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Calabi–Yau Quotients of Hyperkähler
Four-folds

Chiara Camere, Alice Garbagnati, and Giovanni Mongardi

Abstract. _e aim of this paper is to constructCalabi–Yau 4-folds as crepant resolutions of the quo-
tients of a hyperkähler 4-fold X by a non-symplectic involution α. We ûrst compute the Hodge
numbers of a Calabi–Yau constructed in this way in a general setting, and then we apply the results
to several speciûc examples of non-symplectic involutions, producing Calabi–Yau 4-folds with dif-
ferent Hodge diamonds. _en we restrict ourselves to the case where X is the Hilbert scheme of
two points on a K3 surface S, and the involution α is induced by a non-symplectic involution on
the K3 surface. In this case we compare the Calabi–Yau 4-fold YS , which is the crepant resolution of
X/α, with the Calabi–Yau 4-fold ZS , constructed from S through the Borcea–Voisin construction.
We give several explicit geometrical examples of both these Calabi–Yau 4-folds, describing maps
related to interesting linear systems as well as a rational 2 ∶ 1 map from ZS to YS .

1 Introduction

By the famous decomposition theorem of Beauville [4] and Bogomolov [6], compact
Kähler Ricci �at varieties decompose, a�er an étale cover, into the product of three
fundamental building blocks: complex tori, hyperkähler manifolds, and Calabi–Yau
manifolds. _e aim of this paper is to construct a relation between two of these blocks
in dimension 4; indeed, our starting point is the observation that the presence of
a non-symplectic involution α on a hyperkähler 4-fold X allows one to construct a
Calabi–Yau 4-fold as crepant resolution X̃/α of the quotient X/α.

We observe that several quotients of hyperkähler varieties have been deeply inves-
tigated both in the case of symplectic and non-symplectic actions and in particular in
low dimension. In dimension 2, Calabi–Yau varieties and hyperkähler varieties col-
lapse to the same class of surfaces, the K3 surfaces; in fact, the symplectic form and
the volume form coincide. In the case of automorphisms acting on K3 surfaces, it
is well-known that the quotient by a symplectic automorphism (which by deûnition
preserves both the symplectic and the volume form) gives, a�er aminimal resolution,
a K3 surface again; see [43]. _is is known not to be the case in general for higher
dimensional hyperkähler manifolds; indeed, given a hyperkähler variety with a sym-
plectic automorphism α, there is in general no resolution of X/σ where the natural
quotient symplectic form on the smooth locus is preserved, and partial resolutions
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give singular irreducible holomorphic symplectic varieties (see, for example, [22]).
Up to now, the only known case where a symplectic resolution of the quotient exists
is described in [33].

In dimension 2, the quotient of a K3 surface by a non-symplectic involution can
not have trivial canonical bundle, and indeed it is a smooth surface, either rational
or Enriques. In higher dimensions there are examples of automorphisms that do not
preserve the symplectic structure (so the quotient is not a symplectic variety) but pre-
serve the volume form, and the quotient admits a resolution that has trivial canonical
bundle. So generically, the quotient of a hyperkähler variety by a ûnite automorphism
does not produce a hyperkähler variety, but, as we noticed above, it can produce, un-
der some conditions, a Calabi–Yau variety, and this is themain topic of this paper.

In Section 3,we consider the quotients of ahyperkähler variety X, of dimension 2n,
by a ûnite automorphism α, of prime order p. When α acts freely on X, the quotient
manifold X/α has numerically but not rationally trivial canonical bundle, and it has
been studied in [9,49]. Here we ask when it is possible to obtain a quotient X/α that
has rationally trivial canonical bundle and when it is possible to construct a crepant
resolution of X/α by blowing up its singular locus. _e main result of this section
is _eorem 3.6, where we state that the good candidates are hyperkähler varieties of
dimension 2p that admit a non-symplectic automorphism of order p. We also ob-
serve that there is a condition on the dimension of the components of the ûxed locus,
which has to be p. _is condition automatically excludes the natural non-symplectic
automorphisms of order p on S[p] unless p = 2. _is is one of the motivations for
our attention to the case p = 2. So we restrict our attention to hyperkähler varieties
of dimension 4 admitting non-symplectic involutions. _e study of non-symplectic
involutions on hyperkähler varieties is the topic of several papers: in [5] a topological
classiûcation is given, in [8, 40] a lattice theoretical classiûcation of automorphisms
on two diòerent type of hyperkähler 4-folds is presentedwithmany explicit examples.
Other explicit examples are given in [21, 29, 41, 45, 50]. All of these works provide a
large set of explicit examples of non-symplectic involutions α deûned on hyperkähler
4-folds X, and thus one is able to eòectively constructCalabi–Yau 4-folds as quotients.

In Section 4 we consider a hyperkähler 4-fold X with a non-symplectic involution
α, and we observe that a crepant resolution of X/α is simply given by blowing up
the singular locus. If one knows the action of the non-symplectic involution α both
on the cohomology of X and on X (more precisely if one knows the topology of the
ûxed locus of α on X), one is able to compute theHodge numbers of the Calabi–Yau
X̃/α. _is is done in the general context in _eorem 4.1 and in some speciûc exam-
ples in Section 4.2.1, Proposition 4.3, and Section 4.2.3. _en in Section 5 we restrict
ourselves to a particular type of hyperkähler 4-folds: denoted by S a K3 surface, the
Hilbert scheme of two points of S, denoted S[2], is a hyperkähler 4-fold. _e 4-fold
S[2] is the blow-up of (S × S)/σ in its singular locus, where σ ∈ Aut(S × S) is the
automorphism switching the two copies of S. If S admits a non-symplectic involu-
tion ιS , then the involution ιS × ιS ∈ Aut(S × S) induces a non-symplectic involution
on S[2], denoted by ιS [2] and called the natural non-symplectic involution of (S , ιS).
By the construction described above, this allows one to produce Calabi–Yau 4-folds,
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denoted by YS , as crepant resolutions of S[2]/ιS [2] and to compute their Hodge num-
bers, which depend only on the topological properties of the ûxed locus of ιS on S, as
shown in_eorem 5.1. Since it is quite a natural question,we have to remark here that
neither the mirror symmetry at the level of the K3 surface S nor the lattice theoretic
mirror symmetry at the level of the hyperkähler 4-fold S[2] produces a Calabi–Yau
4-fold that is mirror symmetric to YS (see Section 5.6).
Essentially,we produce a Calabi–Yau 4-fold, YS , by the data (S , ιS),where S is aK3

surface and ιS is anon-symplectic involution acting on it. On the other hand, there is a
very well known and natural way to produce a (diòerent) Calabi–Yau 4-fold starting
from these data: the Borcea–Voisin construction; cf. [14, 18]. _is construction is
recalled in Section 5.2 and reduces in our case to the blow-up of (S × S)/(ιS × ιS)
in its singular locus, producing another smooth Calabi–Yau 4-fold, denoted in the
sequel by ZS . By our construction, one immediately ûnds that there is a 2 ∶1 rational
map ZS ⇢ YS , indeed YS is birational to (S × S)/⟨σ , ιS × ιS⟩ and ZS is birational to
(S × S)/⟨ιS × ιS⟩, so the covering involution of the 2 ∶1 map ZS ⇢ YS is induced on ZS
by the action of σ on S × S, as shown in Section 5.3. So we prove that YS is a Calabi–
Yau 4-fold that is 2 ∶1 covered both by a hyperkähler 4-fold and by a Calabi–Yau 4-fold
and in fact it has a bidouble cover that is S × S. Since the construction of YS is quite
explicit, we are also able to describe aQ-basis of its Picard lattice and to identify two
2-divisible divisors: one which is associated with the double cover S̃[2] → YS where
S̃[2] is the blow-up of S[2] in the ûxed locus of ιS [2]; the other is associated to the
rational double cover ZS ⇢ YZ . _is is done in Section 5.5.

In order to better describe the varieties constructed, we observe that by our as-
sumptions the group generated by σ , ιS × id, id×ιS ∈ Aut(S × S) acts on S × S and
is isomorphic to the dihedral group of order 8. In Section 6 we describe the quo-
tients of S × S by subgroups of this group. If W is the smooth surface S/ιS , then
(S × S)/⟨σ , ιS × id, id×ιS⟩ is W(2) (where W(2) is the quotient of W × W by the
automorphism that switches the two copies of W and thus birational to the Hilbert
schemeW[2]). So the 4-folds YS and ZS are birational to (possibly singular) 4-folds
that are respectively 2 ∶1 and 22 ∶1 covers ofW(2). _e 4-fold (S × S)/⟨σ , ιS × ιS⟩ is by
construction birational to YS and it is also birational to the blow-up, Z̃S/σZ , of ZS/σZ
in its singular locus, where σZ is induced by σ on ZS . We will prove that the 4-folds
YS and Z̃S/σZ are isomorphic (and not only birational) if the involution ιS is free on
S. When ιS ûxes exactly one irreducible curve on S, (S × S)/⟨σ , ιS × ιS⟩ is singular
along three surfaces meeting transversally in a curve and the 4-folds YS and Z̃S/σZ
are obtained by blowing up these singular surfaces in a diòerent order.

In Section 7 we give a detailed geometric descriptions of YS , ZS , and S[2] and of
linear systems on them, under some conditions on (S , ιS). Indeed, we ûrst explain
how to compute the dimension of certain linear systems induced on these varieties
by nef and big divisors on S in _eorem 7.5, and thenwe explicitly describe projective
models associated to certain linear systems. In particular, we show that if S is a 2 ∶1
cover ofP2, YS is a 2 ∶1 cover of (P2)(2) embedded inP5 and ZS is a 2 ∶1 cover ofP2×P2

embedded in P8 by the Segre embedding; see Proposition 7.8.
If S admits a genus 1 ûbration, then S[2] admits a Lagrangian ûbration whose

smooth ûbers are abelian surfaces (generically isomorphic to a product of two elliptic
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curves), ZS and YS admit ûbrations whose smooth ûbers are the Kummer surfaces
of the ûbers of the Lagrangian ûbration. Moreover, ZS has an elliptic ûbration and a
ûbration in Calabi–Yau 3-folds of Borcea–Voisin type, see Propositions 7.9, 7.10, and
7.11.

2 Preliminaries

In this section we collect some known results that are useful in the sequel.

Deûnition 2.1 Let Y be a smooth compact Kähler manifold of dimension n. _en
Y is called a Calabi–Yau variety if

● the canonical bundle of Y is trivial and
● h i ,0(Y) = 0 for every i = 1, . . . , n − 1.

We emphasize thatwe do not require a Calabi–Yau variety to be simply connected.

Deûnition 2.2 Let X be a smooth compact Kähler manifold. _en X is called a
hyperkähler variety or, equivalently, IHS variety if

● X is simply connected
● H2,0(X) = CωX , where ωX is a symplectic form.

We observe that the existence of a symplectic form on a hyperkähler variety X
implies that the canonical bundle of X is trivial and the complex dimension of X is
even.

Deûnition 2.3 Let X be a smooth manifold. If X admits a volume form ΩX , we
say that an automorphism α ∈ Aut(X) is volume preserving if α∗(ΩX) = ΩX . If X
admits a symplectic form ωX ,we say that an automorphism α ∈ Aut(X) is symplectic
if α∗(ωX) = ωX and non-symplectic otherwise.

Clearly, if X is a hyperkähler a symplectic automorphism is always volume pre-
serving, but the converse is false as soon as the dimension of X is at least 4.
Fundamental examples of hyperkählermanifoldswere discovered byBeauville [4];

he produced two families of hyperkähler manifolds in every even dimension that is
constructed as follows. Let S be a K3 surface and let S[n] denote the Hilbert scheme
of length n zero dimensional subschemes of S. _en S[n] is a resolution of the n-th
symmetric product S(n) and it has a unique symplectic form up to a scalar multiple.
Kähler deformations of S[n] are called manifolds of K3[n] type. Similarly, if A is an
abelian surface, A[n+1] has a symplectic form and a ûbre Kn(A) of the Albanesemap
is hyperkähler and is called a generalized Kummer manifold.

_e existence of a symplectic form provides a canonically deûned integral qua-
dratic form on the second cohomology of hyperkähler manifolds, which is given in
terms of the top self intersection of divisors. _is form is usually called the Beauville–
Bogomolov–Fujiki form and gives a lattice structure to the second integral cohomol-
ogy. In the above two examples, the lattices are

H2(S[n] ,Z) ≅ H2(S ,Z)⊕Zδ ≅ U 3 ⊕ E8(−1)2 ⊕ (−2n + 2)
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and
H2(Kn(A),Z) ≅ H2(A,Z)⊕Zδ ≅ U 3 ⊕ (−2n − 2),

where 2δ is the class of the exceptional divisor of the map S[n] → S(n) or of the
Albanese ûbre of A[n+1] → A(n+1), respectively.

In the followingwewill concentrate on 4-dimensional hyperkähler varieties, sowe
ûx here some useful notation.

Notation We denote by σ ∈ Aut(S × S) the map σ ∶ (P,Q) ↦ (Q , P), for each
(P,Q) ∈ S × S, i.e., σ is themap that switches the two factors in S × S. If g is an auto-
morphismof aK3 surface S (resp. an abelian surface A), then g× g ∈ Aut(S×S) (resp.
g × g × g ∈ Aut(A× A× A)) induces a unique automorphism on S[2] (resp. K2(A)),
called the natural automorphism induced by g.

_e natural automorphism of S[2] induced by g is denoted by g[2].
We denote by ιS a non-symplectic involution on S and thus by ιS [2] the natural

non-symplectic involution induced by ιS on S[2].

3 Quotients of Hyperkähler Varieties by Automorphisms

In the following we will consider quotients of hyperkähler varieties by certain ûnite
order automorphisms and crepant resolutions of these quotients. _emain theorem
of this section is that there exists a crepant resolution of the quotient of a hyperkähler
variety of dimension 2p by a non-symplectic automorphism of prime order p when-
ever the ûxed locus is pure of dimension p; this hypothesis is surely satisûed for non-
symplectic involutions on hyperkähler 4-folds. First, we recall some basic deûnitions
and known results.

Deûnition 3.1 Let V be a smooth variety of dimension m and let α ∈ Aut(V) be an
automorphism of order p with a non-empty ûxed locus, which is necessarily smooth.
We denote by A be thematrix that linearizes α near a component C of its ûxed locus
and let (ζa1

p , . . . , ζ
am
p ), with 0 ≤ a i < p, be its eigenvalues. _e age of α, denoted

age(α), near C is deûned as (∑m
i=1 a i)/p.

Proposition 3.2 (see, for example, [31,_eorem 6.4.3 and Proposition 6.4.4]) With
the same notation as before, let us assume that A ∈ SL(C,m). _e quotient V/α has
canonical non-terminal singularities on the image of C if and only if the age of α near
C is 1.

If V/α has terminal singularities, then it does not admit a crepant resolution.

When G = ⟨α⟩ acts non-symplectically and is cyclic of prime order p, it is always
possible to ûnd a generator, that we keep on denoting α, such that α∗ωV = ζpωV for
ζp a primitive p-th root of unity.

Recall the following standard fact about the components of the ûxed locus.

Lemma 3.3 Let V be a hyperkähler manifold of dimension 2n and let α be a non-
trivial automorphism of ûnite order acting on X. _en the ûxed locus has codimension
at least 2 if α is symplectic, and at least n if α is non-symplectic.
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Proof When α is symplectic this follows from the fact that every connected compo-
nent of the ûxed locus is symplectic, as shown in [22, Proposition 2.6].

When α is non-symplectic, suppose on the contrary that there exists a connected
component of codimension < n. _en the eigenspace relative to the eigenvalue 1 of A
would be an isotropic subspace of dimension > n, and this is impossible.

Lemma 3.4 Let V be a hyperkähler variety of dimension 2n and let α ∈ Aut(V)
be an automorphism of order p with a non-empty ûxed locus. Let A be thematrix that
linearizes α near a component C of its ûxed locus and let (ζa1

p , . . . ζ
a2n
p ),with 0 ≤ a i < p,

be its eigenvalues.
_en there exist local coordinates (x1 , . . . , x2n) in an open neighbourhood containing

C such that:

(i) if α is symplectic, the spectrum of A is the union of n pairs of the form (ζa j
p , ζ

p−a j
p )

with a j ≥ 0, for j = 1, . . . , n;
(ii) if α is non-symplectic, then:

● if p = 2, then α∗(ωV) = −ωV and the spectrum of A is the union of n pairs
of the form (1,−1);

● if p ≠ 2, then, without loss of generality, α∗(ωV) = ζpωV and the spectrum
of A is the union of s ≤ n pairs of the form (1, ζp) or (ζa j

p , ζ
p+1−a j
p ) with

a j > 0, for j = 1, . . . , s, plus the eigenvalue ζ p+1/2
p with multiplicity 2n − 2s.

Proof Fix a component of the ûxed locus;we choose local coordinates (x1 , . . . , x2n),
such that the symplectic form ωV is represented by the standard symplecticmatrix J.

Since α is an automorphism of V , it preserves the Hodge decomposition of
H2(V ,C) and so α∗(ωV) = λαωV where λα ∈ C∗. Moreover, since α has order
p, λp

α = 1. If α is a symplectic automorphism, then λα = 1; otherwise, without loss of
generality, we can assume that λα = ζp , where ζp = e2iπ/p .

Let µ = ζa j
p be one of the eigenvalues of A; then λαµ−1 is an eigenvalue of A with

the same multiplicity, since A and λαA−1 are conjugated by J and so have the same
characteristic polynomial (see also [8, Remark 7.2]).

_us, we obtain the following possibilities:

(i) p = 2: in this case, all the eigenvalues satisfy µ2 = 1. If α is symplectic, all the
connected components of the ûxed locus are symplectic [22, Proposition 2.6],
hence even-dimensional, and this implies that ±1 occur both with even multi-
plicity, so that detA = 1. If α is non-symplectic, all the connected components
are Lagrangian submanifolds [5, Lemma 1], so that the multiplicity of µ = 1 is
exactly n and detA = (−1)n .

