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1.1. Introduction. The main object of study in this paper is the quantized Weyl
algebra A%>A which arises from the work of Maltsiniotis [10] on noncommutative
differential calculus. This algebra has been studied from the point of view of noncom-
mutative ring theory by various authors including Alev and Dumas [1], the second author
[9], Cauchon [3], and Goodearl and Lenagan [5]. In [9], it is shown that A%-A has n normal
elements zt and, subject to a condition on the parameters, the localization Bq

n
A obtained

on inverting these elements is simple of Krull and global dimension n. It is easy to show
that each of these normal elements generates a height one prime ideal and that these are
all the height one prime ideals of A%A. The purpose of this paper is to determine, under a
stronger condition on the parameters, all the prime ideals of A\-A and to compare the
prime spectrum with that of a related algebra s&l'A. This algebra has more symmetric
defining relations than those of J4|J'A but it shares the same simple localization BJ('A, which
again is obtained by inverting n normal elements z,. Like A\>A, the alternative algebra can
be regarded as an algebra of skew differential (or difference) operators on the coordinate
ring of quantum n -space.

The construction of both Al>A and siltA involves parameters q,, 1 < i < n and A,-,-,
l < i < ; < n . Let G(A,q) be the subgroup of the multiplicative group of the base field k
generated by these parameters. The conditions that we impose on the parameters are that
the ranks of certain subgroups of G(A, q) should be maximal. Under these conditions, in
both /4Jj>A and J$j'A, every nonzero prime is generated by a normalizing sequence of
generators and we give an explicit description of these sequences. However there are
some significant differences between the two cases. In s$%tA, provided n > 1, the spectrum
is finite and every nonzero prime ideal is generated by a subsequence of the sequence
Z\,Z2,• • • ,zn. Thus the maximal length of a chain of prime ideals is n. On the other hand,
in A%-x there are always infinitely many maximal ideals and they have height 2n. However
the number of nonmaximal prime ideals is finite. One interesting feature is that there is a
unique prime ideal of height In — 1. This is consistent with the known spectrum for the
first quantized Weyl algebra A\ [4, 8.4] and it is also closer in nature to that for the
coordinate ring of quantum space under the analogous conditions on the parameters.

In the remainder of Section 1, we establish the basic terminology for the rings to be
considered later in the paper. Sections 2, 3 and 4 will discuss the prime ideals of the
coordinate ring of quantum space, of s$?n'

s and A%-A respectively. The results on AfA have
been obtained independently by Rigal [14] under stronger conditions on the parameters.
Although there are inevitable common features, Rigal's method, which is based on [7,
Theorem 11.1], is essentially different. There are also features in common with the work
of Goodearl and Lenagan [5] on catenarity and with the work of Oh [13] on the primitive
ideals of the coordinate ring of quantum symplectic space.
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We thank the referee for some helpful suggestions, in particular, the inclusion of
Corollary 3.5.

1.2. Quantum n-space. Throughout, k will be an algebraically closed field and k*
will denote the multiplicative group of k.

Let R be a /c-algebra and let r,s s R and q e k*. We say that r ^-commutes with s if
rs = qsr. More symmetrically, we say that r and s semicommute (with each other) if r
^-commutes with s for some q e k*.

Let A = [A,y] be an n x n matrix of nonzero elements of k such that each A,, = 1 and
\jj is always equal to A^1- We denote by A(A) the fc-algebra generated by n
indeterminates xh 1 < / <n , subject to the semicommutation relations

This algebra is now usually called the coordinate ring of quantum n -space. Each x, is
normal in A(A) and we denote by P(A) the algebra obtained by inverting each *,. These
are the algebras considered in [11].

1.3. Iterated skew polynomial rings. Both v4JjA and j^fA arise from the construc-
tion of iterated skew polynomial rings studied in [9]. Here we describe this construction in
the generality appropriate to this paper. For full details and for justification of the
statements made below, see [9].

Let A be a /c-algebra with two commuting k-automorphisms, a and y, such that there
exists a nonzero normal element v of A with va = y(a)v for all a e A. Let /3 = a~1y, let S
denote the skew polynomial ring A[y; a] and extend /3 to 5 by setting /3(y) = py for some
nonzero p e k. There is a /3-derivation 8 of 5 such that 8{A) = 0 and 8(y) - v. Let
R = R(A,a,v,p) be the iterated skew polynomial ring A[y; a][x;{l, 8]. Thus, for all
a E A,

ya = a(a)y, xa = fi(a)x, xy-pyx = v.

In this paper, we assume that p ?* 1 and also that a(v) = v. The relation xy — pyx = v can

then be rewritten xy - u = p{yx - «), where u = v. The element
1 - p

z = xy - yx = v + (p - l)yx = p~\v + (p - l)xy)

will be called the Casimir element of R. (This is a nonzero scalar multiple of the Casimir
element xy - u used in [9].) The following identities hold:

zy = pyz, zx = p~lxz, za = y(a)z Va e A.

