i ^ 3 and of to3 be \. Now the underlying
graph has two strongly connected components - Hx consisting of node A and H2

consisting of B and C. From Corollary 1, aHx is the positive real number D satisfying

and therefore it is log2(\/2 + 1). To compute aHl, we consider the connection matrix

• [ ! ! ] •
The maximum magnitude eigenvalue is (V5 + l)/2 and therefore aH2 = log2((V5 +
l)/2) from Corollary 2. Thus the fractal dimension of the attractor of the MRFS
is aHi since aHl > aHl. Also the Hausdorff D-dimensional measure is finite where
D = aHr

Theorem 2 also holds for condensation MRFS in the following obvious sense. In
the underlying digraph of a condensation MRFS, each condensation set with its single
self-loop is a strongly connected component. Therefore, if C is a condensation set
with Hausdorff-Besicovich dimension equal to D, then we have a strongly connected
component H containing C such that aH = D.

Characterizing ^V(O, e)
We now use the results on fractal dimension to rephrase them in asymptotic notation
&R for small reals (see preliminaries). From now onwards, we will assume that e is
a nonnegative real variable taking values in the unit interval [0,1]. The goal is to use
the Mauldin-Williams Theorem to characterize jY(O, e) in terms of e.

We first prove the results for a condensation IFS (that is an MRFS with a single
component and a single condensation set).

THEOREM 4 Consider a condensation IFS:

A = to, (A) U w2(A) U . . . U wN(A) U C,

and let its attractor be O and let the Hausdorff-Besicovich dimension of the condens-
ation set C be D\. Let the Hausdorff-Besicovich dimension of the attractor O' of the
IFS

A = wx (A) U w2(A) U . . . U wN(A)

be D2. Then if Di # D2,

otherwise if Dy = D2 = D,
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PROOF. The condensation IFS has two strongly connected components, one having
condensation set C and the other having set A. The case Dx ^ D2 follows from the
Mauldin-Williams Theorem and Lemma 2.

For Dy = D2 we prove the theorem. Let W : J$?(X) —> J%?(X) be the mapping
defined as

W(A) = Wi(A) U w2(A) U . . . U wN(A)

for all A e Jf?(X). W is a contractive mapping on the complete metric space
(Jf?(X), h) where h is the Hausdorff metric and its unique fixed point is O' and its
contractivity factor is s = max^, s2, • •., s^}, where 5, is the contractivity factor of
transformation wt [2].

One quickly verifies that the attractor O of the condensation IFS is

O = O'UCU W(C) U W2(C) U W\C) U . . . (4)

Note that O' is actually lim,,̂ ,*, W"(C). To see why the above is true, execute the
Deterministic Algorithm. Clearly, W'(C) for all / > 0 has dimension D as dimension
is preserved under similitudes. In fact, one can show that there exist two positive
constants &i and k2 such that for all i,

k\€'D < ^V(W'(C), €) < k2e-D. (5)

We show this by induction on /'. The basis is true since W°(C) is C, whose dimension
is D. For the inductive step note that

Since IFS is nonoverlapping this implies that (see [2])

From the induction hypothesis for i, for all j ,

and therefore

E - </r(C),o<^
;=1 \Aj / j=\ \ 4y /
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Hence

), €) < k2€'
j=\ j=\

and since s? + s° -\ h s% = 1, we finally get

kx€~D < jV(Wi+\C), e) < k2e~D.

Now C, W(C), W2(C),... is a Cauchy sequence and for any /, there exists a positive
constant k such that

h(W'(C), W'(O) < ks' for all j > i,

where s is the contractivity factor of W and k = h(C, W(C))/(l— s). Thus if e > cs',
where c depends on k and the underlying metric space X = R", and if we are covering
C, W(C),..., W'iC) by e-balls then Wi+\C), Wi+2(C),... also get covered. Thus
for any e, the smallest such / has to satisfy

i = C\ \ogs e, for some positive constant C\,

and since s < 1, therefore for the natural logarithmic function,

i = c2 log €~x for some positive constant c2.

From (4), the number of e-balls needed to cover O is

', €) + J/{C U W(C) U W2(C) U W\C) U . . . , e))

', e) + <yK(C U W(C) U W2(C) U W3(C) U . . . U W'

D + J ^ e~D) (from the claim (5))

D D 1 ) (since/ =c2loge" ')

This completes the proof of the theorem.

