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HITTING PROBABILITIES OF
CONDITIONAL BROWNIAN MOTION AND POLARISATION

DlMITRIOS BETSAKOS

We study the behaviour of the hitting probabilities of conditional Brownian motion
in a domain D in Euclidean space when we apply polarization to D. We also study
how polarization affects the probability that conditional Brownian motion meets a
subset of D.

1. INTRODUCTION

In 1957, Doob [8] defined the conditional Brownian motion. A comprehensive study
of this Markov process from the point of view of classical potential theory is contained
in Doob's treatise [9]. In this paper we study some geometric properties of conditional
Brownian motion in R", n ^ 2.

Let D be a Greenian domain in Rn, and let ft be a strictly positive superharmonic
function in D. Brownian motion in D conditioned by h (or briefly /i-Brownian motion)
is a Markov process with state space D and transition density

(11) ^

where PD{t,€,v)1S the transition density of the (usual, unconditioned) Brownian motion
killed on exiting D. Two important special cases for h are the following:

(a) Let C be a point on the Martin boundary of D and let h = KD((,:),
where KD(C,, •) is the Martin kernel function of D with pole at (,. Then
/i-Brownian motion is conditioned to exit D at the given point (,.

(b) Let £ € D and let h = GD(£, ) be the Green function of D with pole at £.
Then /i-Brownian motion is conditioned to hit the point f before leaving
D.

All conditional Brownian motions are mixtures of these two basic processes. Let P?
denote the measure (on the path space) induced by the transition density (1.1) and let
E£ be the corresponding expectation. If h = 1, we shall omit the superscript h.
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234 D. Betsakos [2]

In Section 3 we study the behaviour of hitting probabilities ("conditional harmonic
measures") of /i-Brownian motion under the geometric transformation called polarisation.
The definition and main properties of polarisation are reviewed in Section 2. In Section
4 we study the probability of meeting a set in relation with polarisation and in Section
5 we give as application a symmetrisation result that extends a classical theorem of
A.Baernstein. In general, the geometric behaviour of conditional Brownian motion is not
well-understood. Some concluding remarks, open problems and conjectures appear in
Section 6.

2. POLARISATION

Polarisation was introduced by Wolontis [16] in 1952. Before stating its defini-
tion we need to introduce some notation: Let H be the (n — l)-dimensional plane
{(xi,x2,...,xn) e R " : xn = 0 } a n d W\. be t h e half-space {{xux2,...,xn) e R n : xn

> 0}. Let "hat" denote reflection in H; that is, if x = {ii,x2, . . . , i n ) e l " and A c S "
then x := (xi,x2, • • •, -xn) and A := {x € l n : x € A).

Polarisation is defined as follows: Let A be a set in R". We divide it into three
subsets Ai,A2,A3:

Ai = {x£A:xeA}=Ar\A (the "symmetric part" of A),

A2 = {x € A : x € R" and x ^ A} (the "upper non-symmetric part" of A),

A3 = {x 6 A : x € H&I and x £ A} (the "lower non-symmetric part" of A).

Then A = A\ U A2 U A3. The polarisation A" of A with respect to R!£ is the set

A* := AiUA2UA^.

A, A3

Figure 1: A set A in the plane and its polarisation A'.

We shall also use the notation: If x = (xu ..., xn) € Rn then x' := ( i ! , . . . , \xn\).

Similarly we define polarisation with respect to other half-spaces in R".
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By an ingenious method due to Wolontis, various types of symmetrisation can be
approximated by a sequence of polarisations with respect to suitable half-spaces. Wolontis
worked in the plane only but Dubinin [10] extended the method to higher dimensions.
We refer to [6, 7, 10, 11 , 15] for some applications of this method in complex function
theory, potential theory, differential equations, and Brownian motion.