Consequently z is a normal element of R inducing a k-automorphism a of R such that
o-(fl) = -y(fl) for all a G A, o-(y) = py and a(x) = p~lx.

1.4. Quantized Weyl algebras. The quantized Weyl algebra AlA in 2« variables
y\,Xi,... ,yn,xn studied in [1], [3], [5], [9] is obtained from the base field k by n
applications of the construction in 1.3. The first choice of v is 1 and, at each subsequent
application, v is the Casimir element from the previous application.
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The relations are as follows: for 1 ^ i <); ̂  n,

xtXj = qtXijXjXt, y,y, = A,,y,y;,

1=1

where A is as in 1.2 and g = {q\,q2,... ,qn) is an /i-tuple of elements of k\{0,1}. Thus
each y,- (resp. x;) semicommutes with each y,- (resp. *,) and, provided i¥=), with each *,
(resp. y,).

There are n normal elements

= 9."111

which semicommute with each of the generators and commute with each other:

Zj if j<i, (XiZj if j<i,
zx = l ZiZ> =

The last of the listed relations for A%tA can be rewritten

In the notation of 1.3, AlA = R(A«-*U an, zn-u qn), where

an:yi*+Ktyh Xi^kinXi.

The automorphism y = yn of y4f̂ i induced by zn-\ is given by

There is abuse of notation here in the use of the same superscripts for A%-A and A't--[. The
matrices of parameters for A^ are of course submatrices of q and A, so no confusion
should arise.

The subalgebra 0 generated by yi,y2. • . . ,yn is the coordinate ring A(A) of quantum
/i-space, the x,'s and z,'s act as partial g,-difference operators and automorphisms
respectively on 6, see [9, 2.9]. In particular, when n = 2, the actions of xu x2, y\, yi, Z\ and
z2 on a typical monomial y'^ in C are as follows:

z2:y\y'2 •-» (

1.5. An alternative quantized Weyl algebra. The alternative quantized Weyl
algebra j^fiA is also obtained from the base field k by n applications of the construc-
tion in 1.3 but with all choices of v taken to be 1. In the notation of 1.3, dlA =
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i-U an, 1, qn), where the rules for an are as in 1.4. As v is always 1, yn is always the
identity automorphism. The resulting relations are as follows: for 1 < / < ; < « ,

XjXj = XijXjXt, yjyt = A,-,.y,y;,

There are again n normal elements but with a more symmetric form

Zt = Xiyi -ytXi = 1 + (<7, - 1 )>>,*,• = q~\\ + (<?,- - l)jf,y,),

and more symmetric identities

_ fy/Zy if ; V i,

iqiyiZj if ] = i,

Ix,*, if; * i,
i XiZj if ] = i,

The subalgebra (51 generated by y\,yi-,- • • ,yn is again y4(A) and the xt's again act as partial
9,-difference operators on 0:

zi-.yiyi^iqiyiYyi, z

In comparison with the actions given above for AfA, the only changes are in the scalar
appearing in the action of x2 and in the automorphism for z2 which shows more symmetry.

1.6. Completely prime ideals. We list here two results which will be used to
establish that certain ideals are completely prime. The first is well known; see for example
[6, 2.1(vi)]. Given the restriction in 1.3 that v¥^0, the second is a special case of [9, 2.7].

LEMMA, (i) Let R be a ring with an automorphism a and an a-derivation 8 and let
S = R[x; a, 8]. Let I be an ideal of R such that a (I) = I and 8(1) g /. Then IS is an ideal of
S and there are an induced automorphism, also denoted a, of R/I and an induced
a-derivation, also denoted 8, of R/I. There is an isomorphism d:(R/I)[x;a,8]-+S/IS
with 6(x) = x and 6(r + I) = r + IS.

(ii) In the notation of 1.3, if A is a domain and R = R(A,a,v,p) then zR is a
completely prime ideal of R.

1.7. Localizations. In [9] it is shown that, for 1 ^ i < n, the set {yfy^i is a right and
left Ore set in A*>A. The same is true, for the same reasons, in stlA.

We denote by fif>A the localization of >lf>A obtained by inverting the n normal
elements z,, 1 < / < n. It is shown in [9] that, provided no qt is a root of unity, B%A is
simple with Krull and global dimension n. We denote the corresponding localization of
sdlth by 58f>A. The methods of [9] can be adapted to show that, provided no qt is a root
of unity, $$iA is simple with Krull and global dimension n. Alternatively, this follows
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from the corresponding result for BJJ'A because there is an isomorphism 0:58-J-A—*B%A

with 9:yi-+yr, Xj-+z7-\Xj, where zo= 1-

1.8. Skew commutator formula. The following formula, which holds for d>\, is
the special case of [9, 2.6(i)] appropriate to those rings of the form R(A,a,v,p) in 1.3
with a(v) = v and p # 1.

