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A Dedekind-finite set is one not equinumerous with any of its proper subsets;
it is well known that the axiom of choice implies that all such sets are finite.
In this paper we show that in the absence of the axiom of choice it is possible
to construct Dedekind-finite sets which are large, in the sense that they can be
mapped onto large ordinals; we extend the result to proper classes. It is also
shown that the axiom of choice for countable sets is not implied by the assumption
that all Dedekind-finite sets are finite.

1. Preliminaries

We work throughout in Zermelo-Fraenkel {ZF) set theory, without the
axiom of choice but with the axiom of foundation.

NOTATIONS. Let f: X -> Y be a function.

IfAsX, f"A = {y: (3xeA)(f(x) = y)}.

IfBsY, f~\B) = {x: (3yeB)(f(,x) = y)}.

X * ^ Y means that X can be mapped onto Y.

We write | X | for the cardinal of X, S(X) for the power set of X, SK(X) for
{7 £ X: I Y | < K}, Seq(X) for the set of finite sequences of elements of X.
AB is the set of all functions from A into B; BA = | AB |. Va is the set of sets of
rank ^ a, ON the class of all ordinals, 'x is finite' means that x has n elements
for some n < a>.

FORCING. We follow the approach of Shoenfield (1971), but adopt a different
convention for names in the forcing language. In general we say that if x e M[G]

1 The results in §§3 and 4 of this paper are taken from the author's Ph.D. thesis (University
of Bristol 1971, supervised by Dr F. Rowbottom). The author held a Monash University Travel-
ling Scholarship while the research for the thesis was carried out.
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36 G. P. Munro [2]

x shall be a name for x, where x is a symbol which is an element of M. However
if in fact x e M we use x as a name for x. This does not introduce any ambiguity
as if x e M x is interpreted in all M[G~\ as x.

We note the following general symmetry lemma.

LEMMA. Let M be a countable transitive model of ZFC, PeM a notion of
forcing, neM an automorphism of P and <p(vo,---,vn) a ZF-formula. Then

p\Y 4>{G,xu-,xn)~n-lp\r <t>{n"G,xu-,xn),

where x , , - , x , e M and peP.

We borrow from Shoenfield the notation HK(A, B) for

{f :dom(f)eSK(A), ran(/) s B}.

WEAK AXIOMS OF CHOICE. C (axiom of choice for countable sets). If A is a
countable set of non-empty sets then A has a choice function.

wC° (weak C°). If A is a set of non-empty sets such that | A | = a> there exists
B £ 4,1231 = co, such that B has a choice function.

RELATIVE CONSTRUCTIBILITY. Let 31 be a relational structure. We define
D($f), the set of definable subsets of % thus.

DC2I) = {{xeA: </>[x]}: </>(f0)
 a formula of the language of 2t with v0 its

only free variable}.

THEOREM. Let N be a transitive class such that
(i) iV = U {Na: a e ON}, w/iere each Na is a set
(ii) (NX E o,\ « increasing.
(iii) a a Zimif ordinal ->Na = U {Np: /? < a}
(iv) D«JV a ( e ,O0 y e N a » £ JV, /or eac/j a.

7 hen N is a proper class and a model of ZF.

We give an application. Let X be a transitive set. Set No = X, N<,+1

= D((Na,e,(y)yeNa)). In this case we write L(X) for JV. It can be shown that
L(X) is the smallest transitive proper class which contains X and satisfies ZF.
Further there exists a canonical functional

F0:ON x Seq(X)-> L(X)

with the properties that Fo is onto, Fo is defined from X and the definition of
Fo is absolute for any transitive proper class which contains X and satisfies ZF.

If X is not transitive, by L{X) we mean L(TC(X)), where

TC(X) = { I } U I U ( U I ) U ( U U I ) U -

TC(X) (the transitive closure of X) is the smallest transitive set with X as a
member.
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[3] Dedekind-finite sets 37

2. Some positive results

By 'x is DF' we mean that x is Dedekind-finite but not finite. It is well known
that x is Dedekind-finite if and only if co $ | x |, so x is DF if and only if co ^ | x |
and | x | ^ ca. This shows that comparing the cardinal of a DF set with the alephs
won't give us any information. However we may get some idea of the 'size' of a
DF set by seeing which alephs it can be mapped onto.

The following theorem is due to Kuratowski (see Tarski (1924), pages 94-95).