In the sequel we shall use a theorem that describes the behaviour of harmonic mea-
sure under polarisation. Let D be a domain in R", regular for the Dirichlet problem,
and let B be a Borel set on the boundary dD of D. The harmonic measure of B with
respect to D is the solution of the Dirichlet problem in D with boundary function the
characteristic (indicator) function of B. This solution is obtained by the PWB method
(see for example, [9, Chapter l.VIII]). The value of the harmonic measure of B with re-
spect to D at the point f e D will be denoted by /*£>(£, B). For fixed £, the set function
VD{€, ) is a probability measure on dD. In fact, /*:>(£, B) is equal to the probability that
a Brownian motion in D starting from £ leaves D through B (see [9, Chapter 2.X]). We
shall say that two sets Bi, B2 in Rn are equal nearly everywhere and write Bi "=' B2 if
the set (B\ \ B?) U (B2 \ Bi) has zero (Newtonian) capacity. The following theorem was
proved in [6] and [15]. Here we state it in a slightly improved form.

THEOREM 2 . 1 . LetD,Bbeas above and assume that B D D = 0. Tien

(2.1) MS, B)</iD. (£,#'), feinD.

Assume, in addition, that D is not symmetric (that is, D ^ D). Then equality holds in
(2.1) for some f G El n £> if and only if either B n= B*, D = D* or B "= Bi,D = Di.

3. CONDITIONAL HARMONIC MEASURE AND POLARISATION

Let fi be a Greenian domain in Kn. For £ 6 fi and ft a positive superharmonic
function in fi, we denote by w£ an /i-Brownian motion in fl starting at £. Suppose D
is another domain with D C fi. The hitting distribution of w* on dD is exactly the
/i-harmonic measure or conditional harmonic measure £*£>(£, •); that is, the probability
that an /i-path starting from £ exits D through a Borel set B C dD is equal to fj.'p(£,B),
the latter being defined by the PWB method. The conditional harmonic measure is
connected with the usual harmonic measure via the formula [9, Section 2.X.7, Section
3.II.2]

(3-1) /£(£, B)=h^f)f
 h(b)»D(Z, db).

We shall assume from now on that the boundary of Cl consists of a finite number
of smooth surfaces. In this case the Martin boundary of Cl coincides with the Euclidean
boundary 9f2. This assumption is by no means necessary but we do it in order to avoid
technicalities which would only obscure the ideas we want to present in this paper. We
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shall also assume that D* C Cl. To study the behavior of /i-harmonic measure under
polarisation of D we need to define a new positive superharmonic function h* in fi*: Let

be the Riesz decomposition of h; that is, v is nonnegative harmonic function in D and
the measure Mh is the Riesz mass of h [9, Section 1.IV.8]. Let Slh := {£ € fi : v(£) > 0}.
For £ e fi/,, let

«(0=

be the Martin representation of v [9, Section 1.XII.9]. Here Mv is the Martin measure
for v associated to KQ. We consider a Borel measure M£ on f2* such that

Af (A) = lmaxiMh^' Mft(^)}' if A C 0* n {(an,... ,*„) : xn > 0};
* I i l M ^ ^ M ^ l ) } , if A C fi* D {(xlf... ,xn) : xn < 0}.

We assume the existence of such a measure. For example, if Mh is absolutely continuous
with respect to the n-dimensional Lebesgue measure then such a MjJ can be obtained by
polarising the density function of Mh; or, if Mh is discrete we can define

Similarly we consider a Borel measure M* on 9J7*.
We define

Jan

We shall also use the notation Q+ := Q D K"+) fi_ := f2 D Kn
+, and the notation

7l(x) := /i(x), /?(x) := /i'(£).

THEOREM 3 . 1 . Let H, fi, £>, h, h* be as above and let B be a Borel set on dZX
Assuine that fi is symmetric (that is, Q — £1) and that B ("1D = 0. Tien

(3.2) /ik(£,£)^/£.(£,B*), {€Z)nI

Assume, in addition, that D is not symmetric (that is, D ^ D). Then equedity holds
in (3.2) for some £ € D nM if and only if either B n= B*, D = D*, h = h' or
Bn=B~\ D = D~\ h = h*.
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Figure 2: An illustration for Theorem 3.1.