1 ~ P d-\
xy" - p"y"x = \-p vy

1.9. The Noetherian condition. All rings considered in this paper are either iterated
skew polynomial rings over a field k or are formed from such rings by taking
homomorphic images and/or localizations. By well-known results, see [7] or [12], they are
all right and left Noetherian.

2. Prime ideals of A(A). Proposition 2.2 below is very easy to prove. However it
establishes patterns for the hypotheses, results and methods in the subsequent sections on
quantized Weyl algebras. The method in 2.2 involves localization and the following
simplicity criterion for P(A) due to McConnell and Pettit [11].

2.1. PROPOSITION. / / n & 2 then P(A) is simple if and only if the only integers th
n

1 < i < n, such that II Aj) = 1 for all j are /, = 0.

2.2. PROPOSITION. For l < / < « , let G,(A) = (A,y:l ^ ; ^ n ) , the subgroup of k*
generated by the entries on the i-th row of A {or, equivalently, by the entries in the i-th
column of A). Suppose that each G,(A) has rank n — 1. Then every nonzero nonmaximal
prime ideal of A{A) is generated by a nonempty proper subset of {*,: 1 < * < n} and every
maximal ideal of A(A) is generated by xux2,•.. ,x,. - /x,...,xnfor some i, 1 <t < « , and
some ft e k.

Proof. The result is certainly true when n = 1 in which case A{A) = k[x^]. Let n > 1.
Under the stated hypothesis on G,(A), 2.1 applies to show that P(A) is simple. Thus every
nonzero prime ideal of A(A) must contain one of the normal elements xt. It is clear that
A{A)IXiA{A)~A{A') where A' is the (n -1) X (n -1) matrix obtained from A by
deleting row / and column i. Also, each G,(A') must have rank n - 2. The result follows
easily by induction.

2.3. REMARK. The condition that the rank of each G,(A) is n - 1 is significantly
weaker than the condition that the rank of the subgroup G(A) generated by all the entries
in A takes its maximal value, namely \n{n - 1). It is possible for the rank of each G,(A) to
be n - 1 but for the rank of G(A) to be n - 1 if n is even and n if n is odd. Examples for
n = 4 and 5 are as follows:

1
fl-1

b-1

c"1

a
1

c~l

b~x

b
c
1

fl'1

c
b
a
1

1
a"1

b~l

c"1

d"1

a
1

c"1

d"1

c
1

e - '
a ' 1

c
d
e
1

fc"1

d
e
a
&
1

Here a, b, c, d and e are elements of k* generating a subgroup of rank 5.
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For arbitrary n, an example can be constructed using an edge-colouring % of the
complete graph Kn on n vertices with a minimal number of colours. This number, mn, say,
is n - 1 if n is odd, see [2, p. 82]. Let ch l < / s m n , be the colours in <# and let ah

l < / < m n , be elements of k* generating a subgroup of rank mn. Let A be the n Xn
matrix satisfying the rules: each A,-,- = 1 and, whenever ; > i, A,y' = A;, = ar where cT is the
colour of the edge joining vertices i and;. Then, as no two edges of the same colour meet
at a vertex, none of the a,'s can appear twice in any column. Thus each G,(A) has rank
n — 1. We thank Victor Bryant for pointing out the connection with edge-colourings.

3. Prime ideals of jrfjj>A.

3.1. NOTATION. For s4%~A, the analogous condition on the parameters to that in 2.2
involves the subgroups //, = //,(A, q) generated by G, and qt. The maximal rank for each
of these is n whereas the maximal rank of the group H = //(A, q) generated by all the
parameters A,-, and qt is \n{n + 1). We shall show that if n > 1 and each Ht{A,q) has rank
n then every nonzero prime ideal of dlA is generated by a subset of the set {?,: 1 < / < «}
of normal elements. When considering such a subset Z, the symmetry in the defining
relations for s&lA allows us to assume, without loss of generality, that Z = {i\, z2, • • • , zm).
Throughout this section, we fix A and q and write s£n for s£%A. We let Pm denote the ideal
z, dn + z2sin +... + zms&n of sin.

It is cumbersome to use the standard overlining notation for images in factor rings of
An and sin so we shall often abuse notation and write, for example, y,- for the image of _y,
in a factor ring. We shall occasionally indicate such abuses by inserting the phrase "the
images of" in brackets.

3.2. LEMMA. For 1 < m ^ «, Pm is a completely prime ideal of s£n.

Proof. We first consider Pn. For \<i<n, 1 + ((7, - l)y,jc, = z, e Pn and 1 +
(<7, - l)jc,y, = qtZi e Pn so, modulo Pn, each y, is invertible with inverse (1 - g,)*,-.
Consequently, siJPn is isomorphic to P(A) which is certainly a domain. For 1 < m <n,
the elements Z\, Z2, • • •, zm generate a completely prime ideal of s&m and they are fixed
(resp. annihilated) by each of the automorphisms (resp. derivations) used in the
construction of sin from dm. It follows from 1.6(i) that Pm is completely prime.