THEOREM 2.1. Here x is an arbitrary set.
(i) / / x is infinite then co ^ * 2X.
(ii) co ^ * x <-» co ^ 2X.

(iii) / / x is DF, co ̂  * x if and only if 2X is not DF.

COROLLARY 2.2 / / there are DF sets there are DF sets which can be mapped
onto co.

THEOREM 2.3 (J. L. Hickman, unpublished).

wC™ ->• there are no DF sets.

PROOF, (from 2.2) Suppose x is DF and / : x -> co is onto. Then no infinite
subsequence of (f~1(n))n<m can have a choice function. (For such a choice
function would map an infinite subset of co 1: 1 into x.)

wCm is the weakest axiom known to me which implies that there are no
DF sets. In §5 we will show that the implication of 2.3 cannot be reversed.

3. Large Dedekind-finite sets

Our aim in this section is, given an arbitrary aleph, to show that it is con-
sistent that there exist DF sets which can be mapped onto that aleph. The model
we shall construct is a generalization of the model used by Halpern and Levy to
show that the Boolean prime ideal theorem does not imply the axiom of choice.
A treatment of the Halpern-Levy model is given by Feigner (1971) in Chapter IV,
sections C (page 96) and G (page 128). Although Feigner's approach differs a
little from ours, his proofs can be carried over to our case.

Let M be a countable transitive model of ZF + V = L, K a (regular aleph)M.
We take as our notion of forcing (HK(K X K,2))M; if p and q are in the notion we
say p g q if and only if p ^ q. Let G be (HK(K X K,2))M-generic over M. For
i <K set Gj = U {p(i):peG} and set G* = {G;: i < K}. (Note that for
p e HK(K x K, 2) by p(i) we mean {(.j, fc> :« i , j> , k) e p}.)

THEOREM 3.1. Write cf(a) for the cofinality of a.
(i) (cf(«))w = (cf(a))M^.
(ii) M and M[G~\ have the same initial ordinals.
(iii) For any a < K and x e M ("x)M = fx)MiG\
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38 G. P. Munro [4]

PROOF. We assume the terms 'A-closed' and 'A-chain condition' from

Schoenfield (1971) §10. It follows from Schoenfield (1971) lemma 10.3 that

HK(K X K, 2) satisfies the K+-chain condition, and HK(K X K , 2 ) is K-closed by a

remark on page 372 of Schoenfield (1971). Our theorem then follows from Schoen-

field (1971) lemma 10.2 and lemma 10.6 (and corollary).

LEMMA 3.2. In M[G~\

(i) each Gf is a member of "2

(ii) the sequence (G()i<K is 1: 1.

(iii) for each he{HK{K,2))M there are infinitely many i<K such that

G( 2 h.

LEMMA 3.3 (Continuity lemma). Let <f> be a ZF-formula, xeM. Then

M\G~] I if ru---,rn, reG* and <f>(G*, ru •••, rn, x,r) and r $ {ru---, rn} then

there is he(HK(K,2))M such that r => h and (Vs 6 G*) (s => h -* 0(G*, ru - ,

rB,x,s)).

PROOF. This lemma is similar to the continuity lemma given by Feigner (1971)
page 133. We give here only an indication of the form Feigner's proof takes in
our situation.

We work in M[G]. Suppose that
M[G] ¥ru---,rH,reG* and <KG*,ru-;rn,x,r). Then there are ii.—.i,,,

i e K such that

M[G] N rx = G,t,-,rn = Gin and r = G,,

so there is p e G such that

Set h = p(i). We note that since peM, heM.I claim that

(1) p lh(VseG*)(s^{Gil,--,G(J and s 2 h

Now (1) is equivalent to

(2) (Vs) (Vg ^ p) (g IF s e G* - {Gfl, -,Gin} and s 2 h

-* (3gf g g)(g' Ir <KG*,Gh,-, Gin,x, «)).

Suppose then that g ^ p and that

g IhseG*- {Gfl,---,G,n} and J 2 /!

for some name s of the forcing language. There is certainly q' ^ q such that
q' IF s = Gy for some .7 £ {I'I, •••, i,}. In fact this q' will do as the q' in (2). This
shown as in Feigner's proof, using the symmetry lemma of §1 and the following
easily established restriction lemma (*).
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(*) If p e (HK(K x K, 2)) M and p Ih HG*, Gh,~; GJm, x)

then p\{ju-,jm} \hil/(G*,GJl,-,G!^x), for xeM.