PROOF: By the construction of h* from h and by the structure of conditional Brow-
nian motion [9, Section 3.III.1], it suffices to consider the two basic cases: h — Gn((, •)
and h = KQ(C, •) and prove the inequalities

(3.3)

(3.4) [ Gn{b,QnD(Z,db)£ [ Ga{b;
JB JB'

(3.5) /"[

,db'), < € D+,

(6*,C)]Mz>-(£,**), C 6 fl,

and the corresponding inequalities with Kn in the place of GQ. We shall prove (3.3),
(3.4), (3.5). The proofs of the inequalities for Kn are very similar.

The inequality (3.3) follows at once from the inequality Gn(b, C) ^ Gn(&*,(), &
€ B, C € fi+ (which comes from the symmetry of fi) and from the inequality

/n / ; \ / £ O \ ^ . (£ D * \ D z"1 D
1 O.O ) /*DIC i i ? i I ^ /*D" IC i " i 11 1 *•— *^

which comes from Theorem 2.1.

The proof of (3.4) is similar. For the proof of (3.5) we similarly use the symmetry
identity

(3.7) Gn(b, C) + Gn(b, C) = Gn(b',0

and the inequality (3.6).

Now we deal with the equality statement. It is clear that if B "=' B*, D = D', h =

h* or if Bn= B*, D = D*, h = h\ then equality holds in (3.2). Suppose, conversely,
that equality holds in (3.2).
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CASE 1. h — h (and hence h = h* = h*).

Then the inequality (3.2) comes from (3.5) and therefore if we have equality in (3.2) then
we have equality in (3.5) for some £ € ft. Hence we have

(3-8) /*!>(*, £ i ) = Me-foBf)

for all subsets B\ of B that have positive capacity. By the equality statement of Theorem
2.1 we conclude that either B "= B*, D = D* or B "= B*, D = D*.

CASE 2. h = h*, h^ h.

In this case (3.2) comes from (3.4). Equality in (3.4) for some C € ft+ implies (3.8). So,
as in Case 1, either B "= B", D = D* or B "= B*, D = D*. Moreover, equality in (3.4)
implies Gn(b, Q = Gn(b*, C) for some C € fl+ and nearly all b € B. By the symmetry of
ft, we conclude that B n= B*'. So, in Case 2 we have Bn= B\ D = D*.

C A S E 3. h = h*, h^ %.

This case is similar to Case 2. We use (3.3) and conclude that equality in (3.2) implies
B "= iP*, D = D~*.

C A S E 4. h # h*, h ^ h*.

We shall show that this case cannot occur. If h ^ h*, h ^ h*, then there exist
Ci,C2 € fi+ such that (3.3) (with C = Ci) holds with equality and (3.4) (with C = C2)
holds with equality. Then, as in cases 2 and 3, we conclude that D = D* and D = D*
which implies that D — D; contradiction. D

REMARK 1. In the case where the measures Mh,Mv are symmetric (that is, Mh(A)
— Mh(A), A C Q D f2 and MV(A) = MV(A), A c dQ. n dQ), we can relax the assumption
f2 = Q and assume only that fi = fi*. Indeed, in this case, to prove (3.2), it suffices to
prove (3.5) and this holds even if fl = ft* ^ fi. Indeed, if fi = f2* then (3.7) holds with
"<" instead of "=", and this inequality together with (3.6) imply (3.5).

REMARK 2. By the same method, one can prove similar results with conditional tran-
sition densities in the place of conditional harmonic measure and/or symmetrisation in
the place of polarisation.

4. T H E PROBABILITY OF MEETING A SET

Let ft be a Greenian domain in Rn and £, £ 6 ft U 9ft. By un(£, C> A) we denote the
probability that a Brownian motion in ft starting at £ and conditioned to go to C passes
through a point of a compact subset A of ft.

THEOREM 4 . 1 . Let ft be a Greenian domain in Rn and A be a compact subset

ofQ. Assume that ft = ft*. Tien we have:

(i) For f,C € H D (ft U dft) \ A,

(4.1) ^
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(ii) For f € H n (Q U dtt) \ A and C € n U dil \ A,

(4-2)

(iii) For ^, C G fi U a n \ A,

(4-3)

(iv) For f e HI n (n U an) \ A and C € n U a n \ A,

(4.4) u n ^ , C, A) + «n(e,C, A) > im(C, C, A1) + ,C, A1).