LEMMA 3. Consider the statement of Theorem 4. Let

Let D, = D2 = D. Then
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PROOF. The proof is same as that of Theorem 4 till the point where we make the claim
(5). Let sL = min{si} and Sy = max{s,}.

In the following all logarithms are base b, where b is chosen so that b > \/sL.
Now we claim that for each i > 0,

) , €) < k2€~D log"(e/s^y1. (6)

The basis of the proof by induction remains same. For the induction step, note that

(j\x (j\ log'Ce/^,))-1 < JT (w'iC), j) < k2 (j)j (

and therefore

it, (j) log"(f AJ+1)-1 < JV (w'(C), j) < k2 (J-)

from which the claim (6) follows for / + 1. An interesting property of logp e"1 with
base b is that for any a such that \/b < a < 1,

lOg£~'

J2 \ogp(€/aJrl = 0«(log"+1 e-1).
;=0

In the above, we assume without loss of generality that log e"1 is an integer (the proof
can be otherwise modified by considering Llog^'J o r flog^"1!)- To see why the
above is true, note that each term on left-hand side is of the form

log'te/a')"1 = (loge"1 +yloga) p .

But since \/b < a < 1, therefore —1 < logo < 0. Thus 0 < 1 + loga < 1. Thus
since j takes values from 0 to loge"1, for all j ,

(l + logay iog^ - 1 < (loge"1 +y ioga) p Slog^e"1.

Thus there exist positive real constants cx = (1 + log a)'' and c2 = 1 such that

c, log"+1 e~l < ^ log"(e/aJyl < c2logp+1 g"'.

Since sL, sv > l/b, the above holds for a = sL and a = sv and from (6)

oV(C U W(C) U . . . U W-iose(C), 6) = @R(e~D logp+l e"1).
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Therefore, continuing the proof of Theorem 4 and choosing / = c log e"1 to be such
that e-balls covering C, W(C),..., W'(C) cover also W'(C) for all ; > i,

U W(C) U W2(C) U . . . , e) = «^(C U W(C) U . . . U W(C), e)

From this and (4) the lemma follows. Note that in @R notation, one can again have
the natural logarithm.

Now one can easily generalize the above results when we have an MRFS with two
strongly connected components which may have more than one nodes.

THEOREM 5 Let M = (V, <p, W, G) be an MRFS having attractor O. Let SC (G) =
[Hi, H2\. Let there be no nodes in G other than those in H\ and H2. Let there be
a single arc from H\ to H2, labeled with similitude w. Let 0, be the attractor of the
MRFS Mi = (Vit(f>, Hj)fori = 1,2. Let the Hausdorff-Besicovich dimensions of O\
and O2 be Di and D2 respectively. Then, for all e e [0, 1], if D\ / D2,

otherwise if D\ = D2 = D,

PROOF. The proof for the case when Dx ^ D2 follows directly from the Mauldin-
Williams Theorem. We prove the case when D\ = D2 = D. The proof is a
generalization of Theorem 4 and results in [3, 15].

Let the arc from H{ to H2 be from the node E (in V{) to node F (in V2). Let E' be
the limiting value of E (the image defined by E). Let C = w(E'). Now Theorem 4
can be generalized as follows: treat //, as a condensation set E' connected to F with
an edge labeled w.

Formally, let \V2\ = n. Consider the Hausdorff metric on tuples of sets as

//((A,, A 2 , . . . , An), (Bu B2,..., Bn)) = max{ft(A(, Bt)\i = 1, 2,

Since MRFS are loop contractive, therefore there exists k > 1 such that Wm, the
fe-fold composition of the mapping W, is contractive. Thus we can continue the proof
of Theorem 4 in a parallel fashion and using the results on dimension of attractors of
strongly connected MRFS in [3, 15]. Here we work with tuples in (Jf?(X))" and the
claim (5) is made for each component of these tuples.