(ii) p > 2, λα = 1: the eigenvalues of α are n pairs of the form (ζa j
p , ζ

p−a j
p ) with

a j ≥ 0, for j = 1, . . . , n, and the determinant is detA = ζ∑
n
j=1(a j+p−a j)

p = 1.
(iii) p > 2, λα = ζp : the eigenvalues of α are s ≤ n pairs of the form (1, ζp) or

(ζa j
p , ζ

p+1−a j
p ) with a j > 0, for j = 1, . . . , s, plus the eigenvalue ζ p+1/2

p with multi-

plicity 2n − 2s. Here detA = ζ∑
s
j=1(a j+p−a j+1)+(n−s)(p+1)

p = ζn
p .
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Singular quotients of hyperkählermanifolds have already been studied in the liter-
ature, although the accent has always been on using quotients by symplectic automor-
phisms to construct singular symplectic manifolds and look for possible desingular-
izations. _e following results also include results previously obtained by Fujiki [22]
andMenet [38, Proposition 2.39].

Proposition 3.5 Let V be a hyperkähler variety of dimension 2n and let α ∈ Aut(V)
be a symplectic automorphism of order p with a non-empty ûxed locus. Let A be the
matrix that linearizes α near a component of its ûxed locus and let (ζa1

p , . . . ζ
a2n
p ), with

0 ≤ a i < p, be its eigenvalues.
In this case α preserves the volume formofV , and the singularities ofV/α are canon-

ical and not terminal if and only if all the components of the ûxed locus have dimension
2n − 2.

Proof Let C be a connected component of the ûxed locus of α and let (x1 , . . . , x2n)
be local coordinates as in Lemma 3.4.

We recall that the volume form Ω ofV is a complexmultiple of ωn
V ;we can assume

that Ω ∶= kωn
V = dx1 ∧ dx2 ∧ ⋅ ⋅ ⋅ ∧ dx2n for a certain constant k ∈ C∗. _is implies

that the action of α∗ on Ω is the multiplication by the determinant of A, so we have
α∗(Ω) = det(A)Ω.

Volume-preserving automorphisms are exactly those whose linearization A be-
longs to SL(C, 2n). Since α is symplectic, by Lemma 3.4 det(A) = 1 and α∗(Ω) = Ω.

Let us consider a component C ⊂ V of the ûxed locus of α; C has codimension
greater than 1 by Lemma 3.3. _e quotient V/α is singular in q(C) ⊂ V/α, where
q ∶ V → V/α is the quotient map. By Proposition 3.2, the singularity q(C) is canoni-
cal but not terminal if and only if the age of α near C is 1, i.e., (∑2n

j=1 a j)/p = 1. Denote
by 2k the multiplicity of 1 as an eigenvalue; by Lemma 3.4(i), the age (∑2n

j=1 a j)/p =
p(n − k)/p = n − k equals 1 if and only if k = n − 1. As a consequence, C has codi-
mension two.

Vice versa, if every component C of the ûxed locus of α has dimension 2n−2, then
there are exactly two eigenvalues A that are not equal to 1. Since α is symplectic, they
are of the form (ζa j

p , ζ
p−a j
p ) by Lemma 3.4. _is implies that the singularities of V/α

are canonical but not terminal.

In [38, Proposition 2.39], the interested reader can ûnd an explicit list of quotients
of this kind andmore details on the existence of a resolution of singularities of V/α.

_eorem 3.6 Let V be a hyperkähler variety of dimension 2n and let α ∈ Aut(V) be
a non-symplectic automorphism of prime order p with a non-empty ûxed locus.

(i) α preserves the volume form if and only if p∣n.
(ii) If α is as in (i), the singularities of V/α are canonical and not terminal if and only

if p = n and all the components of the ûxed locus of α have dimension p = n.

In particular, if V is a 2p-dimensional hyperkähler variety and α is a non-symplectic
automorphism of order p of V such that all the components of the ûxed locus of α have
dimension p, then the blow-up of V/α in its singular locus is a Calabi–Yau 2p-fold.
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Proof Let C be a connected component of the ûxed locus of α and let (x1 , . . . , x2n)
be local coordinates as in Lemma 3.4. If α is non-symplectic, Lemma 3.4 implies
that α∗(Ω) = ζn

pΩ. Since ζn
p = 1 if and only if p∣n, we obtain that a non-symplectic

automorphism of order p of V preserves the volume form if and only if p∣n.
Let us consider a component C ⊂ V of the ûxed locus of α; C has codimension

greater than n − 1 by Lemma 3.3. _e quotient V/α is singular in q(C) ⊂ V/α, where
q ∶ V → V/α is the quotient map. _e singularity q(C) is canonical but not terminal
if and only if (∑2n

j=1 a j)/p = 1.
We know that p ∣ n, so we can write n as n = n′p, n′ ∈ N>0. If p = 2, there are r

eigenvalues equal to−1 and 2n−r eigenvalues equal to 1, andwe alreadyobserved that r
is even (since A ∈ SL(C, 2n); see proof of Proposition 3.5) and r ≥ n (by Lemma 3.3).
_e condition (∑2n

j=1 a j)/p = 1 can be rewritten as r/2 = 1, which implies r = 2.
Together with the condition r ≥ n, and n = 2n′ this implies n′ = 1, i.e., n = 2.

If p ≠ 2,we know that there are s pairs of distinct eigenvalues (ζa j
p , ζ

ah j
p ) of the form

(1, ζp) or (ζa j
p , ζ

p+1−a j
p ) with a j > 0 and that ζ p+1/2

p occurs with multiplicity 2n − 2s .
We can assume without loss of generality that 0 ≤ a j < p for every j = 1, . . . , 2s and
that a j < ah j . So a j + ah j = 1 + k jp with k j = 0 if a j = 0 and ah j = 1, and k j = 1
otherwise (i.e., if a j > 0 and so ah j > 0). Hence, (∑2n

j=1 a j)/p = (∑s
j=1(a j + ah j))/p +

(n− s)(p+ 1)/p = ∑s
j=1(1+ k jp)/p+ (n− s)(p+ 1)/p = n′ +∑s

j=1 k j + n− s. Now the
condition (∑2n

j=1 a j)/p = 1 implies that n′ = 1, s = n, and k i = 0 for each i = 1, . . . , n.
_is implies that n = p and a j = 0 for every j = 1, . . . , p. So the eigenvalues of A are 1
and ζp , both with multiplicity p. _us, locally, the ûxed locus could be described by
x′2i = 0, i = 1, . . . , p, its codimension is p and its dimension is p.

Vice versa, if α is a non-symplectic automorphism of a 2p-dimensional hyperkäh-
ler variety V such that the ûxed locus of α consists of subvarieties of dimension p,
then each block A i of the eigenvalues matrix is A i ∶= diag(1, ζp) (see Lemma 3.4),
and it is immediate to check that∑n

j=1 a j/p = 1.
Finally, let us show that there exists a crepant resolution Y ofV/α. By our assump-

tions, the local action of α on V near any ûxed component is given by a diagonal ma-
trix with p eigenvalues 1 and p eigenvalues ζp . Let β ∶ Ṽ → V be the blow-up of V
in the ûxed locus Fixα(V) of α. By base change, the map α ∶ V → V induces a map
α̃ ∶ Ṽ → Blα(Fixα(V))(V), where Blα(Fixα(V))(V) is the blow-up of V in the image by
α of Fixα(V). By deûnition of Fixα(V), Ṽ = Blα(Fixα(V))(V), so the action of α li�s
to an automorphismof Ṽ . Moreover β is equivariant, α ○β = β○ α̃, and thus descends
to the quotients.

We have the commutative diagram

(3.1) V

q

��

Ṽ
βoo

π
��

V/α Ṽ/α̃.
β′oo

_e local action of α near the ûxed locus shows that on the normal bundle NFixα(V)∣V
α acts as a multiplication by ζp . So α̃ acts as the identity on the exceptional divisor
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Ẽ ∶= P(NFixα(V)∣V). Moreover, α̃ acts freely on Ṽ − Ẽ. So the quotient Ṽ/α̃ is a
smooth variety, which is isomorphic to the blow-up of V/α in its singular locus (see
also [36, Section 3]). We now show that the canonical bundle of Ṽ/α̃ is trivial. First,
one computes

KṼ = β∗(KV) + (p − 1)Ẽ

so that KṼ = (p−1)Ẽ. _en one observes that the quotientmap π ∶ Ṽ → Ṽ/α̃ exhibits
Ṽ as p ∶1 cyclic cover of Ṽ/α̃ branched on E ∶= π(Ẽ). Hence, there exists a divisor
L ∈ Pic(Ṽ/α̃) such that pL ≃ E and KṼ = π∗(KṼ/α̃ + (p − 1)L). Multiplying both
terms by p, one obtains

pKṼ = π∗(pKṼ/α̃) + π∗((p − 1)pL) .

Recalling that pL ≃ E and π∗(E) = pẼ, one has

p(p − 1)Ẽ = π∗(pKṼ/α̃) + p(p − 1)Ẽ ,

which implies that π∗(pKṼ/α̃) is trivial. On the otherhand Ṽ/α̃ is the blow-up ofV/α
in its singular locus andV/α has trivial canonical bundle (because it is the quotient of
V ,which has trivial canonical bundle, by a volume preserving automorphism). Let us
denote by β′ ∶ Ṽ/α̃ → V/α this blow-up. We obtain KṼ/α̃ = β′∗(KV/α)+ hE = hE for
a certain h ∈ Q. Since π∗(pKṼ/α̃) is trivial, one has that π∗(phE) = p2hẼ is trivial.
_e divisor Ẽ is eòective, so p2hẼ = 0 implies h = 0. So β′ is a crepant resolution of
V/α.

Moreover, h i ,0(Ṽ) = h i ,0(V), because they are birational invariants, and on the
other hand, h i ,0(Ṽ/α̃) = dimH i ,0(Ṽ)α̃ = dimH i ,0(V)α = 0 for 0 < i < 2p, since α
does not preserve the symplectic form of V .

So Y ∶= Ṽ/α̃ (and any crepant resolution of V/α) is Calabi–Yau.

Remark 3.7 By [22, Lemma 1.2], V/α is a simply connected singular variety. Hence
the blow-up of V/α in its singular locus is a simply connectedmanifold.

If V is a hyperkähler 2n-fold and α is a non-symplectic involution on V , then the
components of the ûxed locus of α are Lagrangian submanifolds of V , and thus in
particular they have dimension n [5, Lemma 1]. So a non-symplectic involution on
V preserves the canonical bundle and is such that V/α has canonical singularities if
and only if n = 2. _is will be the setting of the rest of the paper.

Remark 3.8 To the best of our knowledge there are no examples of pairs (V , αV)
that satisfy_eorem 3.6 such that dimV > 4. We observe, for example, that the natu-
ral automorphism α[p] of S[p] induced by the non-symplectic order p automorphism
α on a K3 surface S does not satisfy this condition, even if the action of α on S does.
_e reason is that there is at least a 2-dimensional component of the ûxed locus of
α[p] on S[p] that is isomorphic to S/α; see e.g., [8].
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4 Quotients of Hyperkähler 4-folds by Non-symplectic Involutions

From now on, V is a hyperkähler 4-fold and α is a non-symplectic involution (so
n = p = 2). Hence, V/α admits a crepant resolution which is a Calabi–Yau 4-fold.
_e aim of this section is to describe explicitly the crepant resolution of V/α con-
structed in _eorem 3.6 that allows us to construct a Calabi–Yau 4-fold and to com-
pute its Hodge diamond starting from some information on the action of α on V
(_eorem 4.1). _en we apply these results to some speciûc hyperkähler 4-folds with
a non-symplectic involution; in particular, we will consider quotients of hyperkäh-
ler 4-folds of generalized Kummer type and of K3[2] type in Sections 4.2.1 and 4.2.2,
respectively.

4.1 The Computation of the Hodge Numbers

By _eorem 3.6 a crepant resolution of V/α is obtained by blowing up its singular
locus. From now on we always consider this crepant resolution, and we denote it
by Y . It is isomorphic to Ṽ/α̃ by the proof of_eorem 3.6; see in particular diagram
(3.1). In particular,we denote by B j the irreducible components of the ûxed locus of α:
these are smooth disjoint surfaces. _e blow-up β′ ∶ Y → V/α introduces one divisor
for each component B j of the ûxed locus, and this divisor is a P1-bundle over B j .

_e 4-fold Y is a Calabi–Yau variety and so its Hodge diamond is invariant under
birational transformation (see [3,_eorem1.1], [17], [30], and [56]). Sowe can deduce
the Hodge diamond of any crepant resolution of V/α (and in particular of Y) from
the computation of the α̃ invariant part of the cohomology of Ṽ . A�er ûxing some
notation, we summarize the ûnal outcome in _eorem 4.1.

Let∐B j be the ûxed locus of α. Let b ∶= h0(∐B j); i.e., b is the number of com-
ponents of the ûxed locus of α, and let

c ∶=
b

∑
j=1

(h1,0(B j)) , d ∶=
b

∑
j=1

(h2,0(B j)) , e ∶=
b

∑
j=1

(h1,1(B j)) .

Moreover, let

t1,1 ∶= dim (H2(V ,C)) α = dim (H1,1(V)) α ,
where the last equality follows from the fact that α is non-symplectic. We also set

t2,1 ∶= dim(H2,1(V)α), t3,1 ∶= dim(H3,1(V)α), t2,2 ∶= dim(H2,2(V)α).

We have t2,1 = 1
2 dim(H3(V ,C)α), because H3,0(V) = 0. Since H4,0(V) and

H0,4(V) are invariant for α, we have the following relation: dim(H4(V ,C)α) =
2 + 2t3,1 + t2,2.

_eorem 4.1 _e Hodge diamond of any Calabi–Yau birational to Y is given by

h0,0(Y) = h4,0 = 1, h1,0(Y) = h2,0 = h3,0 = 0,

h1,1(Y) = t1,1 + b, h2,1(Y) = t2,1 + c,
h2,2(Y) = t2,2 + e , h3,1(Y) = t3,1 + d .
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Proof _e crepant resolution Y ofV/α is isomorphic to Ṽ/α̃ by Section 4.1, and any
other Calabi–Yau birational to Y has the same Hodge numbers as Y . _e statement
now follows from the fact that H∗,∗(Y) = H∗,∗(Ṽ)α̃ (see [22, p. 80]).
By classical results on the cohomology of blow-ups (see [55, _eorem 7.31]), the

map

β∗ ⊕ j∗β∗∣∐ B j
∶ Hp,q(V)⊕Hp−1,q−1( ∐B j) → Hp,q(Ṽ)

is an isomorphism, where j ∶ Ẽ ↪ Ṽ is the inclusion of the union Ẽ of the exceptional
divisors of the blow-up β ∶ Ṽ → V .
Furthermore, this isomorphism is equivariant with respect to the action of α and

α̃: we have

(β∗ ⊕ j∗β∗∣∐ B j
)(α∗ ⊕ id) = α̃∗(β∗ ⊕ j∗β∗∣∐ B j

).

Indeed, the equivariance of β observed in the proof of _eorem 3.6 and the func-
toriality of pullback give β∗α∗ = α̃∗β∗ on Hp,q(V), whereas the second equality
j∗β∗∣∐ B j

= α̃∗ j∗β∗∣∐ B j
on Hp−1,q−1(∐B j) can be shown as follows. We observe that,

by deûnition, the Gysin map j∗ is the composition

Hp−1,q−1(Ẽ) Ψ // (Hn−p,n−q(Ẽ))∗
( j∗)t
// (Hn−p,n−q(Ṽ))∗ Ψ // Hp,q(Ṽ) ,

whereΨ denotes Poincaré duality and ( j∗)t is the adjoint operator of the pullback j∗;
hence, equivariance of Ψ and functoriality of j∗ imply α̃∗ j∗ = j∗α̃∗∣Hp−1,q−1(Ẽ). Since
α̃∣Ẽ = id, we obtain that α̃∗ j∗ = j∗ on Hp−1,q−1(Ẽ).

_e fact that Ẽ is ûxed by α̃ ûnally allows us to conclude that

dim (Hp,q(Ṽ)α̃) = dim (Hp,q(V)α) + hp−1,q−1( ∐B j) .

4.2 Computations in Special Cases

_e aim of this section is to apply_eorem4.1 to special hyperkähler 4-foldsV with a
given non-symplectic involution α such that either there exist some relations among
the numbers t i , j , b, c, d, e, or some of these numbers are determined.

4.2.1 Generalized Kummer Four-folds

Non-symplectic involutions on generalised Kummer fourfolds have been recently
classiûed in [40]. _e cohomology of generalised Kummer fourfolds has been stud-
ied in detail by Hassett and Tschinkel [27] and Oguiso [46]; let us review the results
relevant for our purposes.

_eHodge diamond of the generalized Kummer fourfold K(A2) is as follows:

h0,0 = 1
h0,1 = 0

h1,1 = 5 h0,2 = 1
h2,1 = 4 h0,3 = 0

h2,2 = 96 h1,3 = 5 h0,4 = 1,
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where we used that H2(K2(A)) ≃ H2(A)⊕C[E], with E the class of the exceptional
divisor of the Albanese ûbre of A[3] → A(3). Here, we only wrote the relevant Hodge
numbers; the rest are obtained via the symmetries of theHodge diamond.

Here, the third cohomology has trivial H3,0 and four dimensional H2,1, which, in
the following special setting, can be constructed explicitly. Let A be an abelian surface
and let C2 be its universal cover, with coordinates z and w. Let A(2) be the subset
of A3 where all points sum to zero and let A((2)) be the corresponding locus inside
Sym3(A). _e universal cover of A(2) is the closed submanifold of (C2)3 cut out by
the equations

z1 + z2 + z3 = 0 and w1 +w2 +w3 = 0.

_e natural one forms dz i , dw i on A(2) satisfy the same equations, and the cohomol-
ogy classes of dz1 , dz2 , dw1 , dw2 form a basis of H1,0(A(2)). A basis of H2,1(K2(A))
is then given by the permutation orbits of the following forms:

dz1 ∧ dw1 ∧ dz1 , dz1 ∧ dw2 ∧ dz3 , dw1 ∧ dz1 ∧ dw1 , and dw1 ∧ dz2 ∧ dw3 .

Indeed, the permutation orbit of one of these four forms was studied in [46, Lemma
3.3],whereOguiso proves that it descends to a non-zero formon A((2)), and the proof
for the other three forms is analogous. As these forms are in diòerent orbits for the ac-
tion ofS3, they give independent forms on A((2)), and, as the natural resolution map
ν ∶ K2(A)→ A((2)) induces an injection of forms, these are a basis for H2,1(K2(A)).

_is will allow us to compute t2,1 of a natural automorphism only from the ac-
tion of the automorphism on H1(A). _e last tool we need is a determination of
H4(K2(A))/ Sym2 H2(K2(A)). _is has the following geometric characterisation,
where we denote by A[3] the group of the 3-torsion points of A.