3.3. PROPOSITION. Suppose that 1 < m < « and let T = &n\Pm. If each of the groups tf,
has rank n then the localization Tx of T at the multiplicatively closed set generated by the
images in T of the normal elements zm+u Zm+j, • • • ,zn is simple.

Proof. Let T = dnIPm. Each of the sets {y$jzi and {z%*\ is a right and left Ore set in
s$n, see 1.7, and the In elements y,, z, semicommute with each other. It follows that the
multiplicatively closed set generated by these elements y,, z,-, 1 < /^n , i s a right and left
Ore set in s£n. The image ^ in T of this Ore set is a right and left denominator set in T.
Let T2 denote the localization of T at ^ . For \<i<m, the image of y, is already
invertible in T and the image of zt is zero. Thus T2 is obtained from T by inverting the
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images of yt and z, for m +1 < / < n. It is generated, as a /c-algebra, by (the images of)
yt\ yi\-- • ,y*\ Zm'+i, Zml+2,-- • and z*1 subject to the relations

Thus T2 - P(A*) where Af is a (2n - m)x(2n - m) matrix of the form

Lr* ©J
Here T is nx(n—m) with all entries equal to 1 except that, for m + \<i^n, the
(i,n + l)-entry is q~\ F* is obtained from T by inverting all the entries and taking the
transpose and 0 is (n - m) x (n - m) with all entries equal to 1. As each //, has maximal
rank, it follows from 2.1 that T2 is simple. For 0 ^}' :£ n - m, let Uj be the localization of 7,
obtained by inverting ym+u ym+2,... ,ym+j. Thus Uo= Tx and £/„_„, = T2 is simple. Let
; > 0 and suppose that U} is simple. Let / be a nonzero ideal of f/;-_i and let y = ym+i,
x =xm+J and q =qm+j. By the simplicity of Uh which is obtained from L/y-_, by inverting
the powers of y, yd e / for some d ^ 0 and we choose the minimal such d. The formula 1.8
gives

As q cannot be a root of unity, it follows that yd~^ e /, contradicting the minimality of d
unless d = 0. Thus 1 si and so £/,_] is simple. By induction, each [/, is simple and in
particular Uo = 7i is simple.

3.4. PROPOSITION. If n>\ and each of the groups //,(A,q) has rank n then every
nonzero prime ideal P of s$n

A is generated by a non-empty subset of the set of normal
elements {z,: 1 < / < « } .

Proof. In 1.7, we observed that the localization S8f'A is simple. Hence z, e P for some
i. By symmetry, we can renumber so that, for some m, Zi,z2,.-.,zmsP and zm+],
zm+2, • • •, zn $ P. Thus Pm g P. By 3.3, the localization of dnlPm obtained by inverting the
(images of) the normal elements zm+], zm+2, • • • ,zn is simple so if P^Pm then P must
contain z; for some ; with m<j^n, contradicting the choice of m. Thus P = Pm and,
undoing the reordering, P is generated by a non-empty subset of fc:lsi<n}.

3.5. COROLLARY. Under the hypotheses of3A, every prime ideal of s&lA is (right and
left) localizable.

Proof. As the prime ideals are all generated by normal elements they have the (right
and left) Artin-Rees property, see [12, Theorem 4.2.6]. By Noetherian induction all ideals
have the Artin-Rees property and the result follows from [12, Theorem 4.2.11(i)].

We shall see in 4.13(v) that the analogous result for A%A is false.

4. Prime ideals of A%A. Throughout this section, we fix A and q and write An for
AlA. The prime spectrum of An is more complex than that of MlA. Considerations of
symmetry, as in Section 3, do not apply to A%A. Moreover, the ideals analogous to those
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in 3.2 need not be prime. For example, the ideal generated by the normal elements Zi and
z2 is not prime.

4.1. LEMMA. Let I be an ideal of An and let 1 < / < «.
(i) //y, s I or Xj e I then z, e / and, provided i > 1, Zt-\ e /.
(ii) Ifi>\, Zj-i e / and z,- e / then, modulo I, Jt,y,- = 0 = )>&.
(iii) / / Zj e / or ifi>\ and z,-i e I then x, and y,- are normal modulo I.
(iv) Suppose that I is prime and that i > 1. / / z, e / and z,_i e / then y, s I or xt e /.

Proof, (i) and (ii) are consequences of the identities

Xiyi-<iiyiXi = Zi-u

zt = xtyi - yiXj = Zi-i + (<?, - 1)37*/,

These also show that if z,- e / then JC, and y,- commute modulo / and if zt-\ e / then X, and y,-
semicommute modulo /. (iii) follows because y,- (resp. xt) semicommutes with each of the
generators of An except x, (resp. yt). Finally, (iv) is immediate from (ii) and (iii).

