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The free topological group

on a cell complex

J.P.L. Hardy

It i s proved that the free fc-group on a CV-complex X i s

i t s e l f a CV-complex containing X as a subcomplex. I t follows,

as a corollary, that the free topological group on a countable

CV-complex is a countable CV-complex.

1 . Introduction

The work of [5] and [7 2] shows that if X is a fe-space such that the

cartesian product X x X is not a fc-space, then the free topological

group F(X) is not a fe-space. In particular, then, if X is Dowker's

CV-complex [2] the free topological group F(X) is a priori not a CV-

complex, since it is not even a fe-space. However, the cartesian product

of two countable CV-complexes is always a countable CV-complex. So it

would seem more reasonable to ask if the free topological group on a

countable CV-complex is a countable CV-complex. In fact we answer a more

general question here; by working wholly in the category of ft-Hausdorff

fe-spaces we prove that the free fe-group on any CV-complex is itself a

CV-complex containing X as a subcomplex. As a corollary, we then obtain

that the free topological group on a countable CV-complex is a countable

CV-complex.

This investigation was precipitated by a question of Calder, and

complements work of [70], which proved that the free product of topological

groups which are countable CV-complexes is also a countable CV-complex.
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2. Results

Before s ta t ing any r e s u l t s , we reca l l the basic definit ions and make

some preliminary remarks on k-spaces.

A topological space AT i s a k-space i f a subset A of X i s closed

in X whenever / (A) is closed in C , for each compact Hausdorff space

C and each continuous map / : C -*• X . There i s c lear ly a category kx

of k-spaces and continuous maps, and a functor k : topx •»• kx , from the

category of a l l topological spaces to kx , which assigns to each

topological space X the k-space kX obtained by giving the set X the

f ina l topology with respect t o a l l continuous maps / : C -*• X from any

compact Hausdorff space to X . kx also has a product x , , which where

no confusion ar ises wi l l be written just x . A topological space X i s

k-Hausdorff i f for each compact Hausdorff space C and each continuous map

/ : C -*• X , f{C) i s closed in X . Notice that a k-space X i s

k-Hausdorff i f and only i f the diagonal Ax = {(x, x) : x € X) i s closed

in X x . X . Throughout t h i s paper, a l l spaces considered wil l be

k-Hausdorff unless otherwise s tated. In par t icu lar , a CW-complex i s a

k-Hausdorff space which i s a closure f in i te cell-complex with the weak

topology. For further information the reader is referred to [2, 4, 6, 9,

a n d 112.

A k-group i s a group object in the category kx ; that i s , a group

G whose underlying set i s a (k-Hausdorff) k-space and whose structure

functions $ '• G x^ G •*• G , a : G -»• G are morphisms in fcx . The (Graev)

free k-group [ 3 , 4, and 112 on a pointed k-space (X, e) consists of a

k-group FG(X) together with a continuous pointed map i : X •*• FG{X)

which i s universal for continuous pointed maps from X into k-groups;

tha t i s , if f : X -*• B i s any such map then there i s a unique morphism of

k-groups / * : FG(X) •* B such that f*i = f . FG(X) i s independent of

the choice of base point , contains X as a closed subset and is

algebraical ly jus t the free group on the set X\{e) .

Our main resu l t i s

THEOREM 1. The (Graev) free k-group FG(x) on a CW-complex X is

itself a CW-complex, and contains X as a subcomplex.
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The proof i s given in §3.

The (Markov) free k-group [4 and £] on a k-space AT i s a fc-group

FM(X) together with a continuous map i : X •* FM{X) such that i f

f : X -*• H i s any continuous map into a fc-group H then there i s a unique

morphism of fc-groups /* : FM(X) ->• H such that f*i = f . By checking

universal proper t ies , i t i s easy to prove that i f X i s any fc-space, then

there i s an isomorphism of fe-groups FM(X) = FG(Xue) , where X u e i s

the disjoint union of X with a singleton space {e} . Thus Theorem 1

gives us

COROLLARY 2. The (Markov) free k-group FM(X) on a CW-complex X

is also a CW-aomplex, containing X as a subcomplex.