We now set N = (L(G*)) M[G]; N is the model we are interested in. We recall
from §1 that there is in M[G] a canonical functional

F0:ON x Seq (TC(G*)) -> L(G*),

definable from TC(G*) (and thence G*). Now if x e TC(G*), x = G* or x = G,
(i < K) or x e ON x 2 or x e ON. So by appropriate coding we may replace F o by

F^.ONx Seq(G*)->L(G*).

Now G* c K2, so G* has a natural linear order. Whence by further coding we
may replace Fj by

F:ON x S^CG*) -• L(G*).

The functional F has all the properties of F o ; in particular F is in N, indeed F
is definable in N from G*, and N N F is onto. If x = F(a, a) we say x is constructed
by G*, a. and a or constructible from G* and a. Thus

N 1= every set is constructible from G* and some a e Sa(G*).

THEOREM 3.4. (i) M, N and M[G~\ have the same cf function and the same
initial ordinals.

(ii) For anyai<KandxeM ("x)M = ("x)" = Cx)MrG).

PROOF. This is an immediate consequence of Theorem 3.1 and the fact
that M c W c M[G].

THEOREM 3.5. N N G* is DF.

PROOF. Af[G] N | G* | = K, so certainly

N k G* is infinite.

Suppose N ¥ G* is not DF. Then there is feN such that / : co -• G* and /
is 1:1. Now / is constructible from G* and { r , , - , ^ } , say, in Sm(G*). Choose
fceco and r e G* — {rt, •••, rn) such that f(k) = r. We may write

'M[G] N /(/c) = r'
as

M[G] N <£(G*,ru---,rn,x,r) (some xeM) .

By 3.3 there is some h e (HK(K, 2))M such that

M[G] t= (VseG*)(s 2 ft ^ ^ ( G * , ^ , - , r n , x , s ) ) .

By 3.2 (iii) this implies that / takes infinitely many values at k, a contradiction.
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LEMMA 3.6 (Support lemma). / / x is constructive from G* and a and
from G* and b, then x is constructible from G* and a (] b.

PROOF. This lemma corresponds to Feigner's support lemma (page 137) and
may be proved similarly.

For xeWwe define supp(x) (the support of x) as the smallest aeSa(G*)
such that x is constructible from G* and a; by 3.6 this makes sense. We define
ax as the least a such that x = F(<x, supp (x)). We note that since F is in N the
functional {<x, supp (x)>: x e N} and {<x, ax>: x e N} are in N.

The next theorem is the main result of this section.

THEOREM 3.7. In N

(i) there are at least K distinct DF cardinals.
(ii) there is only a set of distinct DF cardinals.
(iii) if x is not well-orderable x can be mapped onto K.
(iv) no DF set can be mapped onto K + .

PROOF. We work in N.
(i) Define / : G* -»• K thus: /(r) is the least ordinal a such that r{fi) = 0

for j? < a and r(a) = 1. / is onto; in fact from 3.2 (iii) it follows that f~l ({a}) is
infinite for a < K. SO if Xfi = f~l{fi), {X^B <K is a strictly increasing sequence of
DF sets, so (| Xp | )^<K is a strictly increasing sequence of DF cardinals.

(ii) Suppose that in JV X is DF. For each a e SJfi*) set Aa - {xeX:
supp(x) = a}. (Possibly Aa = 0.) Aa can clearly be well-ordered by setting
x < y <-» ax < ccy, and so Aa is finite. The well-ordering in fact provides an
embedding of Aa into a>, and since the procedure is uniform in a combining all
the embeddings gives us a single embedding of X into SJfi*) x co. So all DF
cardinals are g |SW(G*) x co|.

(iii) Suppose X is not well-orderable. As in (ii) we may embed -X" into
S<o(G*) x ON, so let Y c Sm(G*) x ON be equinumerous with X, and suppose
7 is constructible from G* and {r^ •••,/•„}. Now {aeSro(G*): (3a)«a,a>e y)} is
infinite (for otherwise there is an obvious well-ordering of y), so there is
beSa(G*) such that b $ {rlf—,rn} and < M > e *" for some jSeON. Suppose
^ = {si»"->sm}» where Si ̂ { r b •••,rn}. The sentence Xb,pyeY' is of the form

, r1,---,rn,x,s1,-",sm) (some xeM).