Lemma 4.2 ( [27, Section 4]) Let F be the subspace of H4(K2(A)) spanned by
the classes Zτ of preimages of (τ, τ, τ) ∈ A[3](3) under the Hilbert–Chow morphism
K2(A) → A(3), for all τ ∈ A[3]. Let W ∶= ∑τ∈A[3] Zτ . _en W⊥ ⊂ F is isomorphic to
H4(K2(A))/ Sym2 H2(K2(A)).

As it is classically known ( [23]), there are three families of non-symplectic involu-
tions on abelian surfaces. _e ûrst family is given in terms of the product E×E′ of two
elliptic curves, and the involution acts as −1 on one curve and as 1 on the other. _e
elements of the second family are quotients of elements of the ûrst family by an order
two point t such that both projections of t on the elliptic curves E and E′ are nontriv-
ial. _e third family is an iteration of this procedurewith a further quotient by a point
of order 2. Let X1 = K2(E × E′), X2 = K2(E × E′/t) and X3 = K2(E × E′/⟨t, t′⟩) and
let φ1 , φ2, and φ3 be the three involutions induced on them. In all three cases,we have
t1,1 = 3 and t2,1 = 2. _e three actions give also the same action on order three points
of A,with 36 non-trivial orbits and 9 ûxed points. _erefore,we have t2,2 = 54,where
10 dimensions come from the symmetric power ofH2 and 45 arise from the action on
order three points and the intersection of both contributions is generated byW . _e
ûxed locus on X1 is given by points of the form {(p, e), (q, f ), (p+q,−e− f )},where
p, q ∈ E[2] and e , f ∈ E′ or points of the form {(0,−2e), (a, e), (−a, e)}, where
a ∈ E and e ∈ E′. _ese cover six surfaces; one is a P2 (the ûbre of the Albanesemap
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for (E′)(3), given by ûxed subschemes of the form {(0, e), (0, f ), (0,−e − f )}e , f ∈E′),
three are (E′)(2) (which are {(0, e), (p, f ), (p,−e − f )}e , f ∈E′ ,p∈E[2]−0), one is E′ ×E′
(given as {(p, e), (q, f ), (p + q,−e − f )}e , f ∈E′ ,{0,p,q ,p+q}=E[2]), and the last one is
given by the invariant subschemes whose points are not ûxed, and this is isomorphic
to E × P1 blown up along nine points, which are subschemes supported entirely on a
triple point of A. _erefore, we get the following Hodge diamond for a crepant reso-
lution Y1 of X1/φ1:

1
0

9 0
8 0

75 5 1.

In case X2 = K2(E × E′/t), the quotient of E × E′/t of E × E′ identiûes some of
the components of the ûxed locus, and we are le� with only three surfaces. _e ûrst
one is again P2. _e second one is (E′)(2), and the last one is the surface of invariant
non-ûxed subschemes, isomorphic to that of the previous case. _erefore, theHodge
diamond of a crepant resolution Y2 of X2/φ2 is

1
0

6 0
4 0

68 4 1.

Also on X3 the ûxed locus gets smaller, and only P2 and the surface of invariant non-
ûxed subschemes are le�. _us, the Hodge diamond of a crepant resolution Y3 of
X3/φ3 is

1
0

5 0
3 0

66 4 1.

4.2.2 Four-folds of K3[2] Type

We want to apply the results of _eorem 4.1 if V is deformation equivalent to the
Hilbert scheme of two points of a K3 surface. In this case, the Hodge diamond of V
is known to be

1
0

21 1
0 0

232 21 1.

_e cohomology of a manifold V of K3[2] type has very nice properties. Indeed
the cohomology group H3(V ,C) is trivial and the cohomology group H4(V ,C) is
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completely determined by H2(V ,C). In particular, this implies that t2,1 = 0 and that
we can get t3,1 and t2,2 from t1,1. Indeed, there is an isomorphismofHodge structures
H4(V ,C) ≅ Sym2(H2(V ,C)) (see [26]). Let usdenote byH1,1(V ,C)−1 the subgroup
of H1,1(V ,C) that is anti-invariant for α. _en

t3,1 = dim(H3,1(V ,C)α) = dim(H2,0(V)⊗H1,1(V)−1) = h1,1 − t1,1 = 21 − t1,1

t2,2 = dim(H2,2(V)α) = dim (H2,0(V)⊗H0,2(V)⊕ Sym2 (H1,1(V))) α

= dim (H2,0(V)⊗H0,2(V)⊕ Sym2(H1,1(V)α)⊕ Sym2(H1,1(V)−1))
= 1 + (t1,1+1

2 ) + (22−t1,1
2 ) = 232 + t21,1 − 21t1,1 .

By considering the invariant and the anti-invariant parts of the cohomology of V ,
we obtain two sub-Hodge structures ofweight k ofHk(V ,Q). In particular,we obtain
the following two invariant and anti-invariant Hodge diamonds:

1
0

t1,1 0
0 0

232 + t21,1 − 21t1,1 21 − t1,1 1

0
0

21 − t1,1 1
0 0

−t21,1 + 21t1,1 t1,1 0.

_is allows an easy computation of the trace of α on H∗(V ,C) and, by means of
the topological trace formula, Beauville, in [5], deduces information on the Hodge
diamond of the ûxed locus of α (in [5] the trace of α on H1,1(V) is denoted by t).
_e relation between t and t1,1 is clearly t = t1,1 − (21 − t1,1), so t = 2t1,1 − 21. By [5,
_eorem 2], once denoted by F =∐B j the ûxed locus of α, we have

χ(OF) = (t21,1 − 21t1,1 + 112)/2 and e(F) = 2t21,1 − 42t1,1 + 232.

In particular, with the notations of_eorem 4.1, we have

b − c + d = (t21,1 − 21t1,1 + 112)/2,
2b − 4c + 2d + e = 2t21,1 − 42t1,1 + 232,

from which it follows

b = (112 − 21t1,1 + 2c − 2d + t21,1)/2,
e = 120 − 21t1,1 + 2c + t21,1 .

Proposition 4.3 Let V be a hyperkähler 4-fold of K3[2] type admitting a non-sym-
plectic involution α such that the ûxed locus of α consists of the disjoint union of a ûnite
number of surfaces B j . As before, denote by:

t1,1 ∶= dim (H1,1(V)α) , c ∶=∑
j
(H1,0(B j)) , d ∶=∑

j
(H2,0(B j)) ,

any crepant resolution of V/α is a Calabi–Yau variety with Hodge numbers:

h0,0 = h4,0 = 1, h1,0 = h2,0 = h3,0 = 0,

h1,1 = (112 − 19t1,1 + 2c − 2d + t21,1)/2, h2,1 = c,
h2,2 = 352 + 2t21,1 − 42t1,1 + 2c, h3,1 = 21 − t1,1 + d .
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4.2.3 Beauville’s Non-natural Involution

Let H be a double EPW sextic and let ιH be the covering involution; see [45] for the
deûnition. It iswell known that (H, ιH) is deformation equivalent to (S[2] , ι4),where
S is a quartic in P3 not containing a line and ι4 is the involution given by sending a
subscheme {P,Q} ∈ S[2] to the subscheme (l ∩ S) ∖ {P,Q} ∈ S[2], where l is the
line spanned by P and Q (possibly inûnitesimally closed). If Pic(S) = ZA, where A
is a polarization of degree 4, the ûxed locus of ι4 on S[2] consists of a smooth surface
parametrizing the bitangents to S (see [21]) and ι4 ûxes only one class in H1,1(S[2]),
so t1,1 = 1 (see [5, Section 3]).

Let F be the surface of bitangents to S; it was proved in [37, (0.7)] that its Hodge
numbers are

h0,0(F) = 1, h1,0(F) = 0, h2,0(F) = 45, h1,1(F) = 100.

For a general double EPW sextic H, the ûxed locus FixιH(H) is then deforma-
tion equivalent to the surface F considered before, so that they have the sameHodge
numbers. _is allows us to compute the Hodge numbers of the crepant resolution Y
of H/ιH (as in the previous section):

h0,0(Y) = h4,0(Y) = 1,

h1,0(Y) = h2,0 = h3,0 = 0,

h1,1(Y) = dim (H1,1(H)ιH) + dim (H0,0(F)) = 1 + 1 = 2,

h2,1(Y) = dim (H2,1(H)ιH) + dim (H1,0(F)) = 0 + 0 = 0,

h3,1(Y) = dim (H3,1(H)ιH) + dim (H2,0(F)) = 20 + 45 = 65,

h2,2(Y) = dim (H2,2(H)ιH) + dim (H1,1(F)) = 212 + 100 = 312.

5 Non-symplectic Natural Involutions on S[2] and the Calabi–Yau
4-folds YS and ZS

Here we consider the case of natural non-symplectic involutions on the Hilbert
scheme of two points S[2] of a K3 surface S. As already discussed in Section 2, if the
K3 surface S admits a non-symplectic involution ιS , this induces a non-symplectic in-
volution, denoted ιS [2], on S[2]. Our ûrst goal will be the construction of the Calabi–
Yau variety YS , the crepant resolution of S[2]/ιS [2], and the computation of its Hodge
numbers, in _eorem 5.1. _en in Section 5.2 we recall the construction of other
Calabi–Yau 4-folds obtained applying the Borcea–Voisin construction to S × S: this
Calabi–Yau will be denoted by ZS and is the crepant resolution of (S × S)/⟨ιS × ιS⟩.
_is allows us to show that there exists an involution on ZS , denoted by σZ , such that
ZS/σZ is birational to YS ; see Proposition 5.3. _e existence of this involution de-
pends on the fact that the group (Z/2Z)2 = ⟨ιS × ιS , σ⟩ acts on S × S and the 4-fold
YS is birational to the quotient of S × S for the full group, while S[2] and ZS are bira-
tional to the quotients of S × S by two speciûc subgroups of order 2 of (Z/2Z)2. In
Proposition 5.4, we will prove that the quotient of S × S by the third cyclic subgroup
of (Z/2Z)2 admits a crepant resolution V that is isomorphic to S[2]. In Section 5.5,
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we describe explicitly the Picard group of YS and the branch divisors associated to the
three double covers ZS ⇢ YS , S[2] ⇢ YS and V ⇢ YS .

5.1 The Calabi–Yau 4-folds YS

We ûrst recall themain results on non-symplectic involutions on K3 surfaces, due to
Nikulin; see [44].

Let S be a K3 surface admitting a non-symplectic involution ιS .
We denote by r ∶= rank(H2(S ,Z)ιS ) and by a the integer deûned by

(H2(S ,Z)ιS)∨/(H2(S ,Z)ιS) ≃ (Z/2Z)a .

_e ûxed locus of ιS consists of N disjoint curves. If N = 0, then r = a = 10. If the
ûxed locus of ιS is the disjoint union of two genus 1 curves, then r = 10, a = 8, N = 2,
and we set N ′ ∶= 2.

Otherwise, if the ûxed locus of ιS is neither empty nor the disjoint union of two
curves of genus one, let us consider the ûxed curve with highest genus and denote it
by C. _en FixιS (S) = C∐N−1

i=1 R i where R i is a rational curve for all i = 0, . . . ,N − 1.
Let us denote by g ∶= g(C), by k ∶= N − 1, by N ′ = g(C).

_e invariants just introduced satisfy the following relations:

(5.1)

k = (r − a)/2, g = (22 − r − a)/2,
N = (2 + r − a)/2, N ′ = (22 − r − a)/2,
r = 11 + k − g = 10 + N − N ′ , a = 11 − k − g = 12 − N − N ′ .

We observe that if the ûxed locus consists of two disjoint genus 1 curves, then r = 10,
a = 8, N = 2, and N ′ = 2, so that the relation between (r, a) and (N ,N ′) written
above is still true.
From now on we suppose that the ûxed locus of ιS on S consists of a curve C of

genus g ∶= g(C) and of k other rational curves. An application of [7, §4.2] shows that
the ûxed locus of ιS [2] on S[2] consists of the following surfaces:

● one surface isomorphic to C[2] whose Hodge numbers are h0,0 = 1, h1,0 = g,
h2,0 = g(g − 1)/2, h1,1 = 1 + g2;

● k surfaces isomorphic to C × R j ≃ C × P1, j = 1, . . . k, whose Hodge numbers
are h0,0 = 1, h1,0 = g, h2,0 = 0, h1,1 = 2;

● k surfaces isomorphic to (P1)[2], whose Hodge numbers are h0,0 = 1, h1,0 = 0,
h2,0 = 0, h1,1 = 1;

● k(k − 1)/2 surfaces isomorphic to P1 × P1, whose Hodge numbers are h0,0 = 1,
h1,0 = 0, h2,0 = 0, h1,1 = 2;

● one surface that is isomorphic to the smooth quotient surface S/ιS , hence h0,0 =
1, h1,0 = 0, h2,0 = 0 and h1,1 = r.
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So theHodge diamond of the ûxed locus is:

h0,0 = 1 + k + k + k(k − 1)/2 + 1, h1,0 = g + kg ,

h1,1 = 1 + g2 + 3k + k(k − 1) + r, h2,0 = g(g − 1)/2.

Note that the topological Euler characteristic of the ûxed locus is 2(r2 − 19r + 96)
(where we used the relations (5.1)).

Now we consider the action of ιS [2] on the cohomology of S[2]. We are exactly in
the setting of Section 4.2.2 with V ∶= S[2] and α ∶= ιS [2]. Since ιS [2] is induced by ιS
and preserves the exceptional divisor in S[2], we have that t1,1 = r + 1.

Hence, applying Proposition 4.3, we obtain the Hodge diamond of any crepant
resolution YS of S[2]/ιS [2]:

_eorem 5.1 Let S be a K3 surface and let ιS be a non-symplectic involution on
S, whose ûxed locus is associated with the values (N ,N ′). Let YS be the blow-up of
S[2]/ιS [2] in its ûxed locus. _en the Hodge numbers of any Calabi–Yau 4-fold bira-
tional to YS are: h i ,0 = 0, i = 1, 2, 3, h0,0 = h4,0 = 1, and

h1,1 = (24 + 3N − 2N ′ + N2)/2,
h2,1 = NN ′ ,

h3,1 = (20 − 2N + N ′ + N ′2)/2,
h2,2 = 132 + 2N − 2N ′ + 2N2 − 2NN ′ + 2N ′2 .

Remark 5.2 Since there are 64 possible choices for the pairs (N ,N ′) associated
with ιS we obtain 64 diòerent Hodge diamonds for the Calabi–Yau 4-folds YS . In all
the admissible pairs, 1 ≤ N ≤ 10 and 0 ≤ N ′ ≤ 10. _e complete list of the Hodge
diamonds of the Calabi–Yaus YS is given in Appendix A.

5.2 The Calabi–Yau of Borcea–Voisin Type and ZS

Let B1 and B2 be two Calabi–Yau varieties of dimension n1 and n2, respectively. Let
us assume that B i admits an involution ι i which does not preserve the volume formof
B i . Let us consider the involution ι1 × ι2 on B1 ×B2. If all the components of the ûxed
locus of ι1× ι2 on B1×B2 have codimension 2, then there exists a crepant resolution of
(B1 ×B2)/(ι1 × ι2) that is a Calabi–Yau manifold of dimension (n1 +n2). _e Calabi–
Yau manifolds constructed in this way are said to be of Borcea–Voisin type, a�er the
original independent papers by Borcea [11] and Voisin [54]; the generalization that
we have just reviewed is a result by Cynk andHulek (see [14, Proposition 2.1]), where
the authors refer to the construction as the “Kummer construction”.

In our setting it is quite natural to consider a Calabi–Yau 4-fold of Borcea–Voisin
type, by choosing B1 = B2 = S and ι1 = ι2 = ιS , with the same notation of the previous
section. _e quotient (S × S)/(ιS × ιS) is singular along some surfaces, and the blow-
up of these surfaces gives a smooth Calabi–Yau 4-fold, that we denote by ZS . In this
section we compute the Hodge numbers of ZS , which do not depend on the Calabi–
Yau birational model of ZS that we choose; these Hodge numbers were computed
in [18] by using orbifold cohomology.
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Let S be a K3 surface and ιS be a non-symplectic involution of S whose ûxed locus
consists of a curve of genus g and k rational curves.

_eHodge diamond of S × S is

1
0

40 2
0 0

404 40 1.

First, we consider the action of (ιS × ιS)∗ on H∗(S × S ,Q). _e invariant and the
anti-invariant part of H∗(S × S ,Q) give two sub-Hodge structures of H∗(S × S ,Q)
whoseHodge diamonds are respectively

1
0

2r 0
0 0

2r2 − 40r + 404 40 − 2r 1,

0
0

40 − 2r 2
0 0

40r − 2r2 2r 0.

_e ûxed locus of ιS × ιS on S × S consists of
● one surface isomorphic to C × C whose Hodge numbers are h0,0 = 1, h1,0 = 2g,

h2,0 = g2, h1,1 = 2 + 2g2;
● 2k surfaces isomorphic to C × P1 whose Hodge numbers are h0,0 = 1, h1,0 = g,

h2,0 = 0, h1,1 = 2;
● k2 surfaces isomorphic to P1 × P1, whoseHodge numbers are h0,0 = 1, h1,0 = 0,

h2,0 = 0, h1,1 = 2.

It follows that theHodge diamond of the ûxed locus is

h0,0 = 1 + 2k + k2 , h1,0 = 2g(1 + k),
h1,1 = 2 + 2g2 + 4k + 2k2 , h2,0 = g2 .

Hence, using relations (5.1), the Hodge numbers of ZS , and so of any crepant res-
olution of (S × S)/(ιS × ιS), are

h1,1 = 20 + 2N − 2N ′ + N2 ,

h2,1 = 2NN ′ ,

h3,1 = 20 − 2N + 2N ′ + N ′2 ,

h2,2 = 204 + 4N2 − 4NN ′ + 4N ′2 .

5.3 The Quotient of ZS , Birational to YS

_e group ⟨σ , ιS × ιS⟩ ≃ (Z/2Z)2 is contained in Aut(S × S). In particular, the
automorphism σ commutes with ιS × ιS , and thus it induces an automorphism of
(S × S)/(ιS × ιS), denoted by σ ′. Since the singular locus of (S × S)/(ιS × ιS) is the
image, under the quotient map, of FixιS (S) × FixιS (S), and since FixιS (S) × FixιS (S)
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is preserved by σ , the automorphism σ extends to an automorphism σZ of ZS . More-
over, σZ preserves the volume form on ZS , because σ preserves the (4, 0) form on
S × S.