Let (x\, x2, ..., xn) be a strictly positive eigenvector of 5^ matrix of M2 corres-
ponding to the eigenvalue 1, according to the Perron-Frobenius Theorem [10] in
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Theorem 1. Formally, if Vf denotes the j-th component of tuple after / iterations of
the Deterministic Algorithm, then we claim that there exist positive constants C\ and
C2 such that

Cl€~Dxi < jny\, €) < C2e-D
Xi. (7)

For the induction hypothesis, assume that (7) holds for some t > 0. For the induction
step, consider t + 1. Now for each / = 1,2,... ,n,

vr = u W'.JW-

Since M is nonoverlapping,

From the induction hypothesis,

T\ e) < £ C2 ( f ) °xj
Cij=\ x^'.y/

= C2e~DXi (since (xi ,x2,..., xn) is an eigenvector).

Similarly, we show that

The rest of the proof follows along lines parallel to the proof of Theorem 4.

LEMMA 4. Consider the statement of Theorem 5. Let

Let Di = D2 = D. Then

PROOF. The proof is a straightforward generalization of the proof of Lemma 3.

THEOREM 6 Let M = (V, <j>, W, G) be an MRFS. Let the attractor O of M have

Hausdorjf-Besicovich dimension equal to D. Let HXH2... / / p + 1 be a sequence of

maximal length p, such that H 6 SC (G) , aHi = D for each i e [1,2, . . . , p + 1},

and there is a path from Hj to Hj+i for j e [1,2,..., p] in G (not passing through

anyH e S C ( G ) ) . Then
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PROOF. The proof consists of one application of Theorem 5 followed by repetitive
applications of Lemma 4. First consider the path H\H2, and then H\H2HT, and so
forth.

6. Modeling algorithms by MRFS

A group A = [Ai, A2,..., An) of mutually recursive algorithms can be modelled
by or viewed as a condensation MRFS M = (V,C,W,G), where

the set Vj represents the algorithm At, i = 1,2, . . . ,«, and

C = {C\, C2,..., Cn],

where the condensation set C, represents the additional computation done by the
algorithm A,. C, is a condensation set with Hausdorff-Besicovich dimension equal to
Di if the algorithm At does additional computation of &(nDl) steps. If D, = 0 then
we ignore C,.

The underlying labeled digraph G of M represents the interrelationships between
algorithms and the additional computation performed by them.

Consider each algorithm A,- e A. Suppose the algorithm A, calls recursively the
algorithms Aj,, AJ2, . . . , Ajr, and at these recursive calls the input size is contracted by
a factor S\ ,s2,...,sr, respectively. Then the component Vj representing the algorithm
Aj is mutually recursively defined as

VJ = Wi^Vj,) U wh{Vh) U . . . U wir{Vjr) U C,

where wik is a similitude with connectivity factor equal to sk, k = 1, 2 , . . . , r.
If one needs to generate the actual fractal which geometrically captures the work-

ing of the algorithm, then one needs to choose the affine transformations and the
condensation images. These have to be chosen so that the condensation MRFS M
is nonoverlapping. However if one needs to only determine the time complexity
of A, then one needs only the contractivities of the affine transformations and the
Hausdorff-Besicovich dimensions of the condensation images.

EXAMPLE 3 Refer to Example 1 and Figure 4. This group of recursive algorithms can
be modelled by an MRFS J( with 5 components (vertices in the underlying digraph)
M, SI, S2, S3 and S4 representing the 5 routines and 3 condensation sets Cx, C2 and
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C3 representing the additional computation performed by subroutines Sub2, Sub4 and
Sub3, respectively. The MRFS is specified by:

M = IUI(M) U u>2(M) U ui3(M) U u;4(M) U M(S2) U U(S3),

51 = io5(Sl) U io6(Sl) U w7(S2) U iog(S2),

52 = u>9(Sl) U iolo(S2) U Wi,(S2) U Cx,

53 = iu,2(S3) U u;13(S3) U io,4(S3) U u;15(S4) U C3,

54 = u>16(S4) U u>n(S4) U u>ig(S4) U iu,9(S4) U C2.

The transformations wu w2,..., wig have contractivity factors equal to \, and u and
v have equal to 1 and 2 respectively. The fractal dimensions of the condensation sets
C\, C2 and C3 are 2, 2 and 1 respectively.

Just to facilitate our discussion and without any loss of generality, we will assume
that the attractor of M is a subset of the unit box U = [0, 1]* of the underlying k-
dimensional Euclidean space. Also one can choose transformations which just scale
and translate, so they map a box into a box. In the Deterministic Algorithm, let the
initial compact subsets of M be all the unit box U.