From 3.3 there is he{HK(K,iyf such that

JV h(WeG*)(t 2 h-^ {{t,s2,-,sm},p}eY).

But it is easily shown (as in (i)) that {teG*: t 3 h} can be mapped onto K. SO Y,
and thus X, can be mapped onto K.

(iv) We note that from (ii) if X is DF,
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N t\x\^\Sa(G*) x to\.

Also M\G~] f= | Sjfi*) x co | = K. So in M[G] there is no function mapping X
onto K + , whence there is no such function in N either.

Let T be any term of ZF such that ZF h i is an aleph, and such that T is
absolute with respect to transitive models of ZF with the same ordinals and
alephs. Then we have certainly shown that

ZF + (3x)(x is DF and x * ^ T)
is consistent.

We observe also that if X < K

N N every set of subsets of X2 has a choice function (for from 3.4 (ii) and
the fact that M ¥ ZFC we have that N N ''2 can be well-ordered). So this particular
weak axiom of choice does not imply that there are no DF sets.

4. Dedekind-finite proper classes

For this section we must step outside the bounds of ZF; we define ZF(K)
to be the theory with language that of ZF plus the additional one-place predicate
K and axioms those of ZF plus replacement for formulae involving K. Clearly if
ZF is consistent so is ZF(K).

Let M be a countable transitive model of ZF + V = L. We define a class
notion of forcing in M thus. Set, for K a regular cardinal

XK = {<2,K,/?>: A regular, A ^ K and a,)3 < A}.

Set X = U {XK: K a regular cardinal}. Let C be the class of functions p mapping
some subset of AT to 2 such that |dom(p) f]XK\ < K for all regular K. Define
^ on C by p ^ q <-> p 3 g. Then <C, ^ > is our class notion of forcing. Let G
be C-generic over M.

THEOREM 4.1. (i) M\G] is a model of ZFC(G) and the fundamental
theorem of forcing holds for M[G].

(ii) M and JW[G] have the same cf function and hence the same alephs.
(iii) G is a proper class in

PROOF. The notion of forcing is obtained from Schoenfield (1971) page
376 by setting H(K) = K, and the proofs in Schoenfield (1971) §12 still apply. In
Schoenfield (1971) it is shown only that M[G] is a model of ZFC, not of ZFC(G),
but it is easy to add G as a predicate in the deritiition of strong forcing.

Set F = u G; F is easily seen to be a functional from X to 2. We observe
that F(K,P): K -> 2. We set KK = {F(K,P): $ < K] and K = U {KK: K regular}.
Each KK is non-void, so K is a proper class in M[G~\. By standard arguments
we have
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LEMMA 4.2. (i) IfP,y < K and P # y then F(K,P) # F(K,J).

(ii) Suppose K is regular in M and fe(HK{K,2))M. Then there are K distinct

F(K, a) e KK such that F(K, a) 2 / .

The appropriate analogue of 3.3 is

LEMMA 4.3. Let <j>(K,vl,---,vn + 2) be a formula of the language of ZF(K).
Ifxe'M, F(K,P)${F(K1Jl),-,F(KnJn)} and

M[G] N 0(K,F(K l , &),•••, F(K,,, ft,), X , F ( K , 0 ) )

then there is pe(HK(K,2))M such that

F(K,y) 2 ^

Lemma 4.3 can be proved in two ways: we can either generalize directly
the proof of 3.3 (using automorphisms of the classs notion C), or we can proceed
via the reflection principle to reduce the problem to consideration of $ relativized
to some Va and then work in one of the models M[GA] (see Schoenfield (1971)
pages 376-377). A continuity lemma is easily obtained for M[G;i].

We define in M[G~\ a sequence of sets (N2)cteO,y thus:

No= 0

Nx = U Np if a is a limit ordinal

= (D«NX, e,K 0Nx,(a).eNx» if a * c/(a)
x+1 \D((Na, e,K ()Na,(aXes,» U TC(KJ if a =

(For the notation D(2I) see §1.) Set N = U {N^: as ON}. We will use 'JV' in-
differently for the class and the structure <iV, e , K>.

THEOREM 4.4. (i) JV is a transitive model ofZF(K).

(ii) M, N and M[G] have the same cf function and the same alephs.

PROOF, (i) is an application of the theorem quoted under the heading
'Relative constructibility' in §1; (ii) follows from 4.1 (ii) and the fact that
M £ N £ M[G].