We shall see that every nonzero prime ideal of An has a normalizing sequence of
generators, that, as was the case in Sections 2 and 3, there are only finitely many
nonmaximal primes and that, as was the case in Section 2 but not in Section 3, there are
infinitely many maximal ideals. We begin with a definition which describes the
normalizing sequences for the nonmaximal primes.

4.2. DEFINITION. For a subsequence S of the sequence

N'-={zuy\,xuz2,y2,x2,... ,zn,yn,xn}

and an integer / with 1 < i : ^ n , we say that / features in S if at least one of Zi,yt, xt is in 5.
By a p-sequence, we mean a subsequence 5, possibly empty, of N with the following
properties:

(i) if Zi e 5 then / - 1 does not feature in 5;
(ii) if y, e S or Xj e S then / - 1 does feature in 5.

Thus a p-sequence is the concatenation of a set of subsequences 5, such that the set of
subscripts featuring in 5, is consecutive, each 5, begins with zr. but contains no other z{ and
there is a gap between the largest subscript featuring in 5,- and the smallest one in 5,+]. An
example is {z2,x3,yA,x4, Ze,yi}- The number of terms in a p-sequence S will be called the
length of S and will be written len(S).

4.3. LEMMA. Let S be a p-sequence and let P be the right ideal of An generated by S.
(i) For 1 < / < 7i, if i features in S then z, e P.
(ii) P is an ideal of An and S is a normalizing sequence of generators for P.

Proof. If i features in 5 then there exist integers / s i and m ^ O such that / - 1 does
not feature in S ( o r ; = 1), / , ; + 1 , . . . , / + m feature in 5 and i=j + m. Thus Zj e S and,
for j < s <y + 77i, xs e 5 or y, e S. As zs = zs-i + (qs ~ l)yA and qszs = zs-i + {qs ~ l)xsy,,
it follows that each zs e P, in particular z, e P. Thus (i) holds, (ii) is immediate from (i),
4.1 (ii) and the normality of the elements z,.
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4.4. Inductive methods. Suppose that n>\ and let S' = S nAn-i which is a
p-sequence in -<4n-i and hence, by 4.3(ii) is a normalizing sequence in An-i. Let Q be the
ideal of An-i generated by S' and let B=An-JQ. The ring An has the form
R(An-ua,zn-\,qn) = An-l[yn;a][xn;P,8] of 1.3 with a specified in 1.4. In particular,
each yh Xj and z,- are eigenvectors for both a and j8, 8(An-{) = 0 and S(yn) = zn-\- It
follows that Q is invariant under each of a, the automorphism y induced by zn-i,
B = ya~l and 8. By two applications of 1.6(ii), QAn is an ideal of An and, with the
convention on induced maps as in 1.6, AJQAn — B[yn; a][xn;B, 8]. The next lemma
makes explicit the relationship between the rings An/P and An-JQ and is the basis for
inductive proofs on the prime ideals of An.

LEMMA. Let S be a p-sequence in An.
(i) Ifn does not feature in S then P = QAn, AJP = B[yn; a][xn; B, 8], zntP,yn$P

and xn $- P.
(ii) Ifxn BSandyntS then P = QAn+ xnAn, AJP = B[yn; a] and yn * P.
(iii) Ifyn e 5 and xn * S then P = QAn+ ynAn, AJP = B[xn; B] and xn e P.
(iv) Ifyn E S and xn e S then P = QAn+ ynAn + xnAn and AJP = B.
(v) IfzneS then P = QAn + znAn, yn * P and xn*P and AJP = /?/*„/?, where, in

the notation of 1.3, R = R(B, a, zn-\, qn)-

Proof. The relationships between P and Q are immediate from the definitions and
(i)-(iv) follow easily using the isomorphism AJQAn ~B[yn; a][xn;B, 8]. For (v),
suppose that zn e 5. Then, by definition of p-sequence, n - 1 cannot feature in S'. By (i),
Zn-i S Q- Thus (the image of) zn-\ is a nonzero normal element in B and AJQAn =
B[yn\ a][xn; B, 8] = R(B, a, zn-u qn) = R. Hence AJP = Aj{QAn + ZnAn) - R/ZnR.
Viewed as a polynomial in xn over B[yn; a], zn has degree 1 and a noninvertible leading
coefficient {qt - l)yn. Hence xn $. znR and, similarly, yn & znR. Applying the isomorphism
R/znR =AJP, yn*P and xn * P.

4.5. PROPOSITION. Let S be a p-sequence in An and let P be the ideal of An generated
by S. Then P is completely prime.

Proof. This is certainly true when n = 1, in which case {zj is the only nonempty
p-sequence and Z\AX is a completely prime ideal, with factor isomorphic to ^[yf1].
Inductively, we may assume that if 5' = 5 n>ln_, and Q = S'An^ then B =An-JQ is a
domain. In each of the cases (i)-(iv) in 4.4 it is immediate that AJP is a domain while in
4.4(v), 1.6(ii) applies to give the same conclusion. By the definition of p-sequence these
five cases are exhaustive so, by induction, P is always completely prime.