So we have now a Calabi–Yau 4-fold ZS with an involution, σZ , which preserves
the volume form of ZS .

Proposition 5.3 _e quotient 4-fold ZS/σZ is birational to YS .

Proof _e statement follows by the commutativity of the following diagram:

S × S
q1

((

q3

uu

��

ZS

%%

β′ // (S × S)/(ιS × ιS)

q4
((

(S × S)/σ

q2
ww

S[2]oo

{{
ZS/σZ // (S × S)/⟨σ , ιS × ιS⟩ S[2]/ι[2]S

oo YSoo

where all dash arrows are the birational maps induced by the chosen crepant resolu-
tions and the other arrows are quotient maps.

We show now that the 4-fold ZS/σZ is singular along surfaces, and so the local ac-
tion of σZ is givenby a diagonalmatrixwith two eigenvalues equal to+1 and two eigen-
values equal to−1. Hence, it admits a crepant resolution Z̃S/σZ ,which is a Calabi–Yau
variety and is birational to YS . In particular, the Hodge numbers of Z̃S/σZ coincide
with those of YS .

We explicitly determine the ûxed locus of the automorphism σ ′ induced by σ on
(S × S)/(ιS × ιS). Let q3 ∶ S × S → (S × S)/(ιS × ιS) be the quotient map. _e
automorphism σ ∶ S × S → S × S acts by sending (P,Q) to (Q , P). _e points on
(S×S)/(ιS×ιS) are denoted by (P,Q),where (P,Q) is the common image of (P,Q) ∈
S × S and (ιS(P), ιS(Q)) ∈ S × S under the quotient map (i.e., (P,Q) = q3(P,Q) =
q3(ιS(P), ιS(Q))). _us, the condition σ ′(P,Q) = (P,Q) implies that either P = Q
or P = ιS(Q). Hence, the surfaces

Σ1 ∶= q3({(P, P)∣P ∈ S}) and Σ2 ∶= q3({(P, ιS(P))∣P ∈ S})
are ûxed by σ ′.

Let β′ ∶ ZS → (S × S)/(ιS × ιS) be the blow-up of (S × S)/(ιS × ιS) in its singular
locus. _e two surfaces Σ1 = q3({(P, P)∣P ∈ S}) and Σ2 = q3({(P, ιS(P))∣P ∈ S})
intersect transversally exactly in the curve q3(∆FixιS (S)×FixιS (S)) inside the singular
locus of (S × S)/(ιS × ιS). _e ûxed locus of σZ maps to Σ1 ∪ Σ2 ⊂ (S × S)/(ιS × ιS).

In order to show that the ûxed locus of σZ on ZS has dimension two, we consider
the surfaces ∆S ∶= {(P, P)∣P ∈ S} and ΓS ∶= {(P, ιS(P))∣P ∈ S} in S × S. Let us
blow-up S×S in FixιS×ιS (S×S), call it S̃ × S. _e automorphisms ιS × ιS and σ induce
automorphisms on S̃ × S, called ι̃S × ιS and σ̃ , respectively. _e quotient S̃ × S/ι̃S × ιS
is ZS , so the automorphism σZ is induced by σ̃ on the quotient. _e surface ∆S ⊂ S×S
is the ûxed locus of σ , and its strict transform on S̃ × S is contained in the ûxed locus
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of σ̃ . Considering the explicit equation in local charts of the blow-up of S̃ × S → S×S,
one observes that σ̃ ûxes the strict transform of ∆S and a curve inside the exceptional
divisor, mapped to ∆FixιS (S)×FixιS (S) by the blow-up S̃ × S → S × S. _is curve is the
intersection between the strict transforms of ΓS and (ιS × ιS)(ΓS). Due to the quotient
by ιS × ιS , σZ ûxes also the image of the strict transform of ΓS .

5.4 The Other 2 ∶1 Quotient of S × S

_e group ⟨σ , ιS × ιS⟩ ≃ (Z/2Z)2 ⊂ Aut(S×S) contains three distinct copies ofZ/2Z:
the one generated by σ , which gives rise to S[2], the one generated by ιS × ιS , which
gives rise to ZS , and the one generated by σ ○ (ιS × ιS).

Proposition 5.4 _e blow-up of (S × S)/(σ ○ (ιS × ιS)) in its singular locus is iso-
morphic to S[2].

Proof We consider the isomorphism ϕ = ιS×idS ∶ S×S → S×S; given the graph ΓιS of
ιS ,we have ϕ−1(ΓιS ) = ∆S , the diagonal in S×S. We obtain the following commutative
diagram:

Bl∆S (S × S)
ϕ̃ //

��

BlΓιS (S × S)

��
S × S

ϕ // S × S .

We have thus deduced the existence of an isomorphism between the two blow-ups.
On the other hand, we remark that Fixσ(S × S) = ∆S and Fixσ○(ιS×ιS)(S × S) = ΓιS ,
hence we get induced involutions on the blow-ups that we still denote as on S × S.
Moreover, ϕ ○ σ = (σ ○ (ιS × ιS)) ○ ϕ, so everything is equivariant and induces an
isomorphism also between the smooth quotients; i.e., we obtain an isomorphism

S[2] Ð→ BlΓιS S
2/(σ ○ (ιS × ιS)) .

5.5 The Picard Group of YS

Since YS is a Calabi–Yau variety, H2(YS ,Z) = Pic(YS), so in order to determine
a Q-basis of Pic(YS), it suõces to ûnd a basis of H2(YS ,Q). _is follows directly
from the previous description of H1,1(YS). Let us assume that S is general among
the K3 surfaces admitting a non-symplectic involution ιS with a given ûxed locus:
this is equivalent to require that NS(S) = H2(S ,Z)ιS , or equivalently that ρ(S) =
rankNS(S) = r. Let us denote by D(1)

S , . . . ,D(r)
S a basis of NS(S) = Pic(S). Let

us now consider S × S. A basis of H1,1(S)ιS ⊗ H0,0(S) is given by DS
(i) × [S] for

i = 1, . . . , r. Each divisorDS
(i)×[S] is sent by σ∗ to [S]×DS

(i) ∈ H0,0(S)⊗H1,1(S)ιS .
In particular, the class DS

(i)× [S]+ [S]×DS
(i) is preserved by ⟨ιS × ιS , σ⟩, and thus it

corresponds to a class in Pic(YS), denoted by DY
(i). _e other generators of Pic(YS)

come from the desingularization of the quotients of order two.
We recall once again the construction of our desingularizations by a diagram:
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(5.2)

S̃ × S
βFixιS×ιS (S×S)

//

/ιS×ιS=∶π3

��

S × S

ww ''

��

̃̃S × S
β∆oo

/σ=∶π1

��
Z̃S βFixσZ (ZS )

//

/σZ=∶π4

��

ZS S[2] S̃[2]

βFix
ι[2]S

(S[2])

oo

/ι[2]S =∶π2

��
Z̃S/σZ // (S × S)/⟨ιS × ιS , σ⟩ YS .oo

We will denote the quotient maps as follows: π1 ∶ ̃̃S × S → S[2] and π2 ∶ S̃[2] → YS . We
study the divisors introduced by the blow-ups β∆ and βFix

ι[2]S
(S[2]) and identify the

ones which are preserved by the quotient maps.
_e blow-up β∆ introduces one divisor, which is the exceptional divisor over the

diagonal and is also the branch divisor of the quotient π1 ∶ ̃̃S × S → S[2]. _e natural
involution ιS [2] preserves this divisor, called the exceptional divisor of S[2], (cf. [10,
_eorem 1]), so its image under the quotient map π2 is a divisor in Pic(YS), denoted
by E∆ and isomorphic to the exceptional divisor of S[2] → S(2). _e other divisors of
YS come from the blow-up βFixιS [2](S

[2]). _ey are as follows:

● EC×C , the exceptional divisor over C[2] (which is a surface ûxed by ιS [2]).
● ER i×R i for i = 1, . . . , k, the exceptional divisor over R[2]

i (which is a surface ûxed
by ιS [2]).

● EC×R i , for i = 1, . . . , k: C × R i ⊂ S × S is a surface that is sent to R i × C by σ ,
the common image of these surfaces is ûxed by ιS [2], and so it is blown up by
βFixιS [2](S

[2]), and EC×R i is the exceptional divisor of this blow-up.
● ER i×R j , for i , j = 1, . . . k, i < j: R i × R j ⊂ S × S is a surface that is sent to R j × R i

by σ , and the common image of these surfaces is ûxed by ιS [2] and so it is blown
up by βFixιS [2](S

[2]); ER i×R j , with i < j, is the exceptional divisor of this blow-up;

● ES/ιS : ιS
[2] ûxes a surface inside the exceptional divisor of S[2], which is given

by the image of points (P, ιS(P)) ∈ S× S; this surface is isomorphic to S/ιS , and
so βFixιS [2](S

[2]) introduces an exceptional divisor on it, denoted by ES/ιS .

Proposition 5.5 With the same notation as above, let

S = {D(h)
Y , E∆ , ES/ιS , EC×C , EC×R i , ER i×R i , ER i×R j},

where h = 1, . . . , r, i , j = 1, . . . k and i < j. _en S is aQ-basis ofNS(YS),NS(YS)⊗Q
is isomorphic to NS(Z̃S/σZ)⊗Q, and so S is aQ-basis of NS((Z̃S/σZ). _e divisors

Bι[2]S
∶=

k

∑
i=1

(EC×R i + ER i×R i +
k

∑
j=i+1

ER i×R j) + EC×C + ES/ιS

BσZ ∶= E∆ + ES/ιS ,
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and BιS [2] + BσZ are 2-divisible in NS(YS), and indeed they are associated with three
diòerent double covers of YS .

Proof By construction, S ⊂ NS(YS) and the divisors in S are linearly independent.
_e cardinality of S coincides with h1,1(YS), so S is aQ-basis of NS(YS).
By [32, p. 420], we know that Z̃S/σZ and YS are related by a sequence of �ops;

therefore, they are isomorphic in codimension 1, and this allows one to identify the
same basis S as a Q-basis of NS(Z̃S/σZ) by taking pullbacks along the sequence of
�ops. In particular, the birational map is well deûned outside of all intersections of
the exceptional divisors listed before, which are the divisors introduced by blow-ups
in (5.2) and their intersection is the support of the �ops.

We explicitly describe the isomorphism between NS(Z̃S/σZ)⊗Q ≃ NS(YS)⊗Q:
the divisors D(h)

Y , h = 1, . . . , r are induced by the cohomology of S × S and do not de-
pend on the desingularization that we are considering. _e other divisors come from
the blow-ups βFixιS×ιS (S×S) and βFixσZ (ZS). _e ûrst blow-up introduces exceptional
divisors over the curves C ×C, R i × R i , R i × R j , C × R i , R i ×C. _e exceptional divi-
sors over C ×C and R i × R i are preserved by σ . _e exceptional divisors over R i × R j
(resp. C × R i) are identiûed with the ones over R j × R i (resp. R i × C) by the quotient
by σZ . _is gives the divisors EC×C , EC×R i for i = 1, . . . , k, ER i×R i for i = 1, . . . , k,
ER i×R j for i , j = 1, . . . k, i < j on YS . _e blow-up βFixσZ (ZS) introduces two other
divisors over the ûxed locus of σZ and we already proved that FixσZ (ZS) consists of
two surfaces: the strict transforms of the images Σ1 and Σ2 of {(P, P) ∈ S × S} and
of {(P, ιS(P)) ∈ S × S}. We conclude that βFixσZ (ZS) introduces the divisors E∆ and
ES/ιS on YS . Moreover, this shows that the support of the divisor BσZ is the branch
locus of the 2 ∶1 cover Z̃S → Z̃S/σZ ∼ YS . Hence it is a 2-divisible divisor on YS .

_e support of the divisor BιS [2] is exactly the branch locus of the 2 ∶1 cover
π2 ∶ S̃[2] → YS .

Since the divisors BιS [2] and BσZ are 2-divisible, BιS [2] + BσZ is also 2-divisible in
NS(YS). _is means that YS admits a 2 ∶1 cover branched along

k

∐
i=1

(EC×R i )
k
∐
i=1

(ER i×R i )
k
∐

i , j=1, i< j
(ER i×R j)∐ EC×C∐ E∆ .

_is cover is naturally birational to (S × S)/((ιS × ιS) ○ σ).

Since there are divisors that are 2-divisible in NS(YS) but not 2-divisible in S, we
conclude that S cannot be a Z-basis of NS(YS).

5.6 Remarks on Complex Deformations and Mirror Symmetry

5.6.1 Complex Deformations

Wemake some remarks on the dimensions of the families of 4-folds that we are con-
structing.

Remark 5.6 Table 1 lists the dimensions of local complex deformations of the fam-
ilies of 4-folds constructed in the previous sections.
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Object Dimension of complex
deformations space

Dimension in terms of
(N ,N ′)

(S , ιS) dim((H1,1(S)ιS )⊥ ∩H1,1(S)) 10 − N + N ′

(S × S , ιS × ιS) dim((H1,1(S)ιS )⊥ ∩H1,1(S))⊕2 20 − 2N + 2N ′

ZS h3,1(ZS) 20 − 2N + 2N ′ + N ′2

(S[2] , ι[2]) dim((H1,1(S[2])ι[2]S )⊥ ∩H1,1(S[2])) 10 − N + N ′

(S × S , ιS × ιS , σ) dim((H1,1(S)ιS )⊥ ∩H1,1(S)) 10 − N + N ′

YS h3,1(YS) (20 − 2N + N ′ + N ′2)/2

Z̃S/σZ h3,1(Z̃S/σZ) (20 − 2N + N ′ + N ′2)/2

Table 1: Dimension of complex deformation spaces

Let us explain the computations on the localdeformation space of apair (X , f ), de-
notedDef(X , f ). _e fact that the dimension of Def(X , f ) for X hyperkähler and f ∈
Aut(X) a non-symplectic involution, equals the dimension ofH1,1(X)∩(H1,1(X) f )⊥
is proved in [8, §4] and implies the statement both for (S , ιS) and for (S[2] , ιS [2]).

In order to describe Def(S × S , ιS × ιS) and Def(S × S , ιS × ιS , σ), one observes
that the same proof of loc. cit. yields, for any smooth complex manifold X such that
H0(X , TX) = 0 and c1(X) = 0 and any automorphism f ∈ Aut(X), that the di-
mension of the family Def(X , f ) coincides with dimH1(X , TX)d f , where d f is the
diòerential of f . Since TS×S ≅ TS ⊞ TS , we have indeed that H0(S × S , TS×S) = 0, so
that by [25,_eorem 14.10] Def(S × S) ≅ H1(S × S , TS×S) as germs over 0; moreover,
H1(S×S , TS×S)d(ιS×ιS) ≅ (H1(S , TS)d ιS )⊕2, hence the statement forDef(S×S , ιS×ιS).
Iteration of this reasoning ûnally gives the deformations of (S × S , ιS × ιS , σ), since
dσ permutes the two summands of (H1(S , TS)d ιS )⊕2.

_e fact that local complex deformations of a smooth Calabi–Yau manifold X are
given by an open set insideHn−1,1(X) is thewell-known Tian–Todorov’s theorem for
smooth Kähler manifolds with trivial canonical bundle [25,_eorem 6.8.1]. Since YS
and Z̃S/σZ are birational their Hodge numbers coincide.

_e third column is now an easy consequence of the previous computations.

We will say that a Calabi–Yau 4-fold is of Borcea–Voisin type if it is the desin-
gularization of the quotient (S1 × S2)/(ι1 × ι2) where S i are K3 surfaces and ι i is a
non-symplectic involution on S i and we generalize the deûnition [13, Deûnition 3.6]
saying that a Borcea–Voisin maximal family is a family of Calabi–Yau 4-folds such
that the general member of this family is of Borcea–Voisin type.

Corollary 5.7 Given a pair (S , ιS) the following hold:
● dim(Def(S × S , ιS × ιS , σ)) = dim(Def(S , ιS));
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● dim(Def(ZS)) ≥ dim(Def(S × S , ιS × ιS)), and the equality holds if and only if
N ′ = 0 (i.e., if ιS ûxes on S only rational curves);

● dim(Def(S[2] , ιS [2])) = dim(Def(S , ιS)), but dim(Def(S[2])) =
dim(Def(S)) + 1;

● dim(Def(YS)) ≥ dim(Def(S[2] , ιS [2])) = dim(Def(S , ιS)); the equality holds if
and only if either N ′ = 0 or N ′ = 1.

● dim(Def(YS)) ≤ dim(Def(ZS)); the equality holds if and only if ιS ûxes exactly
10 rational curves, i.e., if (S , ιS) is rigid.

In particular, it follows from dim(Def(ZS)) ≥ dim(Def(S × S , ιS × ιS)) that not
all the Calabi–Yau 4-folds that deform ZS are of Borcea–Voisin type. Indeed, the
deformations of ZS are all of Borcea–Voisin type if and only if the ûxed locus of ιS on
S is rigid. In this case, the family of ZS is a Borcea–Voisin maximal family, in analogy
with [13, Proposition 3.7]. _is implies that the deformations of the complex structure
of ZS depend only on the deformations of the complex structure of (S × S , ιS × ιS).
By dim(Def(S[2] , ιS [2])) = dim(Def(S × S , ιS × ιS , σ)) it follows that all the de-

formations of S[2] that preserve the non-symplectic involution ιS [2] are dominated by
S×S, but there is onemore deformation of S[2] ifwe do not require that ιS [2] deforms
with S[2].
By dim(Def(YS)) ≥ dim(Def(S[2] , ιS [2])), it follows that not all the deformations

of YS are dominated by S[2] and by S × S. However, again, if the ûxed locus of ιS is
rigid on S, then all the deformations of YS are obtained both as the crepant resolu-
tion of S[2]/ιS [2] and as crepant resolution of (S × S)/⟨ιS × ιS , σ⟩. In this case, the
variation of the complex structure of YS depends only on the variation of the com-
plex structure of S in Def(S , ιS). _is is the analogue of the [13, Proposition 3.7].
A little bit more surprising is the fact that also if N ′ = 1, i.e., if the ûxed locus of ιS
contains a curve of genus 1 (which a priori can be deformed), then dim(Def(YS)) =
dim(Def(S[2] , ιS [2])) = dim(Def(S × S , ιS × ιS , σ)).

Since dim(Def(YS)) ≤ dim(Def(ZS)), all the deformations of YS are dominated
by deformations of ZS . We observe that a general deformation of ZS does not neces-
sarily admit the automorphism σZ needed to construct YS as quotient.