We observe that in JV K has a natural linear order < K denned as follows.
F(K,P) <KF(l,y) if K < A or K = X and F(K,P) precedes F(K,y) in the lexico-
graphic ordering of "2.

THEOREM 4.5. JV 1= K is a DF proper class.

PROOF. K is a proper class in JV because it is so in M[G]. Suppose that K is
not DF, so that in JV there is / : co -» K, f being 1: 1. By arguing as in §3 we may
say that / is constructible from K and F(K1,^1),--,F(Kn,)?n) say. Choose keco
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such that f(k) t{F(K1,pi),~;F(KnJn)}, and suppose f(k) = F(K,p). We may
write the statement J(k) = F(K,P)' as

where xeM. By 4.3 F{K,P) may be replaced by infinitely many other members
of KK, so / takes infinitely many values at k, a contradiction.

THEOREM 4.6. N 1= there is a DF proper class which can be mapped onto
the universe.

PROOF. We work in N. Our proper class is K', the class of finite subsets of K.
We use the linear order < x o n K t o embed K' into the class of 1: 1 finite sequences
of elements of K, which we call K". It is easy to see that since K is DF, so is K"
(this appears to be due to Tarski; see Levy (1965) page 225). Since K" is DF, K'
is DF as well.

We define a functional <j>: K -> ON thus:

<J>{F{K, /?)) is the least ordinal a such that

(F(K,/?))(«)= 1.

By 4.2 (ii) <j>"KK = K for each regular K. We now define 0>: K' ->• N thus. If
aeK', let r be the greatest element of a under < £ , and set a' = a — {r}. Then
O(a) is that element of N constructed by a', <f>{r) and K. O is clearly onto.

5. The assumption that there are no DF sets.

In this section I construct a model in which there are no DF sets but wC°
fails, thus showing that the implication of 2.3 cannot be reversed.

Let M be a countable transitive model of ZF + V = L. We take as our
notion of forcing (//„,(<« x w , x (ou2))M; let G be {H^^co x a>t x (ou2))M-
generic over M. As in the proof of 3.1 we have that M and M\_C] have the same
cofinality function and initial ordinals, and that for a < OJX and x e M
(*X)M = Cx)MlG\ In particular every element of "2 in M[G] is also in M.

Write K for U G; then K: co x cot x a>x -* 2, so if i < co and j < wl then
^(i,;):^! -+ 2. Set

Xi = {K(U):./<fi>i},

Y; = {/: dom(/) = co, ran(/) s * , and / is 1: 1}

z = (y,),<a,.

By standard arguments if <ij> ^ <i',;'>, then K ( y ) # K(i',j'). Further if
heHai (cu1(2) and j < co there are c^ y's such that .£(/,/) 2 h.

The appropriate continuity lemma is
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THEOREM 5.1. Let <f> be a ZF-formula, and suppose that

where xeM, s1eYh,-,smeYim,t1eYJl,-,tneYJn and {h,-,im} 0 {ji,-,jn}
= 0. Then there are functions hklsHlOl{a>u2) (1 ^ k ^ n,l < co) such that
I ^ V -* hk, is incompatible with hkV and such that if

Akl = {xeXjk:x 3 hkl}, then tk(l)eAkl and

M\G] N OV. - .OKVfc =S n)(V/ < co)(tk'(l)eAkl

-> <j)(Z,S1,--;Sn,X,tl',--,ttt'y\.

This continuity lemma differs from our others in that instead of having one
'movable' element t, we have a finite number tu---,tn. This however makes no
essential difference to the proof; indeed Feigner's continuity lemma for the
Halpern-Levy model (Feigner (1971) page 133) is of this more general form.

The model we consider is N = (L(Z))MtG1. The theorem we quoted on
relative constructibility shows that in M[G] there is a canonical functional

F0:ONx Seq(TC(Z)) -> L(Z).

By analyzing the members of TC(Z) we may, as in §3, replace Fo by a functional

F:0N x A^> L(Z)

where A = {/: dom(/)e a>, ran (/) s (J Yt and if j'• ^ k and

f(j)eYtj,f(k)eYikthea i,• # ik}.

If F(a, <sl5 ••-,$„» = z we say z is constructed by Z, a and st,---.s,,, or con-
structible from Z and s1; •••,«„. F is defined from Z alone and is onto N.

THEOREM 5.2. wCra fails in N.

