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POWER GRAPHS AND SEMIGROUPS OF MATRICES

A.V. KELAREV, S.J. QUINN AND R. SMOLI'KOVA

Matrices provide essential tools in many branches of mathematics, and matrix semi-
groups have applications in various areas. In this paper we give a complete description
of all infinite matrix semigroups satisfying a certain combinatorial property defined
in terms of power graphs.

Research on combinatorial properties of words in groups originates from the fol-
lowing well-known theorem due to Bernhard Neumann [12], which was obtained as an
answer to a question of Paul Erdos: a group is centre-by-finite if and only if every infinite
sequence contains a pair of elements that commute. Combinatorial properties of groups
and semigroups with all infinite subsets containing certain special elements have been
considered by Bell, Blyth, Curzio, de Luca, Gillam, Hall, Higgins, Justin, Longobardi,
Maj, Okninski, Piochi, Pirillo, Restivo, Reutenauer, Rhemtulla, Robinson, Sapir, Shumy-
atsky, Simon, Varricchio and other authors, and a survey of this direction was given by
the first author in [7] (see also [2, 3, 6, 11]).

The following combinatorial property was introduced in [9] using power graphs. The
power graph Pow(S) of a semigroup S has all elements of S as vertices, and it has edges
(u, v) for all u,v € S such that u ^ v and v is a power of u. Let D be a directed graph.
We say that an infinite semigroup 5 is power D-saturated if and only if, for every infinite
subset T of 5, the power graph of S has a subgraph isomorphic to D with all vertices
in T. In this paper we describe all pairs (£>, S), where D is a directed graph and S is a
matrix semigroup, such that S is power D-saturated.

The reader is referred to [1, 4, 14] for standard graph, semigroup and group theoretic
terminology, respectively. By the word 'graph' we mean a directed graph without loops
or multiple edges. A graph is said to be acyclic if it has no directed cycles.

We refer to [10, 13] for preliminaries on fields and matrix semigroups, respectively.
For a skew field K, the set of all n x n matrices with entries in K is denoted by Mn{K).
A matrix is said to be monomial if every row and column contains at most one nonzero
entry. If G is a group, then the set of all n x n monomial matrices over G° = Gu{0} forms
a semigroup denoted by Mn(G) (see [5]). Thus a matrix semigroup is a subsemigroup of
Mn(K) or Mn(G), for some n, K and G.
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Obviously, if D is a null graph, that is, a graph without edges, then all semigroups
are power £>-saturated.

THEOREM 1. Let D - (V, E) be a directed graph with E ^ 0, K a skew field,
G a group, and let S be an infinite matrix semigroup in Mn(K) or in Mn(G). Then S
is power D-saturated if and only if D is acyclic and all but a finite number of elements
of S are contained in the union of a finite number of centre-by-finite torsion groups Hi,
where i = 1, . . . , k, such that the centre C(Hi) of each Ht has a finite number of primary
components, each primary component ofC(Hi) is finite or quasicyclic, and the order of
Hi/C(Hi) is not divisible by p for each quasicyclic p-subgroup of H.

We use the following technical lemmas, found in [5, 13] (see also [8]). Let GLj(K)
be a maximal group of matrices of rank j over K. Put

Mj = {a € Mn{K) | rank(a) ^ j}.

LEMMA 2 . [5] Let G be a group. Then Mn(G) is an inverse semigroup with the
only ideals

{0} - Mo c Mi C • • • C Mn = Mn(G),

where Mj = {s | s has at most j nonzero entries } . Moreover,

where Gj is an extension ofG^ = Gx-xGby the symmetric group Sj and A is the
identity matrix. All idempotents of Mn(G) are diagonal and a power of every element is
diagonal.

LEMMA 3 . [13, Theorem 2.3] The sets

{0} = Mo C Mi C • • • C Mn = Mn(K)

are the only ideals of the monoid Mn(K). Each Rees factor Mj/Mj-i is isomorphic to
the completely 0-simple semigroup M (GLj(K), Xj, Yj, Qj), where the matrix Qj = (qyx)
is defined for x E Xj,y eYj, by qyx = yx ifyx is of rank j and 0 otherwise.

Throughout the rest of the paper Mn denotes one of the semigroups Mn(K) or
Mn(G). It is easily seen that the sets Mj\Mj-\ in the lemmas above correspond to the
P-classes of Mn. We also need the following result obtained in [9]:

PROPOSITION 4 . [9] Let D = {V,E) be a graph with E / 0 and let H be
an infinite group. Then H is power D-saturated if and only if H is a centre-by-finite
torsion group, the centre C(H) has a finite number of primary components, each primary
component ofC(H) is finite or quasicyclic, the order of H/C(H) is not divisible byp for
each quasicyclic p-subgroup of H, and D is acyclic.
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PROOF OF THEOREM 1: In the full linear or monomial semigroup Mn, let us consider

the chain of ideals Mo, M j , . . . , Mn, defined in Lemma 3 and Lemma 2.

The 'only if part. Suppose that S is power D-saturated. Then every infinite subset

of S induces a subgraph of Pow(S) isomorphic to D.