5.6.2 Mirror Symmetry

Here we discuss themirror symmetry of YS and ZS , at least at the level of the Hodge
diamond. For this reasonwe recall here the dimension of the space of small deforma-
tions of the Kähler structure, since we want to compare it with the dimension of the
complex deformations, given in Table 1.

Under amild condition on theNéron–Severi group, a lattice theoreticmirror sym-
metry between K3 surfaces is deûned by Dolgachev in [19], extending work by Pink-
ham andNikulin. Given a smooth K3 surface S and a primitive hyperbolic sublattice
M ⊂ NS(S) of its Néron–Severi group, the K3 surface S is said to be M-polarized,
and, if the orthogonal of M inside H2(S ,Z) is of the form U ⊕ M̌ with M̌ a hyper-
bolic sublattice, then a mirror symmetric K3 surface for S is any smooth K3 surface Š
such that M̌ ⊂ NS(Š). In particular, if S is a general K3 surfacewith a non-symplectic
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Object Dimension of Kähler
deformations space

Dimension in terms
of (N ,N ′)

ZS h1,1(ZS) 20 + 2N − 2N ′ + N2

(S[2] , ι[2]) dim(H1,1(S[2])ι[2]S ) 11 + N − N ′

YS h1,1(YS) (24 + 3N − 2N ′ + N2) /2

Table 2: Dimension of Kähler deformations spaces

involution ιS whose ûxed locus contains exactly one curve of positive genus, then the
invariant sublattice H2(S ,Z)ιS ⊂ NS(S) is primitive hyperbolic and its orthogonal
inside H2(S ,Z) is of the form U ⊕ M̌ with M̌ a hyperbolic sublattice; Voisin showed
in [54] that S admits amirror symmetric K3 surface Š with a non-symplectic involu-
tion ι̌S such that H2(Š ,Z) ι̌S ≃ M̌. Let N and N ′ be the invariants of the ûxed locus
of ιS on S and let Ň and Ň ′ be the invariants of the ûxed locus of ι̌S on Š; we have
N = Ň ′, N ′ = Ň . As already observed in [18, Proposition 8.1], this induces the mir-
ror symmetry between the Hodge diamond of ZS and that of ZŠ (which is a crepant
resolution of (Š × Š)/(ι̌S × ι̌S)), i.e., h1,1(ZS) = h3,1(ZŠ), h3,1(ZS) = h1,1(ZŠ) and
h2,2(ZS) = h2,2(ZŠ). It is thus natural to ask whether the same holds for YS and YŠ ;
unfortunately, the answer is negative, as can be observed also from the last table in
Appendix A.

Corollary 5.8 Let Š be a K3 surface that is a lattice theoreticmirror of the K3 surface
S. Let Y̌S be a Calabi–Yau 4-foldwhoseHodge diamond ismirror to the one of YS . _en
Y̌S is not birational to YŠ .

Proof As observed above, we have N = Ň ′, N ′ = Ň , so it follows from _eorem 5.1
that h3,1(YŠ) = (20 − 2N ′ + N + N2)/2, and this is diòerent from h1,1(YS) in Table 2
for all possible values of (N ,N ′).

On the other hand, it is known that the mirror symmetry between (S , ιS) and
(Š , ι̌S)doesnot induce a lattice theoreticmirror symmetry between S[2] and Š[2]. _is
is becausemirror symmetry forhyperkählermanifoldsworksdiòerently from the case
of Calabi–Yau manifolds (see Huybrechts’ lecture notes for extensive explanations of
this phenomenon [28]). _e deûnition of lattice theoreticmirror symmetry is exactly
the same as for K3 surfaces (see [12] for further details). Given a smooth hyperkähler
4-fold ofK3[2] typeV and a primitive hyperbolic sublatticeM ⊂ NS(V) of itsNéron–
Severi group, if the orthogonal of M inside H2(V ,Z) is of the form U ⊕ M̌ with M̌
a hyperbolic sublattice, then a mirror symmetric hyperkähler 4-fold of K3[2] type for
V is any smooth 4-fold of K3[2] type V̌ such that M̌ ⊂ NS(V̌). Again, this lattice
theoretic mirror symmetry between two hyperkähler 4-folds of K3[2] type induces
mirror symmetry between diòerent families of 4-folds of K3[2] type endowed with a
non-symplectic involution: in particular, in [12, Sect. 5.2] it is shown that, given ιV
a non-symplectic involution on V of K3[2] type satisfying somemild assumptions, a
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general mirror symmetric 4-fold of K3[2] type V̌ for V carries the action of another
non-symplectic involution, denoted ˇιV . In the special case of a natural involution
(V , ιV) = (S[2] , ιS [2]), a general mirror pair turns out to be always non-natural, i.e.,
a pair (V̌ , ˇιV) with ˇιV , which cannot be a natural involution on a Hilbert scheme of
points of a K3 surface.

In view of this second mirror construction it is quite natural to ask whether the
lattice theoretic mirror symmetry on hyperkähler varieties of K3[2] type can induce
a mirror symmetry between the Calabi–Yau 4-folds resolutions of V/ιV and V̌/ ˇιV
respectively. _e situation is more complicated in this case, since in order to com-
pute the Hodge numbers of the 4-folds obtained as quotient of V̌ by a non-natural
involution ˇιV , one needs a good description of the ûxed locus (in order to com-
pute the Hodge diamond of a resolution of V̌/ ˇιV ). In general this is not available,
but testing the mirror symmetry in the unique explicit case present in the literature,
we obtain a negative answer to the previous question. Indeed, the ûrst possible test
fails: let S be a general K3 surface with a non-symplectic involution ιS such that
the numbers associated with its ûxed locus are N = 10 and N ′ = 2, in particular
H2(S ,Z)ιS ≃ NS(S) ≃ U ⊕ E8(−1) ⊕ E8(−1) and TS ≃ U ⊕ U . A lattice theoretic
mirror of the pair (S[2] , ιS [2]) is the pair (X , ιX), where X is a hyperkähler 4-fold of
K3[2] type with NS(X) ≃ U and ιX is the non-natural non-symplectic involution on
it described by Ohashi andWandel in [50]. We do not need any detail about the ge-
ometry of this example here, so we refer to loc. cit. for those, and we limit ourselves
to recalling that for this involution t1,1 = 2 (indeed the subspace of H1,1(X)ιX is the
Néron–Severi group) and that the ûxed locus of ιX consists of two disjoint surfaces.

Corollary 5.9 Let S be a general K3 surface with a non-symplectic involution ιS such
that the numbers associated with its ûxed locus are N = 10 and N ′ = 2, as above, and
let (X , ιX) be the mirror pair of (S[2] , ιS [2]) given by Ohashi–Wandel’s example. Let
X̃/ιX be the Calabi–Yau constructed as in Section 4.1, and let Y̌S be a Calabi–Yau 4-fold
whose Hodge diamond is mirror to the one of YS . _en Y̌S is not birational to X̃/ιX .

Proof Under these assumptions on (S , ιS), _eorem 5.1 implies that h1,1(Y̌S) =
h3,1(YS) = 3. Moreover, _eorem 4.3 and the properties recalled above give
h1,1(X̃/ιX) = 2 + 2 = 4 ≠ 3 = h1,1(Y̌S), showing that Y̌S is not birational to X̃/ιX .

_e question whether a mirror symmetry is induced in other examples of non-
natural non-symplectic involutions on 4-folds of K3[2]-type remains open; in a cer-
tain sense though, it is not to be expected that the mirror symmetry of YS can be
deduced from themirror symmetry of S[2], exactly as it cannot be deduced from the
mirror symmetry for S and ZS as shown in Corollary 5.8. Indeed, the space of the
complex (resp. Kähler) deformations of YS includes not only deformations that come
from S but also some coming from deformations of ZS and some coming from defor-
mations of S[2]. Since the twomirror constructions, of ZS and of S[2] respectively, are
not compatible, it seems reasonable that none of these two gives the right one for YS .
As observed in Appendix A, there is no mirror relation between the explicit Hodge
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numbers of any two 4-folds YS either, with the exception of a few cases that could be
self-mirror, so that themirror of YS has to be looked for elsewhere.

6 Quotients of S × S and Covers of These Quotients

Since the 4-folds S[2], YS , ZS and Z̃S/σS are obtained as desingularizations of the
quotients of S × S by an automorphism of S × S, we now consider a subgroup of
Aut(S×S) and the quotient of S×S by this subgroup. Indeed, in our geometric setting,
it is natural to look at the subgroup generated by id×ιS , ιS × id and σ . By Proposition
6.1, due to Oguiso, this is also the “maximal” choice for a general K3 surface with
an involution. Indeed, if S is general among the K3 surfaces with a non-symplectic
involution ιS , then Aut(S) = ⟨ιS⟩, and thus the subgroup described coincides with
Aut(S × S).
For everyK3 surface admitting anon-symplectic involution ιS ,wewill consider the

quotients byD8 = ⟨ιS × id, id×ιS , σ⟩ and by its subgroups. Let W be the smooth sur-
face S/ιS . We observe (see diagram (6.1)) that (S × S)/D8 ≃W(2). _en we describe
the singular models of S[2], YS , ZS as covers of (S × S)/D8 under the assumption
that the ûxed locus of ιS is connected (see Section 6.2). When ιS is a ûxed point free
involution, so that W is an Enriques surface, this description allows us to prove that
Z̃S/σZ is in fact isomorphic (and not only birational) to YS (see Proposition 6.3) and
to show that YS is indeed the universal cover ofW[2] mentioned in [49,_eorem 3.1].

Proposition 6.1 ( [48, Section 4]) _e automorphism group of S × S is Aut(S × S) ≃
⟨σ⟩ ⋊ Aut(S)2.

Remark 6.2 If Aut(S) ≃ Z/2Z, then Aut(S × S) ≃D8.

_e group D8 ≃ ⟨ιS × id, id×ιS , σ⟩ contains the following elements:

g1 ∶= id× id ∶ (P,Q)↦ (P,Q), g2 ∶= σ ∶ (P,Q)↦ (Q , P),
g3 ∶= ιS × id ∶ (P,Q)↦ (ιS(P),Q), g4 ∶= σ ○ (ιS × id) ∶ (P,Q)↦ (Q , ιS(P)),
g5 ∶= id×ιS ∶ (P,Q)↦ (P, ιS(Q)), g6 ∶= σ ○ (id×ιS) ∶ (P,Q)↦ (ιS(Q), P),
g7 ∶= ιS × ιS ∶ (P,Q)↦ (ιS(P), ιS(Q)) g8 ∶= σ ○ (ιS × ιS) ∶ (P,Q)↦ (ιS(Q), ιS(P)).

Weobserve that g2, g3, g5, g7, g8 haveorder two,while g4 and g6 haveorder 4 (g3
4 = g6)

and their square is g7. _e subgroup ⟨g7⟩ is the center of the group; in particular, it
is normal. _e other normal subgroups are ⟨g7 , g2⟩ ≃ (Z/2Z)2, ⟨g3 , g7⟩ ≃ (Z/2Z)2,
and ⟨g4⟩ ≃ Z/4Z.

We denote by g i the automorphisms induced by g i on the quotients of S × S by a
certain subgroup of D8, and by q j the quotient maps, and we underline that q1, q2,
q3 and q4 were already deûned in Proposition 5.3. We obtain the following diagram,
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where all the arrows are quotients of order two:

S × S

/g8uu

q1 ∶=/g2

rr

q3 ∶=/g7
�� /g5 &&

/g3

**
S(2)

q2 ∶=/g7 &&

(S × S)/(σ ○ (ιS × ιS))

/g2
��

(S × S)/(ιS × ιS)

q4 ∶=/g2vv q6 ∶=/g3 &&

S ×W

/g7

��

W × S
/g7

||
S(2)/ι(2)S

q5 ∶=/g3
))

W ×W
q7 ∶=/g2

xx
W(2)

(6.1)

whereW(2) = (W ×W)/σ . _is is a 4-fold, singular along a surface isomorphic to
W , image of the diagonal under the quotient mapW ×W →W(2). _e diagram (6.1)
shows that W(2) is the quotient of S × S by the group ⟨ιS × id, id×ιS , σ⟩ ≃D8.

_e 4-folds S(2), (S × S)/(σ ○ (ιS × ιS)), (S × S)/(ιS × ιS), andW(2) are singular
along surfaces and admit the crepant resolutions S[2], ̃(S × S)/(σ ○ (ιS × ιS)), ZS , and
W[2], respectively. We already proved that ̃(S × S)/(σ ○ (ιS × ιS)) is isomorphic to
S[2]. _e singular quotient S(2)/ι(2)S is birational to the Calabi–Yau 4-fold YS . All the
other 4-folds that appear in the diagram are smooth.

_e 4 ∶1 map (S×S)/(ιS × ιS)→W(2) is the quotientmap by the group (Z/2Z)2 ≃
D8/g7. _ere are also some 4 ∶1 maps that are induced by this diagram, but that are
not quotientmaps (i.e., the target space is not the quotient of the domain by the action
of a group of order 4 deûned over the domain): by the previous diagram, both S(2) →
W(2) and (S × S)/(σ ○ (ιS × ιS))→W(2) have order 4.

_ere is a 2 ∶1 quotient map from S(2)/ι(2)S to W(2).
_ere is amap (S × S)/(ιS × ιS)→W , obtained by composing

(S × S)/(ιS × ιS)→W ×W

with the projection on one factorW×W →W . _e general ûber of (S×S)/(ιS×ιS)→
W is isomorphic to S.

We will consider the quotient maps

(6.2)

S × S
q3Ð→ (S × S)/(ιS × ιS)

q6Ð→W ×W
q7Ð→W(2) ,

S × S
q3Ð→ (S × S)/(ιS × ιS)

q4Ð→ S(2)/ι(2)S
q5Ð→W(2) ,

S × S
q1Ð→ S(2) q2Ð→ S(2)/ι(2)S

q5Ð→W(2) ,

and the following subspaces in S × S:

∆S ∶= {(P, P)∣P ∈ S} ≃ S and ΓS ∶= {(P, ιS(P))∣P ∈ S} ≃ S .

72

https://doi.org/10.4153/CJM-2018-025-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-025-1


Calabi–Yau Quotients of Hyperkähler Four-folds

6.1 A Very Special Case: ιS is an Enriques Involution

We now focus on the case where ιS is an Enriques involution of S (which is by deûni-
tion anon-symplectic involution such that the ûxed locus of ιS is empty). _e quotient
surfaceW = S/ιS is an Enriques surface (a regular surface with the canonical bundle
which is a 2-torsion bundle).

Proposition 6.3 If ιS is an Enriques involution on S, then YS is isomorphic to Z̃S/σZ
and they are the blow-up of the non-ramiûed double cover ofW(2) in its singular locus.

Proof Both YS and Z̃S/σZ are desingularizations of S(2)/ι(2)S . _e canonical bundle
of W(2) is a 2-torsion bundle which induces the 2 ∶1 cover S(2)/ι(2)S → W(2); thus,
S(2)/ι(2)S is singular along two surfaces (mapped to Sing(W(2))). _ese surfaces are
q4(q3(∆S)) and q4(q3(ΓS)). Since S(2)/ι(2)S →W(2) is an unramiûed cover (or since
FixιS (S) is empty), the surfaces q4(q3(∆S)) and q4(q3(ΓS)) are disjoint.

In order to construct YS , one ûrst constructs S[2] as blow-up of S(2) in its sin-
gular locus, which is q1(∆S). _en one constructs the quotient S[2]/ιS [2] and blows
up its singular locus, which is mapped on S(2)/ι(2)S to q2(q1(ΓS)). So YS is isomor-
phic to S(2)/ι(2)S blown up in the two disjoint surfaces q2(q1(∆S)) ≃ q4(q3(∆S)) and
q2(q1(ΓS)) ≃ q4(q3(ΓS)).

In order to construct Z̃S/σZ , one constructs the smooth quotient (S × S)/(ιS × ιS),
then one considers the quotient q4 ∶ (S×S)/(ιS×ιS)→ S(2)/ι(2)S , and ûnally one blows
up the two singular surfaces q4(q3(∆S)) and q4(q3(ΓS)) of S(2)/ι(2)S .

So both YS and Z̃S/σZ are the blow-ups of S(2)/ι(2)S in its two disjoint singular
surfaces.

We remark that YS ≃ Z̃S/σS (blow-up of S(2)/ι(2)S in its singular locus) is exactly
the universal cover ofW[2] (blow-up ofW(2) in its singular locus), whose existence
was proved in [49,_eorem 3.1].

6.2 Covers

If the involution ιS has a non-empty ûxed locus, the intersection of FixιS×ιS (S × S)
and Fixσ(S × S) is non-trivial, both (S × S)/σ and (S × S)/(ιS × ιS) are singular,
and the ûxed locus of the involution induced by ιS × ιS (resp. σ) on (S × S)/σ (resp.
(S × S)/(ιS × ιS)) intersects the singular locus.

We now assume for simplicity that ιS ûxes only one smooth curve C on S. For
simplicity we also denote by C the isomorphic image of C in the smooth quotient
surfaceW = S/ιS . _e purpose of this section is to reconstruct all the singular four-
folds in diagram (6.1) by the data (W ,C): in the following subsections we describe
these constructions.
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We will consider the following subspaces in S × S:

∆C ∶= {(P, P)∣P ∈ FixιS (S)} ≃ FixιS (S),
BC ∶= {(P,Q)∣P ∈ FixιS (S), Q ∈ FixιS (S)} ≃ FixιS (S) × FixιS (S),
T1 ∶= {(P,Q)∣P ∈ FixιS (S), Q ∈ S} ≃ FixιS (S) × S ,

T2 ∶= {(P,Q)∣P ∈ S , Q ∈ FixιS (S)} ≃ S × FixιS (S).

_emap πtot ∶ S × S →W(2) coincides with each of the compositions: q7 ○ q6 ○ q3,
q5 ○ q4 ○ q3, and q5 ○ q2 ○ q1 (see (6.2)).

We also remark that Sing(W(2)) = πtot(∆S) = πtot(ΓS). In the following we will
assume that FixιS (S) consists of one smooth irreducible curve.