PROOF. Consider the co-sequence (Yi)i<0} = Z; suppose/ is a choice function
for an infinite subsequence of Z. Then / is constructible from Z and elements
slt •••,sn of Yh, •••, Yin say. Choose n such that fin) is not in any of the Yh, •••, Yin;
suppose f(n) = t. It follows from an application of 5.1 to the sentence '/(n) = «'
that / is not a function, contradiction.

THEOREM 5.3. N N f/iere are no DF sets.

PROOF. Suppose JV 1= X is £>F. Since XeN, X is constructible from Z and
s1; •••,sn (where 5t e Yik). Now the class of sets constructible from Z and s1, ---.Sn
is well-orderable in N, so if we set

X' = {xeX: x not constructible from Z and sls •••,sn},

then Z ' is Z)F. Further X' is constructible from Z and Sj, ••-,sn.
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Take a e X'. Now a is constructed by Z, a and slf ••••, sn, tl,---,tm say (where
tke YJk). We write a(t1, •••,(„,) for a. By applying 5.1 to the sentence 'aeX" we
find there are functions hkl e(//roi(<y1,2))'w (for I ^ k ^ m, I < co) such that
if Akl = { x e l j , : x 2 hkl) then the ̂ 4H are pairwise disjoint, tk(l)eAkl and

(Here #(?/, •••, ?m') is the set constructed by 2 , a and st, --.s,,, f/, ••-, tm'.)

Set/I = {fl(t!',-•,/„'): h'(l)eAkl for I ^ k ^ m and I < co}.

We observe that A is constructible from Z and Sj, •••,sm. For this is clear once we
know that the double sequence (^ti)istgm>(«0 is an element of M. But any count-
able ordinal can be coded by a single element of m2, so any countable sequence
of countable ordinals can be coded by a single element of *° 2. It follows that
{hki)\%k-s,m,i<w c a n be coded by a single element of W2, and all the elements of
<B2 in M[G~] are in M. We note also that a eA and A £ X'.

If A is a singleton, a is constructible from Z and su •••,sn, a contradiction.
If JV 1= A is infinite, then M[G] t= /I has a countable subset, say

Now the (o-sequences <*{ 1 ) , t ( 2 , ) -> ,<t i 1 ) ,» i 2 ) , -> , - ,<f i 1 ) , t f ) , -> are codable
into single elements of YJt, •••, Y,^. For

Yt = ( { / : dom(/) = to, ran (/) £ X, and / is 1: 1

And any element of (a>Xj)
M[Ci can be coded by an element of a2 and an element

of Yt. So the sequence (1) is in fact in JV, whence N N X' is not DF, a contra-
diction.

Suppose finally that A is finite. Recall that a{tu ••-,/„) eA. Choose tk'
(1 ^ k ^ m) such that ran(^) n ran(fk') = 0 and f / (0e^*i for / < co. (Since
M\_G~\ 1= |/4W j = cou this is clearly possible.) We distinguish two cases.

CASE I.

(2) a(tu-,tm) = a(tl',...,tm').

If r, s are two co-sequences define r * s as the sequence given by

(r*s)(2i) = lit); (r*s)(2i + 1) = s(i).

Now set rfc" = tk*tk. Then (2) can be written in the form

where 4> is a ZF-formula and zeM. By applying 5.1 to this statement we obtain
sets BkhB'kl E Xjk (1 g: k S m, I < co) such that

JV 1= a(rlt—,rm) = a(ri',-,rm') for all rk

https://doi.org/10.1017/S1446788700023521 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023521


46 G. P. Munro [12]

such that rk(l) e Bkt and all rk such that

rk'(DeB'kl.
So if we set

A' = { f l C r j . - . r J : ^ such that rk(l)eBkl},

A' is a singleton and constructible from Zand su---,sn. It follows that AT'contains
an element constructible from Z and slt •••,sn (namely the unique element of A'):
this is a contradiction.

CASE II.

a(tu-,tj #fl(<1',---,<m').

By proceeding as in case I we find BkhB'kl s XJk such that

N N a(ru---,rm) # a ( V , •••,rm') for all rk such

that rk(l) e 5*, and all rk such that

'•/(OSB;,.
So if we set

A' = {a{rly-,rmy.rk such that rk(l)eBkl},

A' is constructible from Z and sl,---,sn and is a non-empty proper subset of A.
After the construction is repeated a finite number of times we reach a singleton,
which gives us a contradiction as before. This completes the proof of the theorem.
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