We can now obtain a version of Theorem 1 in the usual topological

category by a standard argument. A k -space [/ , 4, 7, and J.0] i s a

Hausdorff topological space X which has a countable covering by compact

sets X- c y c . . . c x c . . . such that X has the weak topology with •

respect to {X } . Examples of k -spaces are compact Hausdorff spaces,

connected local ly compact topological groups, and (most important for our

purposes) countable CV-complexes. I t i s clear that any k -space is

necessarily a k-space.

The (Graev) free topological group [1 , 3, 4, 5, 7, and 11] on a

pointed topological space i s , of course, defined in a similar way to the

(Graev) free k-group on a pointed k-space, and i t i s routine to deduce

from the construction of the (Graev) free k-group (cf. [ ?? ] , Theorem 2,

and [4 ] , Chapter I I I , %h) that i f X i s a k -space, then the (Graev) free

k-group FG{X) i s also the (Graev) free topological group on X . But, in

the proof of Theorem 1, we wil l see that if X i s a countable CV-complex

then FG(X) i s also a countable CJ/-complex; so that Theorem 1 again

gives

COROLLARY 3. The (Graev) free topological group FGix) on a

countable CW-complex X ie iteelf a countable CV-complex, and contains

X as a subcomplex.

A similar resul t for (Markov) free topological groups can be deduced

from Corollary 3 in the same way as Corollary 2 was deduced from Theorem 1.
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3. Proof of Theorem 1

I t i s clear that we can choose the base point e € X to be a 0-cel l

without loss of general i ty . Let X~ be a homeomorphic copy of X with

elements x for each x € X , and le t X denote the wedge product

X v X~ . Then by the adjunction theorem for CJ/-complexes ( [ 6 ] , p . 62,

Theorem 5.11), the obvious ce l l -s t ructure induced on X by the c e l l -

s t ruc ture on X makes X a CV-complex containing both X and X as

subcomplexes. Now l e t X be the product in kx of n copies of X ,

and l e t Y - A /R , where R i s the equivalence relat ion generated by

i1 i2
x i - \ ' x i ' x i + l ' xi+2 ' ••••> xn

E l E i -2 ^ - 1 e i + 2 Enl
l ' •*•» xi-2 ' X i - 1 ' e ' e ' Xi+2 ' * - * ' xn J

£ i -2

i+ l iwhenever x . . . = x . , 1 S i < n . Final ly , l e t G be the subset of
I+X If 71

FG(X) comprising a l l the "reduced words" of length at most n (that i s ,

words x , . . . , x in FG(X) such that x . / x . for any

1 £ i < n , and x . t e for any l i t S « ) . Then i t i s proved in [ H ] ,

Corollary 1 ( e / . also [ 4 ] , Chapter V, Theorem 3.1) that each G i s closed

in FG(X) , and FG(X) i s the i terated adjunction space

G, c £ c . . . c G c . . . , with G = G , u_ 7 , where the attaching
1 — 2 — — n — n n-1 Jn_-|_ M

X \ * * x " adm a p fn-l : X n - i - G n - 1 i s g i v e n b y K ' • • • ' Xn

>1 i s the subspace of Y consisting of a l l words x , . . . , x

which have an "e" somewhere.

Thus to prove Theorem 1 i t is sufficient to prove that each G i s a

CW-complex containing G as a subcomplex. This we do by induction.
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Firs t we observe that G = X = X v X~ is a CW-complex. Then for the

inductive s tep, we assume that G is a Cf/-complex; so tha t , again by

the adjunction theorem for CV-complexes, i t remains only to prove

PROPOSITION 4. For each n > 1 , the space ?n is a CW-complex

containing A as a subcomplex.