6.2.1 S(2)/ι(2)S as Double Cover of W(2)

_e threefold Ttot ∶= πtot(T1) = πtot(T2) ⊂ W(2) meets the singular locus ofW(2) in
the curve πtot(∆C). Moreoverwe observe that it is a singular threefold and its singular
locus is πtot(BC).
By diagram (6.1), the double cover of W(2) branched along Ttot is the 4-fold

S(2)/ι(2)S . _e inverse image of Sing(W(2)) consists of two surfaces, q4(q3(∆S))
and q4(q3(ΓS)),meeting along the inverse image of Ttot ∩ Sing(W(2)), which is the
curve q5(q4(q3(∆C))). _ese surfaces are singular for S(2)/ι(2)S and intersects along
a curve, which is q4(q3(∆C)). _ey are both isomorphic to W .
But the singularities of S(2)/ι(2)S do not consist only of the surfaces q4(q3(∆S))

and q4(q3(ΓS)). Indeed, we already remarked that the branch threefold Ttot is singu-
lar along a surface,which is πtot(BC) /⊂ Sing(W(2)). Hence, the 2 ∶1 cover S(2)/ι(2)S →
W(2) is singular along the inverse image of this surface. _us, we have a third singu-
lar surface in S(2)/ι(2)S , q4(q3(BC)), isomorphic to C(2). _is third singular surface
intersects the other two singular surfaces in their common intersection, i.e., in the
curve q4(q3(∆C)). _e intersection among these three surfaces is transversal, since
they are images of surfaces on S × S that generically have no common tangent direc-
tions. Choosing two surfaces among these three as branch locus of double covers of
S(2)/ι(2)S , we reconstruct the other 4-folds in diagram (6.1).

6.2.2 S(2) as Double Cover of S(2)/ι(2)S (and Thus as 4 ∶1 Cover of W(2))

_e 4-fold S(2)/ι(2)S is singular in three surfaces, which intersect in q4(q3(∆C)) and
are q4(q3(∆S)), q4(q3(ΓS)), and q4(q3(BC)). _e same surfaces can be described
also as q2(q1(∆S)), q2(q1(ΓS)) and q2(q1(BC)).

Let us now consider the double cover of S(2)/ι(2)S branched along q2(q1(ΓS)) ∪
q2(q1(BC)). By diagram(6.1),we obtain a 4-fold that is S(2). It is singular in q1(∆S) ≃
S, and the quotient map q2 ∶ S(2) → S(2)/ι(2)S restricts to a 2 ∶1 map between q1(∆S) ≃
S and q2(q1(∆S)) ≃W , branched along q2(q1(∆C)).
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6.2.3 (S × S)/(ιS × ιS) as Double Cover of S(2)/ι(2)S (and Thus as 4 ∶1 Cover of

W(2), via S(2)/ι(2)S )

Similarly to what we did in the previous paragraph, one can consider two surfaces
among the three singular surfaces in S(2)/ι(2)S and consider the double cover branched
along these two surfaces. In particular, let us consider the double cover of S(2)/ι(2)S
branched along q4(q3(∆S))∪q4(q3(ΓS)). We obtain a 4-fold that is (S × S)/(ιS × ιS).
It is singular in q3(BC) ≃ C×C, and the quotientmap q4 ∶ (S×S)/(ιS×ιS)→ S(2)/ι(2)S
restricts to a 2 ∶1 map between q3(BC) ≃ C × C and q4(q3(BC)) ≃ C(2), branched
along q4(q3(∆C)).

6.2.4 (S×S)/⟨(ιS× ιS)○σ⟩ as Double Cover of S(2)/ι(2)S (and Thus as 22 ∶1 Cover
of W(2))

_e third (and last) possible choice is to consider the double cover of S(2)/ι(2)S bran-
ched along q4(q3(BC))∪q4(q3(∆S)). We obtain a 4-fold (S × S)/⟨(ιS × ιS) ○ σ⟩ that
is isomorphic to S(2) by Proposition 5.4.

6.2.5 (S × S)/(ιS × ιS) as 4 ∶1 Cover of W(2), via W ×W

Let us consider the double cover of W(2) branched along Sing(W(2)). _is is
the smooth fourfold W × W . Let us consider the (singular) threefold Ttot ∶=
q7(q6(q3(T1))) = q7(q6(q3(T2))), which intersects the singular locus of W(2) in
q7(q6(q3(∆C))) ≃ C. In the double cover W × W , Ttot splits in the two three-
folds q6(q3(T1)) and q6(q3(T2)), meeting along the surface q6(q3(BC)) (which is
in fact the surfacemapped on the singularity of Ttot). _e fourfold (S × S)/(ιS × ιS)
is the double cover of W ×W branched along the union of the two threefolds over
q6(q3(T1)) and q6(q3(T2)) (i.e., along the two inverse images of Ttot in the double
cover W ×W →W(2)). _ese two threefolds meet along the surface (q6(q3(BC)) ≃
C × C; thus, the double cover (S × S)/(ιS × ιS) is singular along the surface inverse
image of q6(q3(BC)) ≃ C × C.

7 Projective Models

_e aim of this section is to describe some explicit models of the 4-folds constructed
relating the geometric description given by the diagram (6.1) and in Section 6.2 with
the description of the cohomology on S[2], YS , and ZS , given in Sections 5.1 and 5.2.

_emain results of this section are of two diòerent types: ûrstwe consider divisors
induced on the 4-folds S[2], ZS and YS by nef and big divisors on S, and we compute
their characteristic (Proposition 7.3) and in some cases the dimension of their lin-
ear systems (_eorem 7.5). _us, we give an explicit formulation of Riemann–Roch
theorem in our context. _en we apply these general results to speciûc examples of
divisors and K3 surfaces S, in Sections 7.2, 7.3, and 7.4. In some cases we also give
explicit equations for some of the 4-folds constructed; see Section 7.2.1 and proof of
Propositions 7.10 and 7.11.
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We consider an L-polarized K3 surface for L ≅ ⟨2⟩,U ,U(2) (see Sections 7.2, 7.3,
and 7.4 respectively). We notice that for each such choice of L, the L-polarized K3
surface admits exactly one of the following geometricmodels (see [51, Section 5]):
(a) S is a double cover of P2 and ιS is the cover involution;
(b) S admits an elliptic ûbration (with section) and ιS is the elliptic involution

(equivalently, S is a double cover of F4 and ιS is the cover involution);
(c) S is a double cover of P1 × P1 and ιS is the cover involution.
All the pairs (S , ιS) admit at least one of these geometricmodelswhere the ûxed locus
can specialize.

7.1 Results on Divisors and Linear Systems

In the sequel we will apply the results of this subsection to study divisors on three
diòerent varieties, S[2], ZS and YS , since all of them can be constructed as the crepant
resolution X of the quotient of an appropriate 4-fold V with c1(V) = 0 by a volume
preserving involution α, we consider now the commutative diagram

Ẽ �
� //

β∣Ẽ
��

Ṽ

β
��

π
// X

β′

��
Σ �
�

j
// V

π′
// V/α

with
● V a smooth 4-fold with c1(V) = 0;
● α ∈ Aut(V) a volume preserving involution;
● Σ the smooth surface ûxed by α in V , embedded via j;
● β ∶ Ṽ → V the blow-up of V along Σ;
● Ẽ the exceptional divisor over Σ;
● q ∶ V → V/α the quotient map; V/α is singular in q(Σ);
● X = Ṽ/α̃, where α̃ is the involution induced by α on Ṽ and π ∶ Ṽ → X is the

quotient map;
● β′ ∶ X → V/α the blow-up of V/α in its singular locus, q(Σ).
_e same proof as in _eorem 3.6 yields c1(X) = 0, aswe already know in all cases

that interest us, i.e., X = S[2] , X = ZS or X = YS . _e map π ∶ Ṽ → X is a double
cover ramiûed along Ẽ and branched along the exceptional divisor E of the blow-up
β′ ∶ X → V/α. In particular, π(Ẽ) ≃ E.

Let D be a divisor on V invariant for α; we set D̃ ∶= β∗D and denote by DX the
divisor on X such that π∗DX = D̃ = β∗D. For the sake of simplicity, we denote by D
also the class of a divisor D in H2(X ,Q).

Lemma 7.1 If D is big and nef on V , then DX is big and nef on X.

Proof _e nef (or ample) divisors on V that are invariant for an automorphism α ∈
Aut(V), descend to nef (or ample) divisors on the quotient V/α. Moreover, bigness
of nef divisors is preserved under ûnite quotient maps by [35, Proposition 2.61], as
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the sign of the top self intersection does not change. _ese divisors on the possibly
singular quotient V/α induce nef divisors on X, and bigness is a birational invariant
(see e.g., [35, Deûnition 2.59 and Lemma 2.60]).

For a divisor D on a fourfold X with c1(X) = 0, the Riemann–Roch formula (see
for example [24, Corollary 15.2.1]) is

(7.1) χ(D) = D4

24 +
1
24D

2 .c2(X) + χ(OX)

If X is Calabi–Yau, χ(OX) = 2, and if X = S × S, χ(OX) = 4.
Moreover, for a divisor D on a fourfold of K3[2] type, the Riemann–Roch for-

mula can be written in terms of the Beauville–Bogomolov–Fujiki quadratic form q
on H2(S[2] ,Z) (see [25, Example 23.19]):

χ(D) = 1
8 (q(D) + 4)(q(D) + 6).

We want now to compute χ(DX) in terms of χ(D), and to do so we need to un-
derstand Chern classes of X in terms of Chern classes of V .

Proposition 7.2 Under the above assumptions, up to torsion we have

c2(X) = 1
2π∗β

∗c2(V) + 1
2π∗β

∗ j∗[Σ] − π∗(Ẽ2).

Proof We apply the theory explained in [20, §3.5] (see also [15]): note that π is a
double cover branched along the smooth divisor E. _en there is L ∈ Pic(X) such
that L⊗2 = O(E) and π∗TṼ = (TX ⊗ L−1) ⊕ TX(log E), and we have the short exact
sequence

0 // TX(log E) // TX // NE∣X // 0.

Since c1(X) = 0, we have c1(TX(log E)) = −c1(NE∣X) = −c1(OE(E)). From the
exact sequence

0 // OX // OX(E) // OE(E) // 0,

we deduce c1(OE(E)) = E, c2(OE(E)) = 0.
Hence, c1(TX(log E)) = −E and

c2(TX(log E)) = c2(X) − c2(NE∣X) − c1(NE∣X)c1(TX(log E)) = c2(X) + E2 .

Next,weuse the following formula for theChern character ch of the tensorproduct
of a vector bundleW and a line bundle L: ch(W ⊗ L) = ch(W) ⋅ ch(L), from which:

c1(TX ⊗ L−1) = rank TX ⋅ c1(L−1) + c1(X) = −4c1(L) = −2E ,
c2(TX ⊗ L−1) = c2(X) + 3c1(X)c1(L−1) + (4

2)c1(L
−1)2 = c2(X) + 3

2E
2 .

And we thus obtain

c1(π∗TṼ) = c1(TX ⊗ L−1) + c1(TX(log E)) = −3E ,
c2(π∗TṼ) = c2(TX ⊗ L−1) + c2(TX(log E)) + c1(TX ⊗ L−1)c1(TX(log E))

= 2c2(X) + 9
2E

2 .
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Since π is ûnite, R iπ∗TṼ = 0 for i > 0, and we can applyGrothendieck–Riemann–
Roch theorem [24,_eorem 15.2]:

ch(π∗TṼ)Td(TX) = π∗( ch(Ṽ)Td(TṼ)) , i.e.,

[8 − 3E + 1
2 (−3E)

2 − 2c2(X) − 9
2E

2 + . . . ][1 + 1
12 c2(X) + . . . ] =

π∗[(4+c1(Ṽ)+ 1
2 c1(Ṽ)2−c2(Ṽ)+ . . . )( 1+ 1

2 c1(Ṽ)+ 1
12 c1(Ṽ)2+ 1

12 c2(Ṽ)+ . . . )]

which yields in degree one π∗c1(Ṽ) = −E and in degree two

(7.2) c2(X) = −π∗( c1(Ṽ)2) + 1
2π∗( c2(Ṽ)) .

By π∗c1(Ṽ) = −E and π∗Ẽ = E, it follows c1(Ṽ) = −Ẽ.
Finally, we remark that, by [24, Example 15.4.3], c2(Ṽ) = β∗c2(V) + β∗ j∗[Σ].

Substituting this in (7.2) one obtains the statement.

Proposition 7.3 With the notation above, we have

χ(DX) = 1
2 χ(D) + 1

16 (D∣Σ)2 − 1
2 χ(OV) + χ(OX).

Proof By Riemann–Roch (7.1), χ(DX) = 1
24D

4
X + 1

24D
2
X .c2(X) + χ(OX).

By [16, Proposition 1.10], D̃4 = (π∗DX)4 = 2D4
X , and D̃

4 = D4, hence D4
X = 1

2D
4.

We need now to compute D2
X .c2(X). We use Proposition 7.2, the projection for-

mula [24, Proposition 8.3(c)] and the fact that π∗E = 2Ẽ and π∗Ẽ = E, getting:
D2

X .π∗β
∗c2(V) = π∗( D̃2 .β∗c2(V)) = D2 .c2(V),

D2
X .π∗β

∗ j∗[Σ] = π∗( D̃2 .β∗ j∗[Σ]) = π∗(β∗(D2 . j∗[Σ])) = π∗(β∗((D∣Σ)2)) ,
D2

X .π∗(Ẽ2) = π∗(D̃2 .Ẽ2) = −π∗(β∗((D∣Σ)2)) .
where the last equality follows from [1, Lemma 1.1]. We plug everything into (7.1) and
obtain:

χ(DX) = 1
48D

4 + 1
48D

2 .c2(V) + 1
16 (D∣Σ)2 + χ(OX).

Let HS be a divisor on S. In the sequelwewill use the following notation, building
up on the notation of Diagram (5.2):

● H i ,S ∈ NS(S × S) is the divisor p∗i (HS) where p i ∶ S × S → S is the projection
on the i-th factor of S × S;

● HS[2] is the divisor on S[2], (resp. ZS) such that π∗1 (HS[2]) = β∗∆(H1,S +H2,S) ⊂
NS(S̃ × S);

If,moreover, HS is invariant for ιS we can also deûne the following divisors on ZS
and YS :

● HZ is the divisor on ZS such that π∗3 (HZ) = β∗FixιS×ιS (S×S)(H1,S + H2,S) ⊂
NS(S̃ × S);

● HY is the divisor on YS such that π∗2 (HY) = β∗FixιS [2](S[2])
(HS[2]) ⊂ NS(S̃[2]);

● H1,Z , H2,Z are the divisors on ZS such that π∗3 (H i ,Z) = β∗FixιS×ιS (S×S)(H i ,S) ⊂
NS(S̃ × S).
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A straightforward application of Lemma 7.1 yields the following corollary.

Corollary 7.4 LetHS be an ample (or big andnef) divisor on S. _e divisorH1,S+H2,S

is ample (or big and nef) on S × S, and HS[2] is big and nef on S[2].
If, moreover, we assume that HS ∈ NS(S) is invariant for ιS , then HZ and HY are

big and nef divisors.

To avoid confusion, in the following theorem we will denote the self intersection
product between divisors by (H ⋅ H) (and not by H2). Moreover, we will use the
following notation: hΣS×S (resp. hΣ1,S×S , hΣZ ) to denote the number of points in the
intersection of the surface ΣS×S = FixιS (S)×FixιS (S) ⊂ S×S (resp. Σ1,S×S = FixιS (S)×
FixιS (S) ⊂ S×S, ΣZ = FixσZ (Z) ⊂ Z) and a surface equivalent to (H1,S +H2,S)2 (resp.
H2

1,S , H
2
Z).

_eorem 7.5 Let H be a nef and big ιS-invariant divisor on S. _en

h0(HS[2]) = 1
8((H ⋅H) + 4)((H ⋅H) + 6) ,

h0(HZ) = 1
2(h0(H)) 2 + 1

16 hΣS×S ,

h0(HY) = 1
2 h

0(HZ) + 1
16 hΣZ + 1 = 1

4(h0(H)) 2 + 1
32 hΣS×S + 1

16 hΣZ + 1.

Proof SinceH is big and nef, by theKawamata–Viehweg vanishing theorem χ(H) =
h0(H). Similarly, by Corollary 7.4, χ(HX) = h0(HX) for X = S[2] , ZS ,YS since these
divisors are big andnef. Now the theoremis a trivial application ofProposition 7.3.

Remark 7.6 _e divisor H1,Z is not necessarily big and nef, thus we cannot assume
that χ(H1,Z) = h0(H1,Z). However, one can compute χ(H1,Z) byRiemann–Roch and
Proposition 7.3. _us, one obtains χ(H1,Z) = 1

2 χ(H) + 1
16 hΣ1,S×S .

Remark 7.7 _e map induced by the linear systems of HX , for X = S[2] , ZS ,YS
and H1,Z contracts the exceptional divisors introduced by the blow-up β′ on these
varieties. So all of them factorizes through the singular models described in diagram
(6.1). In particular, φ∣HS[2] ∣

deûnes a map on S(2); φ∣HZ ∣ and φ∣H1,Z ∣ deûne maps on
(S × S)/(ιS × ιS), and φ∣HY ∣ deûnes a map on S(2)/ι(2)S ≃ (S × S)/⟨σ , ιS × ιS⟩. _e
target spaces of the map φ∣HX ∣, for X = S[2] (resp. ZS , YS) is a copy of W(2) (resp.
W ×W ,W(2)) embedded in a projective space.

7.2 ιS is the Covering Involution of the 2 ∶1 Map S → P2

Let us now assume that ιS ûxes on S one curve C of genus 10. In this case, generically,
NS(S) ≃ ⟨2⟩ ≃ ZH and φ∣H∣ ∶ S → P2 is a 2 ∶1 cover branched along a smooth plane
sextic denoted by B. So H is an ample divisor, h0(H) = 3,W = S/ιS ≃ P2 and the class
of C in NS(S) is 3H. _e automorphisms group Aut(S × S) is D8 and the admissible
quotients are described in Section 6.2.
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_e multiplication map H0(S ,H) ⊗ H0(S ,H) → H0(S × S , p∗1 (H) + p∗2(H)) is
an isomorphism by the Kunneth formula for cohomology of sheaves [34, Proposi-
tion 9.2.4] and hence the target space of φ∣H1,S+H2,S ∣ is the Segre embedding of the self
product of the target space of φ∣H∣.

Let us denote by i2 ∶ P2 × P2 → P5 themap

((x0 ∶x1 ∶x2), (y0 ∶ y1 ∶ y2)) ↦ (x0 y0 ∶x0 y1+x1 y0 ∶x0 y2+x2 y0 ∶x1 y1 ∶x1 y2+x2 y1 ∶x2 y2)

which exhibits (P2)(2) as subvariety of P5. We observe that i2 is induced by the Segre
embedding.

