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ENDEMIC BEHAVIOUR OF SIS EPIDEMICS WITH
GENERAL INFECTIOUS PERIOD DISTRIBUTIONS
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Abstract

We study the endemic behaviour of a homogeneously mixing SIS epidemic in a population
of size N with a general infectious period, Q, by introducing a novel subcritical
branching process with immigration approximation. This provides a simple but useful
approximation of the quasistationary distribution of the SIS epidemic for finite N and
the asymptotic Gaussian limit for the endemic equilibrium as N → ∞. A surprising
observation is that the quasistationary distribution of the SIS epidemic model depends on
Q only through E[Q].
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1. Introduction

The SIS epidemic model is the simplest epidemic model which exhibits endemic behaviour,
and has consequently received considerable interest; see, for example, Weiss and Dishon (1971),
Kryscio and Lefèvre (1989), Andersson and Djehiche (1998), Clancy and Pollett (2003), and
Clancy and Mendy (2011). In its simplest form there is assumed to be a homogeneously mixing
closed population of N individuals, partitioned into two groups: susceptibles and infectives.
Whilst infectious, an infective makes infectious contacts at the points of a homogeneous Poisson
point process with rate β with the individual contacted chosen uniformly at random from the
entire population. Infectious contacts with susceptibles result in the recipient becoming infected
and instantaneously infectious, whilst infectious contacts with infectives have no effect on the
recipient. Infectives have a constant recovery rate, γ , at which they recover from the disease
and return to the susceptible state. This implies that the infectious period of infectives is
exponentially distributed with mean γ −1 and that the epidemic process is Markovian.

A number of key results are known for the SIS epidemic model, both for finite N and
asymptotic as N → ∞. For finite N , the quasistationary distribution of the epidemic process
(see Kryscio and Lefèvre (1989), Nåsell (1996), (1999a), Clancy and Pollett (2003), Clancy
and Mendy (2011), and Clancy (2012)) and the time to extinction from the endemic equilibrium
(see Andersson and Djehiche (1998) and Nåsell (1999a)) have been investigated since, almost
surely, the SIS epidemic eventually goes extinct. Asymptotic results as N → ∞ are a branching
process approximation for the initial stages of the epidemic and a Gaussian process limit,
using Theorem 3.5 of Kurtz (1971), for the fluctuations of the stochastic process about the
deterministic limit. The branching process approximation can be obtained using a similar
approach to that given in Ball and Donnelly (1995) for the SIR epidemic; see, for example,
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Ball (1999). The Gaussian process limit leads to an Ornstein–Uhlenbeck limit about the
endemic equilibrium should one exist; see Kryscio and Lefèvre (1989). The branching process
approximation mirrors that for the SIR epidemic model, whereas the other results are exclusively
for the SIS epidemic model. The Markov SIS epidemic model has been studied amongst
heterogeneous populations, the household epidemic model (see Ball (1999), Ghoshal et al.
(2004), Neal (2006), Arrigoni and Pugliese (2007), and Britton and Neal (2010)) and the great
circle epidemic model (see Neal (2008)). For these epidemic models, a branching process
approximation for the initial stages of the epidemic (see Ball (1999) and Neal (2008)), stability
of the disease free equilibrium (see Ball (1999) and Ghoshal et al. (2004)), the endemic
equilibrium (see Ball (1999), Ghoshal et al. (2004), and Neal (2006), (2008)), an Ornstein–
Uhlenbeck limit about the endemic equilibrium (see Ball (1999), Neal (2006), and Britton and
Neal (2010)) and the time to extinction (see Britton and Neal (2010)) have been investigated.

In this paper we consider generalising the SIS epidemic model in a different direction
by assuming that the population is homogeneously mixing but that the infectious periods
are independent and identically distributed (i.i.d.) according to an arbitrary, but specified,
nonnegative probability distribution Q. As noted above, it is trivial to adapt the branching
process approximation for an SIR epidemic model with general infectious period (see Ball and
Donnelly (1995)) to an SIS epidemic model. Therefore, we focus on the endemic behaviour
of the SIS epidemic model, the (asymptotic) proportion infectious in endemic equilibrium,
the quasistationary distribution of the epidemic and an asymptotic Gaussian limit about the
endemic equilibrium.