H

n
Figure 3: An illustation for Theorem 4.1.

PROOF: We assume first that £, C € n . We shall prove (4.1) and then show how it
implies the other three inequalities via the maximum principle. Let 6 be a small positive
number such that the closure of the disk A = A(J) with centre £ and radius S lies in
n \ A. Let Di := n \ (A U A) and h := Gn(C, ')• By Remark 1 of the previous section,
we have

We shall show that

(4.6)

and

(4.7) limnD
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For an /i-path OJ starting from £, one of the following three pairwise disjoint events must
happen:

As := {w meets A before hitting A},

Bs :— {w meets A after hitting A},

C := {UJ does not meet A).

Hence we have

It is clear that

(4.9) V$(As) = l-lt
h
Dt{t,A)

and

(4.10) P£(C) = l -u n ( f ,C ,A) .

By (4.8), (4.9), (4.10), to prove (4.6), it suffices to show that

(4.11) lim P*(B,) = 0.

By the strong Markov property and by [8, Section 13],

(4.12) PfOSf) ^ max.un(yX,A) = max

where f/n(y, Ci -^) is the value at y of the potential of the mass obtained by sweeping the
unit mass at C onto A. Since UQ(-, C, 4̂) is a continuous function on Q \ A and C ^ A, we
have that for all y in a neighbourhood of £

(4.13) [ / n G / . C ^ K M ,

where M is a positive constant not depending on 6. Now (4.12), (4.13) yield (for some
y€dA)

(4.M) ^

If <J -> 0, then y —> C a n ^ therefore Gn(y,Q -> oo. Hence (4.14) implies (4.11). So we
proved (4.6) and the proof of (4.7) is similar. Now (4.5), (4.6), (4.7) yield (4.1). To prove
(4.2), we assume first that C 6 ^+- Then we have to prove

(4.15) ^ 1
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The functions un(£, •, A) and un(f, -, A') are both Gn(f, -)-harmonic on fi+ and by (4.1),
the inequality (4.15) holds for all C e dQ+. So (4.15) holds for all C € Q+ because of
the maximum principle for relative harmonic functions [9, Section l.VIII.l]. For £ € f2_,
(4.2) becomes

(4.16) unfcC^unfcC,^)

and its proof is similar to the proof of (4.15). The proofs of (4.3) and (4.4) are also
similar.

So far we proved the inequalities (4.1)-(4.4) under the assumption that f , ( e fl.
If £, C S dCl the inequalities follow from standard approximation arguments [8, Section
13]. D

5. APPLICATION TO SYMMETRISATION

By applying the approximation method of Wolontis as extended to n dimensions by
Dubinin (see Section 2) we can use Theorem 4.1 to generalise a classical symmetrisation
theorem of Baernstein. We need to introduce some more notation: Let B be the unit ball
in Kn, n ^ 2 with centre at 0. If D is a domain with D C B, we denote by £>" the spherical
symmetrisation of D. The domain £>" is defined by the property: the intersection of D"
with every sphere \x\ = r, 0 < r < 1 is a spherical cap centred on the Zi-axis with
spherical measure equal to the spherical measure of the intersection of D with the same
sphere; for details see [2]. If / e Ll(dM), we denote by /" the symmetric decreasing
rearrangement of / (see for example, [2, Section 2]).

THEOREM 5 . 1 . Let f € L1{dM), / ^ 0 and / > 0 on a set of positive capacity.
We denote by h the harmonic extension of f in B and by ft' the harmonic extension of
P in B. Let D C B be a domain with h-resolutive boundary 3D and assume that 3D* is
ht-resolutive. Then for E C dE,

(5.1) nh
D(0,E)£iJ&(0,&),

where E* is the spherical cap on 9B centred at the point ( 1 , 0 , . . . , 0) and with spherical
measure equal to the spherical measure of E.