4.6. LEMMA. In each of the cases listed in 4.4, P n An.: = Q. Hence, for 1 < / < n,
(i) Zi e P if and only if i features in S,
(ii) yt e P if and only ifyt e S,
(iii) Xj e P if and only if xt e S.

Proof. It is routine to check that PP\An-x = Q in each case. Hence we have
P D Ai = (5 n A,)A, for 1 < i < n. For (i) the "if" part is 4.3(i) and for (ii) and (iii) the " i f
parts are obvious. The "only if" parts hold for the case i = n by 4.4 and for lower values
of i because P D At = (5 n Ai)At.
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4.7. The maximal p-sequence. Let S be the p-sequence Z\, yr, x2, yz-> *3> • • • J-n *n
and let M = SAn. By 4.1(i), z,- e Af for all i. Hence if T is any p-sequence and P is the ideal
generated by T then P c M. We shall call 5 the maximal p-sequence in An. Note that, by
n - 1 applications of 4.4(iv) and one of 4.4(v), AJM = k[yf^\ It follows that there are
infinitely many maximal ideals of An of the form Af + (y, - /x)An, /i, e &* and that these
are the only prime ideals of An strictly containing M.

4.8. Localizations. We aim to show that, under conditions on the parameters,
similar to those in 3.4, every nonzero nonmaximal prime ideal of An is generated by a
p-sequence. Our method is similar to that in Section 3 and involves certain localizations 7̂
and T2 of AJP where P is as in 4.3. The conditions on the parameters will be stronger
than in 3.4 in that the subgroup G(q) of k* generated by the parameters qh 1 < J < « ,
should also have rank n.

Let 5 be a p-sequence in An, let P be the prime ideal of An generated by S and let T
be the domain AJP. Let

C(S) = {z,: z, « P) U {yt,: y , * P and z,- eP}U {x, :x,*P and z,- e P}

and let D(S) = C(S)U{yt'.y,< $. P}. If z, e C(5) then, as z,- semicommutes with each
element of 5 and is normal in An, z,- is normal modulo P. Also, if y, e C{S) then y,- is
normal modulo P by 4.1(iii). The same is true of x,. Thus each element of C(S) is normal
modulo P. As Xj can only be in C(S) when z,- G P, in which case x, commutes with y,
modulo P, the elements of C(S) all semicommute with each other modulo P. Therefore
the set of images in T of elements of the form fic{'c'i... c£, //, e k*, c, E C(S), /, s 0 is a
right and left Ore set in T. Let Tx denote the localization of T at this set. Thus Tx is
obtained from T by inverting the elements of C(S), each of which is normal modulo P.

Now consider yt e D(S)\C(S). By 1.8, {y%z\ is a right and left Ore set in An and so
its image is a right and left Ore set in the domain T. As with C(S), the elements of D(S)
semicommute with each other modulo P and the set of images in T of elements of the
form y,d>ld'i... d{; y, e k*, dt e D(S), /,• > 0 is a right and left Ore set in T. Let T2 denote
the localization of T at this set. Thus T2 is obtained from T by inverting the elements of
D(S) and from Tx by inverting those elements y, such that y, g P and z, g P.

4.9. PROPOSITION. Suppose that each of the groups Ht(A,q) and G(q) has rank n. Let
S be a p-sequence in An, let P be the prime ideal of An generated by S and let T be the
domain AJP. If S is nonmaximal then the localization T2 specified in 4.8 is simple.

Proof. As T is generated by (the images of) those elements y, and xt not belonging to
P, the localization T2 is generated by these elements together with the inverses of the
elements in D(S). Let T'2 be the subalgebra of T2 generated by (the image of)
E(S)U{e-l:eeE(S)}, where

E(S) = {y-yt t P] U {Zi:z, e P} U {x, :x, e P and y,- e P}.

Note that if *, g P but y, e P then z, e P so x, e D(5) and therefore T'2 is indeed a
subalgebra of T2. We claim that T2 = T'2. Clearly (the images of) each z, and y, are in T2,
as are z,"1 if z, e D(S), y~l if y, e D{S) and x, if x, £ P but y, e P. Suppose that x, £ P and
y,-gP. Then y,"1, zt, zt-i e T'2 so x,- = ( ( ? , - l)yd~\Zi — z,--i) e ^2- Furthermore, if
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*, G D(S) then Zl e P and, by 4.1(iv), z,_, * P, so *, = ((g,
(1 - qt)z7-iyi e T2. It follows that 72 = T'2.

Let 5' = S nAa.i and let Q = S'An^ as in 4.4. Note that, by 4.6, E(S') = £(5) n
y4n_!. We rewrite the elements of E(S) as iV], M>2,... , wm, say, where w\ > w2 > •.. > wm

in the ordering

yi> Zi> x}> y2> z2> x2>... > yn> zn> xn.