Proposition 7.8 Let S be a ⟨2⟩-polarized K3 surface as above, and let ιS be a non-
symplectic involution on S ûxing one curve C of genus 10, so that W = S/ιS ≃ P2. _e
map φ∣HS[2] ∣

∶ S[2] → P5 is a generically ûnite 22 ∶1 cover of i2((P2)(2)) ⊂ P5 totally
branched on the image of i2(B × B) and whose branch locus of order 2 is the image of
i2(P2 ×B). It contracts the exceptional divisors, thus it factorizes through S(2) inducing
a 4 ∶1 map S(2) →W(2) (cf. diagram (6.1)).

_e map φ∣HZ ∣ ∶ ZS → P8 is a generically ûnite 2 ∶1 map onto P2 × P2 embedded in
P8 by the Segre embedding. _e branch locus of φ∣HZ ∣ ∶ ZS → P2 × P2 ⊂ P8 is the image
of B × B by the Segre embedding. _is map contracts the exceptional divisors, thus it
factorizes through (S×S)/(ιS × ιS) inducing the 2 ∶1map (S×S)/(ιS × ιS)→ (W ×W)
(cf. diagram (6.1)).

_e map φ∣H1,Z ∣ ∶ ZS → P2 is a ûbration whose general ûbers are isomorphic to S.
_is map contracts the exceptional divisors, thus it factorizes through (S × S)/(ιS × ιS)
inducing themap (S × S)/(ιS × ιS)→W ≃ S/ιS .

_e map φ∣HY ∣ ∶ YS → P5 is a generically ûnite 2 ∶1 map to (P2)(2), embedded in P5
by i2. _e branch locus of φ∣HY ∣ is i2(B×B). _ismap contracts the exceptional divisors,
thus it factorizes through (S×S)/⟨ιS× ιS , σ⟩ inducing the 2 ∶1map (S×S)/⟨ιS× ιS , σ⟩→
W(2) (cf. diagram (6.1)).

Proof By Remark 7.7 one obtains that the map described contracts the exceptional
divisors and are deûned on the singular models of the 4-folds considered.
By the commutativity of the diagram

S × S
φ∣H∣×φ∣H∣

4 ∶ 1
//

2 ∶ 1
��

P2 × P2

2 ∶ 1
��

S(2) (φ∣H∣)
(2)

4 ∶ 1
// (P2)(2)

.

we get a map S(2) → (P2)(2) induced by HS[2] . _e number h0(HS[2]) = 6 can be
computed by _eorem 7.5, so the target space of φ∣HS[2] ∣

is P5, and since HS[2] is in-
duced by p∗1 (H)+ p∗2(H) (under the quotient σ), the image of themap φ∣HS[2] ∣

is the
image of (P2)(2) by i2. So themap φ∣HS[2] ∣

∶ S[2] → P5 is the composition

S[2] β′Ð→ S(2) (φ∣H∣)
(2)

Ð→ (P2)(2) i2Ð→ P5 .
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In order to compute h0(HZ) one has to recall that the class of FixιS (S)×FixιS (S) ⊂
S × S is (3H1,S)(3H2,S), so

hΣS×S = (H1,S +H2,S)2(3H1,S)(3H2,S) = 9(H3
1,SH2,S +H3

2,SH1,S + 2H2
1,SH

2
2,S).

Since H i ,S is the pull-back of a divisor on S, H3
i ,S = 0 and H2

1,SH
2
2,S = 22 since H2 = 2

on S. _us hΣS×S = 9 ⋅ 2 ⋅ 4 = 72. By _eorem 7.5, h0(HZ) = 9
2 +

72
16 = 9. By the

commutativity of the diagram

S × S
φ∣H∣×φ∣H∣

4 ∶ 1
//

2 ∶ 1
��

P2 × P2 � � s // P8

ZS
β′ // (S × S)/(ιS × ιS),

f
2 ∶ 1

77

φ∣HZ ∣ ∶= s ○ f ○ β′. In order to compute h0(H1,Z), we observe that

π∗3 ∶ H0(ZS ,H1,Z)→ H0(S̃ × S , π∗3 (H1,Z))

is injective. Moreover, we recall that β∗FixιS×ιS (S×S)(H1,S) = π∗3 (H1,Z) so that

H0( S̃ × S , π∗3 (H1,Z)) ≃ H0( S̃ × S , β∗FixιS×ιS (S×S)(H1,S)) ≃ H0(S ,HS).

Since the sections in H0(S ,HS) are invariant for ι∗S , their pullbacks by βFixιS×ιS (S×S)

to S̃ × S descend to sections in H0(ZS ,H1,Z) . Hence, π∗3 is an isomorphism, and
h0(H1,Z) = h0(HS) = 3. So, the target space of themap φ∣H1,Z ∣ is P

2. _emap φ∣H1,Z ∣

contracts the exceptional divisors of ZS → (S × S)/(ιS × ιS), so it factorizes through a
map g ∶ (S × S)/(ιS × ιS)→ P2. _e properties of φ∣H1,Z ∣ follow by the commutativity
of the following diagram:

S × S

��

/ιS×id //

f

''

S/ιS × S

��
(S × S)/(ιS × ιS)

g // S/ιS

.

Indeed, f is a ûbration whose general ûbers are isomorphic to S and induces themap
g.

In order to compute h0(HY), one has to recall that σZ ûxes on ZS the image
of ∆S ⊂ S × S and the image of ΓS ⊂ S × S. First, we observe that on S × S it
holds (H1,S + H2,S)2∆S = (H1,S + H2,S)2ΓS = 4(H ⋅ H), which in our case implies
(H1,S +H2,S)2∆S = (H1,S + H2,S)2ΓS = 8. _en we observe that, since H is a mov-
able divisor, generically the points in (H1,S +H2,S)2∆S and (H1,S +H2,S)2ΓS are not
contained in the ûxed locus of ιS × ιS , the involution ιS × ιS is non-trivial on these
points and the quotient by ιS × ιS identiûes pairs of these points. Hence the intersec-
tion between HZ and the image of ∆S (resp. ΓS) in ZS consists of 4 points and thus
hΣZ = 4 + 4 = 8. By _eorem 7.5, h0(HY) = 9

2 +
8
16 + 1 = 6. By the commutativity of
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the diagram,

S × S
φ∣H∣×φ∣H∣

4 ∶ 1
//

2 ∶ 1
��

P2 × P2
2 ∶ 1

// (P2)(2) �
� i2 // P5

(S × S)/⟨ιS × ιS⟩ 2 ∶ 1
// (S × S)/⟨ιS × ιS , σ⟩

2 ∶ 1
g

77

YS
β′oo

φ∣HY ∣ is the composition i2 ○ g ○ β′.

7.2.1 A Special Case: S is the Double Cover of P2 Branched on a Line and a
(Possibly Reducible) Quintic

In this case the hypotheses of Section 6.2 are not satisûed, since the ûxed locus of ιS
contains at least 2 curves. On the other hand, there is a nice birational description of
the Calabi–Yau involved in our construction. So let us assume that S is the minimal
resolution of the double cover S′ ofP2 branched along a line and a quintic. In this case,
W is a blow-up of P2, and if the quintic is smooth and intersects the line transversally,
it is a blow-up of P2 in 5 (collinear) points. We denote by p i ∶ S × S → S the i-th
projection. An equation of a birational (singular) model of S ≃ p1(S × S) is given by

X2 = x0 f5(x0 ∶x1 ∶x2),
which exhibits S′ asdouble coverofP2

(x0 ∶ x1 ∶ x2). Let usdenote byY
2 = y0 f5(y0 ∶ y1 ∶ y2)

the analogous birational equation for S ≃ p2(S × S). _e action of ιS × ιS is given by
(X , (x0 ∶x1 ∶x2);Y , (y0 ∶ y1 ∶ y2))→ (−X , (x0 ∶x1 ∶x2);−Y , (y0 ∶ y1 ∶ y2)).

We now consider the aõne equation of p1(S×S) and p2(S×S) obtained by putting
x0 = 1 and y0 = 1. _e invariant functions for ιS × ιS are Z ∶= XY , a1 = x1, a2 = x2,
a3 = y1, a4 = y2. _en a birational equation for (S×S)/(ιS × ιS) (and thus a birational
model of ZS) is given by

Z2 = f5(1 ∶a1 ∶a2) f5(1 ∶a3 ∶a4).
_is equation exhibits ZS as a double cover of the complement of {a0 = 1} in
P4
(a0 ∶ a1 ∶ a2 ∶ a3 ∶ a4)

. It is clearly possible to introduce the variable a0 in order to ob-
tain a homogenous polynomial F10(a0 ∶a1 ∶a2 ∶a3 ∶a4) of degree 10 that reduces to
f5(1 ∶a1 ∶a2) f5(1 ∶a3 ∶a4) if a0 = 1. So ZS is birational to a 2 ∶1 cover of P4 branched
along a (possibly singular) 3-fold of degree 10, denoted by B.

On P4, the map σP4 ∶ (a0 ∶a1 ∶a2 ∶a3 ∶a4) ↦ (a0 ∶a3 ∶a4 ∶a1 ∶a2) acts preserving the
homogeneous polynomial F10(a0 ∶a1 ∶a2 ∶a3 ∶a4). _e map σZ is induced on ZS by
the projective map σP4 . Denoted by π the quotient map π ∶ P4 → P4/σP4 , we ob-
tain that ZS/σZ and YS are birational to a double cover of π(P4) branched over
π(V(F10(a0 ∶a1 ∶a2 ∶a3 ∶a4))) (where V(F10(a0 ∶a1 ∶a2 ∶a3 ∶a4)) is the zero locus of
the polynomial F10).

In order to better describe P4/σP4 it is convenient to apply the changes of coor-
dinates b0 ∶= a0, b1 ∶= (a1 + a2)/2, b2 ∶= (a3 + a4)/2, b3 ∶= (a1 − a2)/2, b4 ∶=
(a3 − a4)/2. With these new coordinates, σP4 is the map σP4 ∶ (b0 ∶b1 ∶b2 ∶b3 ∶b4) ↦
(b0 ∶b1 ∶b2 ∶ −b3 ∶ −b4), and P4/σP4 is mapped to the 4-dimensional singular subspace
of P8

(z0 ∶ ⋅⋅⋅ ∶ z8) given by the set-theoretic complete intersection of 4 singular quadrics
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M ∶= V(z0z1 = z2
5 , z0z2 = z2

6 , z1z2 = z2
7 , z3z4 = z2

8), where z i ∶= b2
i for i = 0, . . . , 4,

z5 ∶= b0b1, z6 ∶= b0b2, z7 ∶= b1b2, z8 ∶= b3b4. _e space M is singular, Sing(M) =
(M ∩ V(z0 , z1 , z2 , z5 , z6 , z7)) ∪ (M ∩ V(z3 , z4 , z8)).

_e image of V(F10) under the quotient map is a 3-fold T of degree 5 in P8. _e
4-fold YS is birational to a double cover of M branched along M ∩ T .

7.3 ιS is the Covering Involution of the 2 ∶1 Map S → P1 × P1

Let us now assume that ιS ûxes on S one curve of genus 9 isomorphic to the branch
curve B,which has bidegree (4, 4) inP1×P1. In this case, generically,NS(S) ≃ U(2) ≃
Zl ⊕ Zm, and φ∣l+m∣ ∶ S → P1 × P1 ⊂ P3 is a 2 ∶1 map on the image, and P1 × P1 is
embedded in P3 by the Segre embedding s1,1. We denote H ∶= l + m ∈ NS(S). _e
ramiûcation divisor of the 2 ∶1 cover S → P1 × P1 ⊂ P3 is thus represented by 2H. We
observe that W ≃ P1 × P1.
By [53, Lemma 4.6], if S is a K3 surface with NS(S) ≃ U(2), then Aut(S) ≃ Z/2Z.

So Aut(S × S) is D8 and the admissible quotients are described in Section 6.2.
Let us denote by i3 ∶ P3 × P3 → P9 themap

((x0 ∶x1 ∶x2 ∶x3), (y0 ∶ y1 ∶ y2 ∶ y3)) z→
(x0 y0 ∶x0 y1 + x1 y0 ∶x0 y2 + x2 y0 ∶x0 y3 + x3 y0 ∶x1 y1 ∶x1 y2+

x2 y1 ∶x1 y3 + x3 y1 ∶x2 y2 ∶x2 y3 + x3 y2 ∶x3 y3),

which exhibits (P3)(2) as a subvariety of P9.

Proposition 7.9 Let S be a U(2)-polarized K3 surface as above, and let ιS be a non-
symplectic involution on S ûxing one curve of genus 9, so that W = S/ιS ≃ P1 × P1.
_emap φ∣HS[2] ∣

∶ S[2] → P9 is a generically ûnite 22 ∶1 cover of i3((P3)(2)) ⊂ P9 totally
branched on the image of i3(s1,1(B)× s1,1(B)) and whose branch locus of order 2 is the
image of i3(s1,1(P1×P1)×s1,1(B)). It contracts the exceptional divisors, thus it factorizes
through S(2) inducing a 4 ∶1 map S(2) →W(2) (cf. diagram (6.1)).

_e map φ∣HZ ∣ ∶ ZS → P15 is a generically ûnite 2 ∶1 map onto P1 × P1 × P1 × P1 ⊂
P3 ×P3 embedded in P15 by the Segre embedding. _e branch of φ∣HZ ∣ ∶ ZS → P1 ×P1 ×
P1 × P1 ⊂ P15 is the image of B × B by the Segre embedding. _is map contracts the
exceptional divisors, thus it factorizes through (S × S)/(ιS × ιS) inducing the 2 ∶1 map
(S × S)/(ιS × ιS)→ (W ×W) (cf. diagram (6.1)).

_e map φ∣HY ∣ ∶ YS → P9 is a generically ûnite 2 ∶1 map to (P3)(2), embedded in P9

by i3. _e branch locus is i3(B × B)._is map contracts the exceptional divisors, thus it
factorizes through (S×S)/⟨ιS × ιS , σ⟩ inducing the 2 ∶1map (S×S)/⟨ιS × ιS , σ⟩→W(2)

(cf. diagram (6.1)).

_e proof is analogous to that of Proposition 7.8, sowe omit it. On the other hand,
in this case some explicit equations can be written and can be used to describe some
maps, associated with divisors that are not necessarily big and nef.

_e notation will be analogous to the one introduced above, where we substitute
H by l or m. We observe that l and m are not big divisors on S, thus lX , mX for
X = S × S , ZS ,YS , S[2] are not necessarily big divisors.
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An equation for the surface S, which exhibits S as a double cover of P1
(x0 ∶ x1)

×
P1
(x2 ∶ x3) , is

X2 = f4,4((x0 ∶x1) ∶(x2 ∶x3)) ,
where f4,4 is a homogeneous polynomials of bidegree (4, 4) in P1 × P1. Composing
the map S → P1 × P1 with the projection of P1 × P1 onto the ûrst factor, we obtain a
map S → P1

(x0 ∶ x1)
, which is a genus 1 ûbration. _e ûbers over a point (x0 ∶x1) is the

genus one curve X2 = f4,4((x0 ∶x1) ∶(x2 ∶x3)). _e map S → P1
(x0 ∶ x1)

coincides with
the map φ∣l2 ∣. Similarly one obtains another genus 1 ûbration, projecting P1 × P1 on
the second factor. Here we describe some models and ûbrations on S[2], ZS and YS
induced by themaps S → P1×P1 and S → P1. In particularwewill prove the following
proposition.

Proposition 7.10 _e hyperkähler 4-fold S[2] admits a Lagrangian ûbration fS[2] =
φ∣lS[2] ∣

∶S[2] → P2 ≃ (P1)(2) whose general ûbers are the product of two non-isogenous
elliptic curves.

_e Calabi–Yau 4-fold ZS admits:
● a ûbration φ∣l1,Z ∣ ∶ ZS → P1 whose general ûbers are Calabi–Yau 3-folds that are

the double cover of P1 × P1 × P1 branched along the union of 5 curves of tridegree
(1, 0, 0), (1, 0, 0), (1, 0, 0), (1, 0, 0), (0, 4, 4);

● a ûbration φ∣l1,Z+m1,Z ∣ ∶ ZS → P1 × P1 whose general ûbers are isomorphic to S;
● a ûbration fZ ∶= φ∣lZ ∣ ∶ ZS → P1×P1 whose general ûbers are theKummer surfaces

of the product of two non-isogenous elliptic curves;
● a ûbration φ∣lZ+m1,Z ∣ ∶ ZS → P1 × P1 × P1 such that the general ûbers are smooth

irreducible curves of genus 1.
_e Calabi–Yau 4-fold YS admits a ûbrations fY ∶= φ∣lY ∣ ∶ YS → (P1)(2) ≃ P2 whose
ûbers are the Kummer surfaces of the product of two non-isogenous elliptic curves. _e
ûbration fY is induced on YS by both fS[2] and fZ .

Proof _e map φ∣lS[2] ∣
∶ S[2] → P2 ≃ (P1)(2) gives Lagrangian ûbrations on S[2]

whose ûbers are the product of the ûbers of φ∣l i ∣ ∶ S → P1 of each factor in S × S.
We denote this ûbration by fS[2] , following [52, Example 3.5]. _e involution ι[2]S
acts on the ûbers of φ∣lS[2] ∣

∶ S[2] → P2 ≃ (P1)(2) preserving each ûbers, so it acts
as an involution on each ûber. On the other hand, we know that the ûxed locus
of ιS [2] consists of two surfaces, one isomorphic to (FixιS (S))[2] and one isomor-
phic to P1 × P1. _e surface (FixιS (S))[2] intersects the ûber in 16 points, and in-
deed ιS [2] restricts to each ûber to the involution that sends each point of an abelian
surface in its opposite. _e surface isomorphic to P1 × P1 in the ûxed locus of ι[2]S
maps to the singular locus of (P1 × P1)(2), so it does not intersect the general ûber.
Hence the ûbration φ∣l i ,S[2] ∣

∶ S[2] → P2 ≃ (P1)(2) induces on S[2]/ιS [2] a ûbration
f ∶ S[2]/ιS [2] → P2 ≃ (P1)(2) whose general ûbers are Kummer surfaces. _is û-
bration extends to a map fY ∶ YS → P2 ≃ (P1)(2) whose general ûbers are Kummer
surfaces. By construction, themap fY is induced on Y by the divisor lY , since fS[2] is
induced on S[2] by the divisor lS[2] .
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Let us now consider ZS . In order to describe themap in the statement,we ûrst give
an equation for the surface S, which exhibits S as double cover of P1

(x0 ∶ x1)
× P1

(x2 ∶ x3):

X2 = f4,4((x0 ∶x1) ∶(x2 ∶x3)) ,

where f4,4 is a homogeneous polynomials of bidegree (4, 4) in P1 × P1. _e second
copy of S in the product S × S is given by the equation Y 2 = f4,4((y0 ∶ y1) ∶(y2 ∶ y3)),
which exhibits it as double cover of P1 × P1.