Now a recursive call during the execution of A will correspond to the image of a
box during the execution of the Deterministic Algorithm on M. The size of the input
in this call will correspond to the size of the side of the box. A chain of recursive calls
will correspond to a sequence of affine transformations of M which map U into a box.

Let the initial input size be n. Now if there is a chain of recursive calls Au A2,.. •, Ap

then at the end of this chain, the size of the input will be scaled down to

n x Si x s2 x . . . x sp,

where .$, is the input scaling factor of the call At. Therefore, after p iterations of the
Deterministic Algorithm, the size of the side of the corresponding box will be

1 X 5 ] X S2 X . . . X Sp,

since the size of side of the starting unit box U is 1. Thus if Calls(/4, m) denotes
the number of chains of recursive calls which scale down the input to size m, and if
Boxes(M, e) denotes the number of boxes with side length e, then

Boxes(Af, e) = Calls(A ,en). (8)

EXAMPLE 4 Consider the recursive algorithm A is shown in Figure 1.
Now A can be modelled by a single component MRFS (IFS) M. We select 2-D

Euclidean space and three of the four quadrant transformations, each with contractivity
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0.5, which map the unit square U = [0, I]2 into the lower-left, lower-right and upper-
left quadrants, respectively.

In Figure 5, we show the first 3 steps of the Deterministic Algorithm on M and the
attractor of the Sierpinski Triangle which corresponds to the asymptotic case. The
initial starting image for the Deterministic Algorithm is chosen to be the unit square
U. Each box in Figure 5 corresponds to some chain of calls made during the execution
of A.

Note that the modelling of algorithms by MRFS is not a geometric interpretation
of algorithms as the only relevant part of the geometry is the contractivity factors.
The deterministic algorithm simply takes an input string, which can be thought of
as real or integer, and divides it by a factor after each call. Thus the embedding in
k-dimensional space seems to serve merely as a method of producing a fractal image.

Input size = 2

B ;

u>2(U)

(a) Calls(A,l) = Boxes(M,l/2) = 3

Input size = 8

B

B

B

I

B

" 3 "

Input size =

B

W| ou)2(f) » 2 o .

4

I

l(U)

(b) Calls(A,l) = Boxes(M, 1/4) = 9

Input size = n (Asymptotic case)

\

(c) Calls(A.l) = Boxes(M,l/8) = 27

FIGURE 5. Illustration of correspondence of chains of recursive calls in the execution of a recursive
algorithm and of boxes in the execution of the modelling recursive function system. U is the unit square
[0, I]2 and is shown by the dashed lines. B denotes a blank region.
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7. The main result

Since a group of recursive algorithms can be viewed as a condensation MRFS, so
we can naturally generalize the concepts associated with the latter to the former. Let
A be a group of mutually recursive algorithms with underlying digraph G.

We make the assumption that there is at most one arc from one vertex to another in
G. This does not result in any loss of generality, as stated in Theorem 3.

From the Mauldin-Williams Theorem, the Hausdorff-Besicovich dimension of the
attractor of A (viewed as a condensation MRFS) is a = max{aH|// e SC(G)}.
Consider all those strongly connected components of G with Hausdorff-Besicovich
dimension equal to a,

SCMAX (G) = {H eSC (G)\aH = a).

Now from G we construct a reduced digraph G' by collapsing elements of SCMAX (G)
into nodes. For each H in SCMAX (G) we create a node vH in G'. If there is path P
in G from H to K where H,K € SCMAX (G) and H and K are distinct, such that
the path P does not pass through any other component in SCMAX (G), then we place
an arc from vH to vK.

Then G' so obtained is a directed acyclic graph (DAG) and is called the order
structure DAG of A.

In the following theorem, the function <J> is the same as defined in Theorem 1. That
is, <&(D) is the modulus of the largest eigenvalue of the matrix obtained by raising
each element of the matrix S to the power o D, where 5,,, is the contractivity factor
of recursive call of the algorithm j by algorithm /.

THEOREM 7 Suppose A is a group of mutually recursive algorithms such that the
underlying graph is strongly connected. Let Tin) be the time complexity of A on input
of size n. Then

T(n) = ®(nD),

where D = aA is the nonnegative real number for which <£(£)) = 1.