Consider the set T of all elements of 5 contained in the %-classes of Mn which are

not groups. Suppose that T is infinite. By the definition of T and Mj, we get:

TQSC Mn = U{Mj \ Mf_i | 1 < j ^ n.}

So, T = {J{Tn{Mj\Mj-i) | 1 < j < n } , and hence at least o n e T n ( M J \ M j _ 1 ) must be
infinite. Now, if s 6 T n ( M j \ M > - i ) , then by [4, Theorem 3.3.1], we know that sk € M;_]
for all k ^ 2. Hence all elements of T n (M, \M,_i ) are not adjacent in Pow(S). Given
that D has edges, we see that the subgraph induced by T n (Mj\M,_i) in Pow(S) does
not have a subgraph isomorphic to D. This contradicts the power D-saturation of 5 , and
shows that T is finite.

Suppose that the elements of S \ T belong to' infinitely many ^-classes of Mn. The
definition of T shows that all these %-classes are groups. By the axiom of choice we can
form a subset Q which contains exactly one element of each K-class of Mn intersecting
S\T. Then it follows that Q is infinite and induces a null subgraph in Pow(S). Again,
this contradicts power D-saturation, and shows that S\T is contained in a finite number
of "H-classes of Mn.

Take any H-class Q of Mn intersecting S \ T. Put R = QnS. HR has an element r
of infinite period, then the vertices r2,r3,r5,r7,... are not adjacent in the power graph
of 5 . This contradicts power D-saturation again, and shows that all elements in R are
periodic. Since Q is a group, we see that R is a group too.

Thus S \ T is a union of a finite number of groups. The power D-saturation is
inherited by subsemigroups, and so all these groups are also power D-saturated. Evi-
dently, all but a finite number of elements of S \ T are contained in the union of a finite
number of infinite groups Hi, where i = 1, . . . ,& . Then by Proposition 4, each Hi is a
centre-by-finite torsion group such that the centre C(ifj) of Hi has a finite number of
primary components, each primary component of C(Hi) is finite or quasicyclic and the
order of Hi/C(Hi) is not divisible by p for each quasicyclic p-subgroup of Hi.

It remains to verify that the graph D is acyclic. Given that S is infinite, it has
an infinite subgroup R. Hence R contains a quasicyclic subgroup C£°. Let r i , r 2 , . . . be
generators of C£°, such that r\ = e and rj* = rj_i. Then it is routine to verify that the
set {r1,r2, • •. } induces a subgraph which is isomorphic to an infinite chain, which is of
course acyclic. By the power D-saturation of S, we see that D embeds in the chain, and
so D is acyclic too.

The ' if part. By Proposition 4, we may assume that all but a finite number of
elements of 5 are contained in the union of a finite number of power D-saturated groups.
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Then every infinite subset T of S contains an infinite subset U of T such that U C (Sri/?),
where R is a group. By assumption SDR is power /^-saturated and therefore D embeds
in Pow(S). D

REFERENCES

[1] G. Chartland and L. Lesniak, Graphs and digraphs (Chapman k. Hall, London, 1996).
[2] A. de Luca and S. Varricchio, 'Regularity and finiteness conditions', in Handbook of

Formal Languages 1, (G. Rosenberg and A. Salomaa, Editors) (Springer-Verlag, Berlin,
Heidelberg, New York, 1997), pp. 747-810.

[3] A. de Luca and S. Varricchio, Finiteness and regularity in semigroups and formal lan-
guages, Monographs in Theoretical Computer Science (Springer-Verlag, Berlin, Heidel-
berg, New York, 1998).

[4] J.M. Howie, Fundamentals of semigroup theory (Clarendon Press, Oxford, 1995).
[5] E. Jespers and J. Okninski, 'On a class of Noetherian algebras', Proc. Roy. Soc. Edinburgh

Sect. A 129 (1999), 1185-1196.
[6] J. Justin and G. Pirillo, 'On some questions and conjectures in combinatorial semigroup

theory', Southeast Asian Bull. Math. 18 (1994), 91-104.
[7] A.V. Kelarev, 'Combinatorial properties of sequences in groups and semigroups',

in Combinatorics, Complexity and Logic, (D.S. Bridges, C.S. Calude, J. Gibbons,
S. Reeves and I.H. Witten, Editors), Springer Ser. Discrete Math. Theor. Comput. Soc.
(Springer-Verlag, Singapore, 1997), pp. 289-298.

[8] A. V. Kelarev, 'Radicals of algebras graded by cancellative linear semigroups', Proc.
Amer. Math. Soc. 124 (1996), 61-65.

[9] A.V. Kelarev and S.J. Quinn, 'A combinatorial property of power graphs of groups', in
Contrib. General Algebra 12 (Heyn, Klagenfurt, 2000), pp. 229-235.

[10] R. Lidl and G. Pilz, Applied abstract algebra (Springer-Verlag, Berlin, Heidelberg, New
York, 1998).

[11] M. Lothair, Combinatorics on words (Addison-Wesley, Tokyo, 1982).
[12] B.H. Neumann, 'A problem of Paul Erdos on groups', J. Austral. Math. Soc. 21 (1976),

467-472.
[13] J. Okninski, Semigroups of matrices (World Scientific, Singapore, 1998).
[14] D.J.S. Robinson, A Course in the theory of groups (Springer-Verlag, Berlin, Heidelberg,

New-York, 1982).

Department of Mathematics
University of Tasmania
G.P.O. Box 252-37
Hobart Tas. 7001
Australia
e-mail: Andrei.Kelarev@utas.edu.au

Department of Mathematics
University of Tasmania
Launceston Tas 7250
Australia
e-mail: Stephen.Quinn@utas.edu.au

Department of Electrical Engineering
University of Louisville
United States of America
e-mail: rOsmol01@agy.spd.louisville.edu

https://doi.org/10.1017/S0004972700019390 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019390