Then E(S') = {w,, vv2,... , wr} for some r^m. Note that ^ cannot be in P so wx=yv

The elements of E(S) semicommute according to the rules

and

%z if ]** iMZj if j ^ i, r Iq, %zj if ]** i,

from 1.4. Note that y, and x, cannot both appear in E(S).
Let A = [djj] be the mX. m matrix determined by the rule

and let A+ be the corresponding r x r matrix for E(S'). We claim that the algebra P(A) is
simple. As T2 = T2 is a homomorphic image of /^A), it will follow that T2 is simple. We
shall establish the simplicity of P(A) by induction on n. When n = 1 the only nonmaximal
p-sequence 5 is empty, E(S) = {y^ z j and

In this case, P(A) is certainly simple.
Now suppose that n>\. Note that the condition on the parameters must hold in

y4n_, otherwise it would fail in An. By induction, we can assume that either P(Af) is
simple or that 5' is the maximal p-sequence in An-X, in which case r = \ and A+ = [l].

m

With a view to applying 2.1, let th 1 ^ i: ^ m, be integers such that FJ d(j = 1 for all;. We
consider separately the cases (iv)-(v) of 4.4.

(i) If n does not feature in S then £(5) = £(£') U {yn, zn},m = r + 2 and

-E a-
F is r x 2 and F* is obtained from F by inverting the entries and taking transpose. Each of
the entries d,,m_i, 1 < / < r, arises from the semicommutation of yn with either yt, Zi or xt

for some i < n and so is one of A,,,, 1, Am, / < n. Also dm_]?m_i = 1 and dmim_i = qn. As //„
has maximal rank, it follows that tm = 0. Each of the entries d^, 1 < i < r, arises from the
semicommutation of zn with either yh z, or x, for some i < n and is one of qjl, 1, qh i < n.
As dm-i<m = q^1, dmm = 1 and G(q) has maximal rank, it follows that tm-j = 0. Hence
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r

PI d'lj = \ for each ;, l < / ' < r . In the case where 5' is nonmaximal it follows from the
/=i

simplicity of P(A+) that each r, = 0 and hence that P(A) is simple. When 5" is maximal,
m = 3, £(5) = {yuyn,zn} and

A =
1 A in q\- i

The maximality of the rank of G(q) shows that tx = r2 = 0 = r3 and hence that P(A) is
again simple.

(ii) If xn e S and yn <$. S then £(5) = E(S') U {yn}, m = r + 1 and

where F is r x 1 and F* is obtained from F by inverting the entries and taking transpose.
Here dmi = Anl. Each entry dn, l < / < r , arises from the semicommutation of yt with
either yh z,- or xt for some / < n and is one of An, qu q\Xu, i < n. As Hi has maximal rank,
it follows that tm = 0. In the case where 5' is nonmaximal it follows, as in (i), that /'(A) is
simple. When 5' is maximal, m = 2, E(S) = {y\,yn},

r i Atai
LA,, , I J

and it is easy to check that P(A) is again simple.
(iii) If yn e S and xn ? S then E{S) = £(S') U {*„}, m = r + 1. In this case P(&) is

again simple, the details being much as in (ii) but with dml = <7iAln.
(iv) If yn E S and xn e S then £(5) = £(S'), m = r and P(A) is simple except in the

case where 5' is the maximal p-sequence in An-V In the exceptional case, S = S' U {yn,xn}
is the maximal p-sequence in An.

(v) If zn e S then again £(5) = £(5') U {yn}, m = r + \ and, as in (ii) P(A) is simple.
This completes the inductive proof that, provided S is nonmaximal, P(A) is simple. It

follows that 7*2 = P(A) is simple.

4.10. PROPOSITION. Under the hypotheses of 4.9, // 5 is nonmaximal then the
localization Tx specified in 4.8 is simple.

Proof. The ring T2 is obtained from T} by inverting those elements yt such that yt $ P
and Zi £ P. List these as yh, yh,... ,yis, say. Note that, by 4.1(i) and 4.1(iv), xtj g P and
Zir\ $. P for 1 ^j^s. Thus each zir\ is invertible in 7}.

The proof that 7, is simple is similar to the last step in the proof of 3.3, with ym+\,
ym+2,- • • ,yn replaced by yh, yi2,... ,yis. Thus, if Uj is the localization of 7", obtained by
inverting yk, yh,... ,y,. then Uo= Tu Us = T2 is simple by 4.9 and 1.8 can be applied to
show that each Ut is simple and in particular that Uo = Tx is simple. The appropriate case
of 1.8 is
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where y = ytj, x = xti and q = qt. As q cannot be a root of unity and z,-._i is invertible in Tu

this can be applied in the same way as the corresponding formula in 3.3.