We wil l need the following lemma. Let i be the closed unit m-cube

in K , and le t S be the equivalence relat ion generated on l by

whenever t. = t. , , 1 £ £ < n . Then

LEMMA 5. There is a cellular decomposition of I such that S is

a cellular equivalence relation (cf. [6], p. 32).

Proof. Before describing the cellular decomposition of I , we

introduce some new notation. The intersection of a p-cell P with a

q-cell Q , p 5 q , will be called an embeddable intersection if P n Q

is also a p-cell, and will be called a non-degenerate intersection if

P n Q is a (p-l)-cell. Of course an embeddable intersection is

necessarily degenerate.

For each l £ i , j < m , i ± j , let L. . denote the hyperplane

{(a;., — , i j : x, = x •} in i . Then the m-cells of 1 are the m\
J. fit V Q

portions into which the L .• divide / .

Now let M. = {(xn, ..., x) : x. = o} and
fc' J . Tit ir

Ni ~ Mxi' " *' xn) : xi = 1 1 ' 1 - ^ £ m » b e t n e faces of / " ; so that

in the "usual" decomposition of i the M., N. are precisely the

(m-l)-cel ls . Then the (m-l)-cells in our "new" decomposition are a l l the
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embeddable intersections of the L.., M,, N- with the m-cells.

Notice that the (m-2 )-cells in the usual decomposition of 1 are

just the faces of the (m-l)-cells, namely all the non-degenerate

intersections of the M. and N. . Similarly, in the new decomposition of

I , the (m-2)-cells are al l the non-degenerate intersections of the

L . ., M,, N7 with the (m-1 )-cells. We can now proceed inductively

constructing the (m-r)-cells of the new decomposition of 1 as all the

non-degenerate intersections of L. ., Mv, ff7 with the (n-zH-l)-cells.

The O-cells in this decomoosition of I are of course the same as in the

usual decomposition; that i s , the "corners" of i .

It is obvious that l with the above cell-structure is a

CW-complex, and routine to verify that the equivalence relation S is a
m

cellular equivalence relation with respect to this cell-structure.

Proof of Proposition 4. First we construct a cell-structure for ¥ .

Let X have the cell-structure described above, so that $ : X -*• X ,

given by x •* x~ and x~ + I , is a regular homeomorphism. Then for

any m-cell a : i •* X , the composite l — • X -^+ X is also an m-cell

for X , which by an abuse of notation we denote a : 1 ->• X .

m. _ _
Let a. : I v -*• X , 1 S i < n , be any m.-cells of X . If

a. # 0~. for any 1 2 i < n , then we have a diagram
"Z* > 1 "V

m m 5 x...xo _ _
J x...xjn — ?-+Xx...xX

P
n

in which P : A -*• I is the canonical quotient map associated with
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mm m
R ; and s o O = p ( 5 x . . . x o 1 : J x . . . x j n - * y i s an

n v 1 n' n

[m. + ... + m 1-cell for Y . Conversely, if a.^, = a~. for somev J. n' n t-+i i

1 £ i < n , then we have a diagram,

m. w a x . . . >
I x xr n l

7
n

where 5a is the equivalence relation generated by

whenever a. = 5T and *•.,=*,•» 1 S £ < n , and

x ... x j n\/S Q •* Y is the unique map induced by

m m
pn[a1 x ... x 5 ) : J x ... x j n ̂  y . But by Lemma 5, 5a is a

( m m -v
J x ... x j n\/Sa is a (finite)

( m m \

J x . . . x j n\/Sa •* Y determines a (finite)
number of cells for Y . It is straightforward to check that the set of

n

all cells o constructed as above defines a closure finite cell structure

for Y . Thus the proof is completed by

LEMMA 6. Let X be any k-Hausdorff k-space having the weak
topology with respect to some cover [X } , and let R be an equivalence

relation on X such that the graph of R is closed in X x x . Then the
quotient space X/R is a k-Bausdorff k-space having the weak topology
with respect to {x /R) .
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The proof is routine (of. [9], Proposition 2.U).
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