For / = 1 and E = dM, this theorem was proved by Baernstein [1] (n = 2) and by
Baernstein and Taylor [2] (n ^ 3) who used the star-function method. Another approach
to this classical result (via polarisation) was used in [15] and [6]. This approach leads
also from the polarisation Theorem 4.1 to the symmetrisation Theorem 5.1. For n — 2,
Theorem 5.1 implies an extension of the Beurling-Nevanlinna projection theorem [14,
ppi08-110]. The precise statement is left to the reader.
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6. CONCLUDING REMARKS AND OPEN PROBLEMS

Baiiuelos and Carroll [3, 4] formulated the statement that in a simply connected
planar domain conditional Brownian paths tend to follow hyperbolic geodesies. This is
a usefull general principle. Several results in [3] and in [12] agree with this principle.
The results of the present paper also support it. However, it should be admitted that
the above statement has only a heuristic and intuitive character, and that the known
theorems do not give a satisfactory quantitative version of it.

CONJECTURE 1. Let 7 be an arc in a Jordan domain D joining two points £, £ 6 DudD.
For s > 0, let D(e, 7) := \z € D : dist(z, 7) < e}. Then the probability that a Brownian
motion conditioned to travel from £ to £ stays inside D{e,r)) is maximised when 7 is the
hyperbolic geodesic of D joining £ and (,.

To extend the Banuelos-Carroll principle to more general contexts we need to aban-
don hyperbolic geodesies. In a simply connected domain the hyperbolic geodesies are
exactly the Green lines (the orthogonal trajectories of the level curves of the Green func-
tion). So it is reasonable to conjecture that conditional Brownian paths in a Greenian
domain in R" (or even more generally in an abstract Greenian space) tend to follow the
Green lines.

Despite recent progress the expected lifetime of conditional Brownian motion is not
well-understood even in simply connected planar domains. Let E\ Tp denote the expected
lifetime of Brownian motion in D conditioned to travel from a to 6 (a, 6 € DUdD). Griffin,
McConnell, and Verchota [12] proved that if z, £, £ lie in this order on a hyperbolic
geodesic of D and if we assume that

(a) D has finite area.

(b) ZtdD

then E\ TD ^ E^TD. They conjectured that each of the assumptions (a) and (b) is redun-
dant. However, their ingenious methods depend in an essential way on these assumptions
and their conjectures remain open.

Another beautiful result for the expected lifetime was proved in [5] and [12]: Let £, (,
be two points on the unit circle. The lifetime of Brownian motion conditioned to travel
from £ to C, is maximised when the points £, C, are diametrically opposite. For the ball in
E", n ^ 3, an analogous statement is not known. A related conjecture is the following:

CONJECTURE 2. Let D be a simply connected planar domain, symmetric with respect
to the real line. Let f, C e D n R2

+ Then E\TD < EJTD.

Intuition suggests that if £, C are far away from each other then EJ Tp should be

large. So EJ To provides a "measure" of the distance between the points £ and £ relative

to D.

CONJECTURE 3. In a simply connected domain D the function do • D x D -t R defined

by dD{£,C) = E\TD is a metric in D.
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Some other conjectures for conditional Brownian motion appear in [12] and [4]. One
of them is the following: Among all convex domains of area equal to TT, a unit disk has
the smallest maximal expected lifetime of conditional Brownian motion. This maximal
expected lifetime for the unit disk is obtained for Brownian motion conditioned to travel
between antipodal points. In [12] it is computed to be equal to 4 In 2 — 2 « 0.77. Let Q
be a square of area IT, and let £, C be the end-points of a diagonal of Q. It is a nice and
instructive exercise on elliptic functions to compute the expected lifetime of Brownian
motion in Q conditioned to travel from £ to £. We found it to be approximately equal to
0.79. So this computation supports the above conjecture. We note, however, that there is
no general result which implies that the maximal lifetime for the square Q is attained for
the points £, £. This fact illustrates once more our lack of understanding of the geometric
behaviour of conditional Brownian motion.

N O T E ADDED ON 29-5-2002. The above conjecture has recently been disproved in [13].
I thank the referee for this information.
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