4.11. PROPOSITION. Under the hypotheses of 4.9, let S be a nonmaximal p-sequence
and let P be the prime ideal of An generated by S. Let P' be a prime ideal of An strictly
containing P. Then there exists a p-sequence S' with len 5" = len S + 1 and with

Proof. By 4.10, the localization Tx of AJP is simple. This localization is obtained by
inverting the elements of C(S) which are all normal. Hence P' contains an element r of
one of the forms z,-, where z,- £ P, yt, where yt e P and z, e P or *,, where x, g P and
z, e P.

Suppose that r = z,. Then / does not feature in 5 by 4.3(i). A p-sequence S' with the
required properties can be obtained in one of the following ways,

(i) If neither / - 1 nor / + 1 features in S then insert z, in S.
(ii) If / — 1 features in 5 but i + 1 does not then z,_j e 5 and, by 4.1(iv), P' contains

either xt or y,. Insert either *, or y,- in S.
(iii) If i + 1 features in 5 but / - 1 does not then zi+\ e S and, by 4.1(iv), P' contains

either xi+i or y,+1. Replace z/+1 by z,, yi+i or by z,, x/+1 as appropriate.
(iv) If / — 1 and / + 1 both feature in S then, by 4.1(iv), P' contains either xi+] or y,+1

and either xt or y(. Replace z1+, by xh xl+u by yt, xi+u by xt, yi+1 or by yh yi+l as
appropriate.
Now suppose that r = _y, or r = xt where z, e P. Thus i features in 5 by 4.6(i) and z,-i e P'
by 4.1 (i). A p-sequence 5' with the required properties can be obtained in one of the
following ways.

(i) If neither / - 1 nor i - 2 features in 5 then z,- e 5. Replace it by z,--i, r.
(ii) If / - 2 features in S but i - 1 does not then z, E S and, by 4.1(iv), P' contains

either *,•_] or y,-_i. Replace z, by Xj-U r or by y,_i, r as appropriate.
(iii) If / - 1 features in 5 then insert r in S.

4.12. PROPOSITION. Suppose that each of the groups Ht{h.,q) and G{q) has rank n.
Every nonmaximal prime ideal of An is generated by a p-sequence and every maximal ideal
of An has the form M + (y^ — n)An where M is generated by the maximal p-sequence in An

and fi e k*.

Proof. Let P' be a prime ideal of An. Let 5 be a p-sequence of maximal length
contained in P' and let P be the prime ideal of An generated by 5. Thus P <= P'. If S is not
the maximal p-sequence then by 4.11 and the maximality of len(S), P' = P. On the other
hand, if 5 is the maximal p-sequence then, by 4.8, either P = M or P = M + {yl- fx)An for
some n e k*.

4.13. REMARKS, (i) Note that, unlike the situation in Section 3, the spectrum in the
case n = 1 is typical of the general case.

(ii) Under the hypotheses of 4.12, the maximal ideals of An have height 2«, whereas,
in 3.4, those of sin have height n. In An the ideal generated by the maximal p-sequence is
the unique prime of height In -1 and contains all the nonmaximal primes. In sin, there
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are 2" prime ideals including a unique maximal ideal. Rigal [14, 3.16] computes the
number of nonmaximal primes in An which is \{{2 + V2)n + (2 - V2)n).

(iii) Let Po c P1 a... a. Pm be a saturated chain of prime ideals of An. Under the
hypotheses of 4.12, PQ is generated by a p-sequence of length /, say, and Pm is generated
either by a p-sequence of length h, say, or by the maximal p-sequence together with
yx - ix for some /x, in which case we set h = 2n. In the latter case, Pm-X must be generated
by the maximal p-sequence, which has length 2/i - 1. By 4.11, each Pit l^i<m is
generated by a p-sequence of length / + / and so the chain has length h-l. Thus An is
catenary. Goodearl and Lenagan [5, 3.13] have proved the catenarity of An under the
more general hypotheses that no qt is a root of unity.

(iv) We have seen that, under the hypotheses of 4.12, every prime factor AJP of An

is a Noetherian domain with a localization isomorphic to the /c-algebra P(A) for some
mXm matrix A and some m ^ 1. Hence the quotient division ring D of AJP is
isomorphic to the quotient division ring of the coordinate ring A{h) of quantum m-space.
Cauchon [3, II.2.1] has shown that if the group H is torsion-free and D is the quotient
division ring of a prime factor of An then there is a field extension K of k such that D is
isomorphic either to K or the quotient division ring of the coordinate ring of quantum
m -space over K for some m.

(v) The analogue of Corollary 3.5 for An is false. As the elements appearing in a
p-sequence semicommute with each other, the nonmaximal prime ideals have the
Artin-Rees property by [12, Theorem 4.2.7(i)]. However the maximal ideals do not have
the Artin-Rees property and are not localizable. To see this, let P = M + (yx - fi)An be a
maximal ideal as in 4.12, and let a be the automorphism of An induced by zu that is
Z\a = a(a)zi for all a e An. Then a(yx - /i) = qxyx - fi g P. It follows from [8, Proposi-
tion 1] that P does not have the Artin-Rees property and is not localizable.
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