_e divisor lZ +mZ is HZ , andwe already observed that φ∣HZ ∣ ∶ ZS → P1×P1×P1×
P1 ⊂ P15. It exhibits ZS as double cover of P1 ×P1 ×P1 ×P1 branched along a threefold
ofmultidegree (4, 4, 4, 4) (by [2, Lemma 17.1 Chapter I], this is indeed a 4-fold with a
trivial canonical bundle). _e involution ιS × ιS acts only on the coordinates X and Y ,
changing the sign, sowe choose as invariant functions Z ∶= XY , x i and y i , i = 0, . . . , 4.
_e equation of ZS is then

(7.3) Z2 = f4,4((x0 ∶x1) ∶(x2 ∶x3)) f4,4((y0 ∶ y1) ∶(y2 ∶ y3)) .

Ifweproject (7.3) to the ûrst three copiesofP1,weobtain a ûbration ZS → P1
(x0 ∶ x1)

×
P1
(x2 ∶ x3) × P1

(y0 ∶ y1)
whose general ûbers are the genus 1 curves

Z2 = k f4,4((y0 ∶ y1) ∶(y2 ∶ y3)) ,

where y i are speciûc value for y i and k is a constant that depends on the values of x i .
_is ûbration is induced on ZS by themap φ∣lZ+m1,Z ∣ ∶ ZS → P1 × P1 × P1.

Ifwe project (7.3) to the ûrst two copies of P1,we obtain a ûbration ZS → P1
(x0 ∶ x1)

×
P1
(x2 ∶ x3) whose general ûbers are isomorphic to S (indeed they are double covers of

P1 ×P1 branched along the curve of bidegree (4, 4) given by f4,4((y0 ∶ y1) ∶(y2 ∶ y3))).
_is ûbration is induced on ZS by the map φ∣l1,Z+m1,Z ∣ ∶ ZS → P1 × P1. By deûnition,
l1,Z +m1,Z = H1,Z .

If we project (7.3) to the ûrst and to the third copy of P1, we obtain a ûbration
fZ ∶ ZS → P1

(x0 ∶ x1)
×P1

(y0 ∶ y1)
whose general ûbers areK3 surfaces, not isomorphic to S.

_e ûbers over a general point ((x0 ∶x1) ∶(y0 ∶ y1)), are the double covers of P1
(x2 ∶ x3) ×

P1
(y2 ∶ y3) branched along the curve of bidegree (4, 4):

f4((x0 ∶x1) ∶(x2 ∶x3)) f4((y0 ∶ y1) ∶(x2 ∶x3)) .

But this curve splits in the union of 8 curves, 4 of bidegree (1, 0) and 4 of bidegree
(0, 1). So the branch locus of this double cover is singular in 16 points, and thus theK3
surfaces obtained by blowing up these points contain 16 disjoint rational curves. _is
suõces to conclude that each ûber of the ûbration fZ is a Kummer surface (see [42]).
To be more precise, the general ûber is a K3 surface that contains 24 rational curves
(the pull back of the eight curves in the branch locus of the double cover ofP1×P1 and
the 16 curves that resolve the singularities) that form a doubleKummer conûguration
(see [47]). We conclude that the general ûbers are Kummer surfaces of the product
of two non-isogenous elliptic curves. _e ûbration fZ ∶ ZS → P1

(x0 ∶ x1)
× P1

(y0 ∶ y1)
is

induced on ZS by the map φ∣lZ ∣ ∶ ZS → P1 × P1. We observe that the map σZ acts on
the basis of this ûbration, by switching the two copies of P1, and does not act on the
ûbers.
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Ifwe project (7.3) to the ûrst copy of P1, we obtain a ûbration ZS → P1
(x0 ∶ x1)

whose
general ûbers are Calabi–Yau 3-folds that are double covers of P1 × P1 × P1 branched
along a curve ofmultidegree (4, 4, 4) that indeed splits into the union of 5 curves of
multidegree (1, 0, 0),(1, 0, 0),(1, 0, 0),(1, 0, 0),(0, 4, 4), respectively. _is ûbration is
induced on ZS by themap φ∣l1,Z ∣ ∶ ZS → P1.

_emap
fY ∶= φ∣lY ∣ ∶ YS Ð→ (P1 × P1)(2)

is the ûbration induced both by φ∣lZ ∣ ∶ ZS → P1 × P1 on the quotient S(2)/ι(2)S and by
φ∣lZ ∣ ∶ Z → P1 ×P1 on the quotient ZS/σZ , by the deûnition of the divisors lY , lS[2] and
lZ .

Generically, the ûber of fY are theKummer surfaces, obtained either as quotients of
the ûbers of the ûbration fZ ∶ ZS → P1

(x0 ∶ x1)
×P1

(y0 ∶ y1)
by the involution acting on the

ûber of the ûbration as ((x0 ∶x1) ∶(y0 ∶ y1)) ↦ ((y0 ∶ y1) ∶(x0 ∶x1)) or as the quotients
of the ûbers of the ûbration f ∶ S[2] → P2 by the involution acting on the general ûber,
which is an abelian surface, as the involution that sends each point in its opposite.

7.4 ιS is the Elliptic Involution on a General Elliptic Fibration on the K3 Surface S

In this case, S has an elliptic ûbration with 24 ûbers of type I1 and NS(S) ≃ U , ιS
restricts to the elliptic involution on each ûber of the elliptic ûbration andW ≃ F4;
see e.g., [39, Section III.2]. Generically, NS(S) is generated by the class of a ûber,
F, and by the class of the zero section, O, whose intersection properties are F2 = 0,
O2 = −2, FO = 1. _e divisor F is nef, and it is such that f = φ∣F∣ ∶ S → P1 is the
elliptic ûbration, so F is not big. We will denote by Fp the ûber of f over the point
p, i.e., Fp ≃ f −1(p) ⊂ S. _e involution ιS ûxes 2 curves; one is the rational curve O,
section of the ûbration; the other is a trisection, branched with multiplicity 2 on each
singular ûbers. It is denoted by C, it has genus 10 and its class in NS(S) is 6F + 3O.
Wewill denote it byH ∶= 4F+2O. _emap φ∣H∣ ∶ S → P5 is a 2 ∶1 map onto the image,
which is a cone over a normal quartic rational curve; see e.g., [39, Section III.2].

Proposition 7.11 _e map φ∣FS[2] ∣
∶ S[2] → (P1)(2) ≃ P2 is a ûbration whose general

ûbers are products of two (non-isogenous) elliptic curves.
_e map φ∣FZ ∣ ∶ ZS → P1 × P1 ⊂ P3 is a ûbration whose general ûbers are Kummer

surfaces of the product of two (non-isogeneous) elliptic curves.
_e map φ∣FY ∣ ∶ YS → (P1)(2) ≃ P2 is a ûbration whose general ûbers are Kummer

surfaces of the product of two (non-isogeneous) elliptic curves.
_e ûbration φ∣F1,Z ∣ ∶ ZS → P1 is a ûbrationwhose general ûber is aCalabi–Yau 3-fold

of Borcea–Voisin type.

Proof _e 4-fold S×S admits a ûbration f × f ∶ S×S → P1 ×P1 whose ûber over the
point (p, q) is the product Fp×Fq , and it coincideswith themap φ∣F1,S×S+F2,S×S ∣ ∶ S×S →
P1×P1. So the general ûber of S×S → P1×P1 is an abelian surface,which is the prod-
uct of two elliptic curves (generically non-isogeneous). _e section of the ûbration
f deûnes a section of f × f , passing through the zero of the abelian surfaces. _e
involution ιS × ιS ûxes this section and other three surfaces, which are two 3-sections
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and one 9-section. _e involution ιS × ιS on A ≃ Fp × Fq sends each point to its in-
versewith respect to the group law. _e automorphism σ does not preserve the ûbers
of the ûbration f × f : it acts on the basis, switching the two copies of P1 × P1 and
sending the ûber Fp × Fq to the ûber Fq × Fp . _is allows us to describe the ûbrations
induced by φ∣FS×S ∣ on the quotients of S × S as follows: the hyperkähler fourfold S[2]

naturally admits a Lagrangian ûbration f [2] ∶ S[2] → P2, whose ûbers are generically
the product of the corresponding ûbers on theK3 surface S. Indeed, f × f is equivari-
ant with respect to the action of the exchange σ ; hence, we get an induced ûbration
f (2) of S(2) over (P1)(2) ≅ P2. _e so-called natural Lagrangian ûbration f [2] is the
composition f (2) ○ β∆ , where β∆ is the resolution S[2] → (S × S)/σ , and it coincides
with φ∣FS[2] ∣

. Let ∆S ⊂ S × S be the diagonal and let E∆S be the exceptional divisor on
S[2]. Moreover, f [2](E∆S ) is one-dimensional, so that the general ûber of f [2] does
not intersect E∆S and is isomorphic to the general ûber of f (2), which is the common
image of Fp × Fq and of Fq × Fp , still isomorphic to Fp × Fq .

_e automorphism ιS acts trivially on the basis of the ûbration f ∶ S → P1, so the
basis of the ûbration induced by f × f on (S × S)/(ιS × ιS) is P1 × P1. _e ûber over
the general point (p, q) ∈ P1 × P1 of the ûbration (S × S)/(ιS × ιS) → P1 × P1 are
the quotients of the abelian surfaces Fp × Fq , ûbers of f × f ∶ S × S → P1 × P1, by
the involution that sends each point in its inverse with respect to the group law. _e
ûbration (S×S)/(ιS×ιS)→ P1×P1 induces a ûbration ZS → P1×P1 whose ûber over a
general point (p, q) is theKummer surfaceKm(Fp×Fq),which is a desingularization
of the singular ûber of (S × S)/(ιS × ιS) → P1 × P1. By construction, this ûbration is
given by themap φ∣FZ ∣ ∶ ZS → P1 ×P1. _e strict transform of O×O is a section of the
ûbration and it meets the general ûber in a rational curve. We recall that a Kummer
surface Km(A) contains 16 disjoint rational curves that are in 1 ∶1 correspondence
with the 2-torsion points in A. _e “zero section” of the ûbration ZS → P1 × P1 is the
section that meets the smooth ûbers (which are a Kummer surfaces Km(Fp × Fq)) in
the rational point that correspond to the 0 of the abelian surface Fp × Fq . Similarly
the strict transform of O ×C (resp. C ×O, C ×C) meets the smooth ûbers in 3 (resp.
3, 9) rational curves, corresponding to other 3 (resp. 3,9) points of order 2 on Fp ×Fq .

_e automorphism σZ acts on the basis of this ûbration φ∣FZ ∣ ∶ ZS → P1 × P1. Out-
side of the diagonal of P1 × P1, σZ identiûes two ûbers (the ûber Km(Fp × Fq) with
the ûber Km(Fq × Fp)). _is identiûcation sends the 2-torsion point of Fp × Fq to the
one of Fq × Fp . So on ZS/σZ we have a ûbration whose general ûbers are Kummer
surfaces. In particular themap φ∣FY ∣ ∶ S → (P1)(2) ≃ P2 deûnes a ûbrationwhose gen-
eral ûbers areKummer surfaces of the product of 2 non-isogenous elliptic curves. We
observe that the general ûbers of this ûbration are not isomorphic, but all of them are
polarized with the same lattice. _is ûbration has a section, induced by the section of
the ûbration ZS → P1 × P1.

_e ûbration F1,Z ∶ ZS → P1
τ exhibits ZS as a ûbration in Calabi–Yau 3-folds, and

the ûber over a general point τ ∈ P1 is the Borcea-Voisin of S × Fτ , i.e., it is the desin-
gularization of (S × Fτ)/(ιS × ιFτ), where ιFτ is the elliptic involution on the elliptic
curve Fτ , and it is the restriction of ιS to the ûber Fτ of the ûbration S → P1. _is easily
follows by our construction but can also be written explicitly by using the equations
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of the ûbrations. Let uswrite the equation of S → P1
τ as y2 = x3+a(τ)x+b(τ) (where

a(τ) and b(τ) are polynomials of degree 8 and 12 respectively). _en the second copy
of S in S × S has an equation of the type v2 = u3 + a(s)u + b(s), which can be written
as v2 = (u3 + a(s ∶ t)uz2 + b(s ∶ t)z3)z. _is exhibits this second copy of S as double
cover of the Hirzebruch surface F4 with variables (s ∶ t ∶x ∶z) (cf. [13]). Since ιS × ιS
changes the sign of y and v, the functions Y ∶= yv3, X ∶= xv2, τ, t, s are invariant, so
with these coordinates the equation for (S × S)/(ιS × ιS) is

Y 2 = X3+a(τ)X(x3+a(s ∶ t)xz2+b(s ∶ t)z3) 2
z2+b(τ)(x3+a(s ∶ t)xz2+b(s ∶ t)z3) 3

z3 .

For general choices of τ, this equation is the equation of the Borcea-VoisinCalabi–Yau
3-folds given in [13, Section 4.4].

Remark 7.12 _e ûxed locus of ιS on S is given by O ∪ C, and the class of the ûxed
locus is O + 6F + 3O = 6F + 4O. _is allows us to compute χ(FZ) = χ(F1,S×S +
F2,S×S)/2 + hΣ ,Z/16 = 2 + 2 = 4. _e base of the ûbration φ∣FZ ∣ ∶ ZS → P1 × P1 is
embedded in Pχ(FZ)−1 by the Segre embedding. Similarly, one computes χ(FY) =
2 + 1 = 3, χ(FS[2]) = 3, and χ(F1,Z) = 2, and one observes that the bases of the
ûbrations φ∣FY ∣, φ∣FS2 ∣

and φ∣F1,Z ∣ are again Pχ−1. _is suggests that χ is equal to h0 for
all the divisors involved in Proposition 7.11.

Proposition 7.13 _emap φ∣HS[2] ∣
∶ S[2] Ð→ (P5)(2) ⊂ P20 is a generically ûnite 4 ∶1

map onto its image, where the inclusion (P5)(2) ⊂ P20 is given by

i5 ∶ {(x0 ∶ . . . ∶x5), (y0 ∶ . . . y5)}z→ (x0 y0 ∶x0 y1 + x1 y0 ∶ . . . ∶x i y j + x j y i ∶ . . . x5 y5),

with i < j.
_emap φ∣FZ ∣ ∶ ZS → P5 ×P5 ⊂ P35 is a generically ûnite 2 ∶1 map and P5 ×P5 ⊂ P35

is given by the Segre embedding.
_emap φ∣FY ∣ ∶ YS → P20 is a generically ûnite 2 ∶1 map and the inclusion (P5)(2) ⊂

P20 is given by i5.

_e proof is analogous to the one of Proposition 7.8.

A Hodge Numbers of Calabi–Yau Four-folds Constructed

Herewe collect theHodge numbers of the Calabi–Yau four-folds constructed as quo-
tients of hyperkähler four-folds by non-symplectic involutions, i.e., of the Calabi–Yau
four-folds constructed in Sections 4 and 5.1. In Sections 4.2.1 and 4.2.3we constructed
Calabi–Yau four-folds with Hodge numbers:

CY quotients of K2(A) CY quotients by Beauville’s involution

h1,1 h2,1 h3,1 h2,2

9 8 5 75
6 4 4 68
5 3 4 66

h1,1 h2,1 h3,1 h2,2

2 0 65 312
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In Section 5.1 we constructed Calabi–Yau varieties YS starting from a K3 surface S
with a non-symplectic involution ιS whose ûxed locus is either empty or contains N
curves, andN ′ depends on the genera of these curves; see Section 5.1. In the following
table we list theHodge numbers of YS in terms of (N ,N ′):

N N ′ h1,1 h2,1 h3,1 h2,2

0 0 12 0 10 132
1 0 14 0 9 136
1 1 13 1 10 134
1 2 12 2 12 136
1 3 11 3 15 142
1 4 10 4 19 152
1 5 9 5 24 166
1 6 8 6 30 184
1 7 7 7 37 206
1 8 6 8 45 232
1 9 5 9 54 262
1 10 4 10 64 296
2 0 17 0 8 144
2 1 16 2 9 140
2 2 15 4 11 140
2 3 14 6 14 144
2 4 13 8 18 152
2 5 12 10 23 164
2 6 11 12 29 180
2 7 10 14 36 200
2 8 9 16 44 224
2 9 8 18 53 252
2 10 7 20 63 284
3 0 21 0 7 156
3 1 20 3 8 150
3 2 19 6 10 148
3 3 18 9 13 150
3 4 17 12 17 156
3 5 16 15 22 166
3 6 15 18 28 180
3 7 14 21 35 198
4 0 26 0 6 172
4 1 25 4 7 164

N N ′ h1,1 h2,1 h3,1 h2,2

4 2 24 8 9 160
4 3 23 12 12 160
4 4 22 16 16 164
4 5 21 20 21 172
4 6 20 24 27 184
5 0 32 0 5 192
5 1 31 5 6 182
5 2 30 10 8 176
5 3 29 15 11 174
5 4 28 20 15 176
5 5 27 25 20 182
5 6 26 30 26 192
6 0 39 0 4 216
6 1 38 6 5 204
6 2 37 12 7 196
6 3 36 18 10 192
6 4 35 24 14 192
6 5 34 30 19 196
6 6 33 36 25 204
7 0 47 0 3 244
7 1 46 7 4 230
7 2 45 14 6 220
7 3 44 21 9 214
8 0 56 0 2 276
8 1 55 8 3 260
8 2 54 16 5 248
9 0 66 0 1 312
9 1 65 9 2 294
9 2 64 18 4 280
10 0 77 0 0 352
10 1 76 10 1 332
10 2 75 20 3 316

One can directly check that there are no mirror pairs in this table, except for the
self-mirror Calabi–Yau YS associated with the values N ′ = N + 1 for N = 1, . . . , 5
(compare with Section 5.6).
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