PROOF. Let A be viewed as a condensation MRFS M. Let O be the attractor. Since
the computation is done at the trivial-case when n = \, therefore from (8)

T(n) = Calls(i4, 1) = Boxes(M, \/n).

Let e = 1/n. From the Box-Counting Theorem for the computation of fractal
dimension in [2],

Boxes(M, O = GR(^(O, e)).
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Therefore,

, l/n) < T(n) < c2Jf{0, \/n),

for some positive constants C\ and c2 and sufficiently large n.
Since A is strongly connected, therefore from the Mauldin-Williams Theorem

where D = aA is the nonnegative real number for which 4>(D) = 1. Therefore

T(n) = 0(«D).

Furthermore from Lemma 2, the Hausdorff D-dimensional measure of the attractor
of A is finite and is the constant factor by which the above inequality is asymptot-
ically bounded from above, and thus is the constant of proportionality by which two
algorithms with same value of D can be compared.

THEOREM 8 Let A be a group of mutually recursive algorithms with underlying di-
graph G. Let Tin) be the time complexity of A on input of size n. Then

T(n) = @(nD\ogpn),

where
D = max{aH\H eSC(G)}

and p is the length of the longest path in the order structure DAG of M.

PROOF. The case p = 0 is Theorem 7. Let p > 1. Consider the proof of Theorem 7.
Since the computation is done at the trivial-case when n = 1, and the additional
computations are also represented by the condensation sets, therefore, from Theorem 6,

where
D = max{aH\H eSC(G)}.

Therefore, substituting e"1 = n,

T(n) = &{nDlogpn).
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#1,2 (1-

(a) (b)

FIGURE 6. (a) Fractal dimension of strongly connected components of MRFS modelling algorithms
in Figure 4 (b) Order structure DAG with length of the longest path equal to 2.

EXAMPLE 5 Refer to Examples 1 and 3. How can we determine the time complexity
of the algorithms? We need to solve the following set of recurrence relations:

TM(n) = 4TM(n/2) + TS2(n) + TS3(2n),

= Tsi{n/2) + 2TS2(n/2)

= 3TS3(n/2) + Ts,{n/2)

TS4(n) = 4TS4(n/2) + 0(«2).

The conventional methods based upon discrete analysis, such as the Master Theorem
in [6], seem to be inadequate. However using the above theorem one can easily solve
the recurrence relations. In Figure 6(a), we show the strongly connected components
of the MRFS M in Example 3. In total there are 7 such components. Each of these
components is an MRFS by itself and defines an image. Using Corollaries 1 and 2,
one quickly computes the fractal dimension of these images. For example, the fractal
dimension of the image defined by the component Hu2 is Iog2(2 + V2), where 2 + y/2
is obtained as the largest eigenvalue of the connection matrix

c =

The number inside a circle in Figure 6(a) is the fractal dimension of the image defined
by the corresponding component. Since the maximum of the fractal dimensions is 2,
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we construct the order structure DAG as shown in Figure 6(b) by keeping only the
components with fractal dimension equal to 2. The length of the longest path in the
DAG is 2. Therefore, substituting D = 2 and p = 2 in the theorem, we obtain the
solution

TM(n) = 0(n2 log2 n).

8. Conclusions

This paper made explicit a relationship between fractal geometry and divide-and-
conquer recurrences which leads to a generalization of known results on the latter.

1. We assumed that an algorithm can perform an additional computation (which
for example may involve the linear time taken to read the input) taking @(nD)
steps where D is nonnegative real number. Theorem 8 can be easily extended
to the case when this additional computation has time complexity of the form
®(nD f(n)) where f(n) is a power of the logarithmic function, that is, log* n. Just
use Lemma 4.

2. A special case, when the MRFS is a condensation IFS, of Theorem 8 is the Master
Theorem as stated in [6]. Note how easy a corollary is the latter of the former and
compare this with the lengthy proof of the latter in [6].

3. An interesting correlation can be made between overlapping MRFS and certain
parallel algorithms, and between MRFS defining grey (colour) fractals and certain
randomized algorithms by associating probabilities to the transformations.

In conclusion, it is pleasing to note that these two different fields, algorithms and fractal
geometry, intersect in a useful way providing us with new insights and leading to new
results. Note that though these results can be also derived in the discrete domain,
however then one would spend much more effort by not utilizing already known
results from the continuous domain and would miss this interesting connection.
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