For the SIR epidemic model, the basic reproduction numberR0 and the asymptotic proportion
infected by a major epidemic outbreak are known to depend on Q, the infectious period
distribution, only through E[Q]. In contrast, the probability that a major epidemic occurs
and the asymptotic variance of the proportion infected in a major epidemic depend on the
distributional form of Q and not just E[Q]. For the endemic level of the SIS epidemic model,
we show that not only the proportion infected at the endemic level but also the approximating
quasistationary distribution, and the corresponding endemic equilibrium distribution depend
on Q only through E[Q]. A Gaussian limit for the evolution of the epidemic process about its
endemic equilibrium is obtained and this does depend on the distributional form of Q. Without
loss of generality, throughout the paper, we set E[Q] = 1, as changing E[Q] only changes the
timescale of the epidemic if β is adjusted accordingly.

The paper is structured as follows. In Section 2 we consider the equilibrium behaviour
of a subcritical branching process with immigration, in particular, the stationary distribution
for finite immigration rate and the asymptotic behaviour as the immigration rate α → ∞.
The subcritical branching process with immigration provides a novel and useful approximation
for the SIS epidemic model about the endemic equilibrium. In Section 3 we exploit this
approximation to study the endemic equilibrium of the SIS epidemic model with 1 < R0 < 2,
and obtain a simple approximation of the quasistationary distribution of the epidemic model.
The approximating quasistationary distribution obtained is a negative binomial distribution
which is similar to that obtained in Clancy and Mendy (2011) by totally different methods
(cumulant equations). Our approximation is valid for all choices of Q, whereas the construction
of Clancy and Mendy (2011) explicitly relies upon Q being exponentially distributed. The case
1 < R0 < 2 corresponds to an endemic level 0< ρ = (R0 − 1)/R0 < 1

2 , which is the most real-
istic scenario for an endemic SIS disease. Finally, in Section 4 we summarise the results obtained
and briefly discuss how the distribution of Q affects the mean time to extinction of the epidemic.
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2. Subcritical branching process with immigration

For N ≥ 1, we consider a sequence of branching processes {BN }, indexed by N , which are
defined as follows. Individuals immigrate into the population at the points of a homogeneous
Poisson process at rate Nα. Each individual on entering the population has an i.i.d. life history
according to (Q, η). Let Q be an arbitrary, but specified, nonnegative distribution denoting the
length of an individual’s lifetime. Without loss of generality, we set E[Q] = 1. Let η be a
homogeneous Poisson point process with rate δ of times, relative to the individual’s entry into
the population either by immigration or birth, at which the individual gives birth. Thus, an
individual, i say, with life history (Qi, ηi), who enters the population at time, t say, gives birth
to new individuals at the points of t + ηi before dying at t + Qi . To ensure that the branching
process is subcritical, we require that δ < 1. We assume that the population configuration at
time 0 is from the stationary distribution of BN , which can be obtained by running the branching
process from t = −∞.

Let BN(t) denote the total number of individuals alive in the branching process BN at time
t . It is straightforward to show, using stationarity, that E[BN(t)] = E[BN(0)] = αN/(1 −
δ). We begin by obtaining the probability generating function of BN(t) in Lemma 2.1, and,
consequently, show that BN(t) follows a negative binomial distribution. This is followed in
Corollary 2.1 by a central limit theorem for ZN(t) = (BN(t) − E[BN(t)])/√N as N → ∞,
which is extended in Theorem 2.1 to a Gaussian process limit for ZN(·).

For u ≥ 0, let X(u) denote the total number of individuals alive in a branching process X
where there is one initial ancestor who enters the population at time 0 and individual histories
are i.i.d. according to (Q, η). Thus, {X(u)} represents the family history of an immigrant in BN ,
relative to the immigrant’s arrival time. For 0 ≤ s ≤ 1 and u ≥ 0, let φ(s, u) = E[sX(u)]. In the
sequel X, and, hence, X(u) and φ(s, u) play key roles. It is well known that, if Q ∼ Exp(1),
using the Kolmogorov backward equations,

φ(s, u) = (1 − s) − (1 − δs) exp((1 − δ)u)

δ(1 − s) − (1 − δs) exp((1 − δ)u)
. (2.1)

It is also clear that X(u) and, hence, φ(s, u) depends upon Q. For example, P(X(u) ≥ 1) = 1
for u < 1 if Q ≡ 1, which is certainly not the case for Q ∼ Exp(1). However, an important
quantity is∫ ∞

0
{φ(s, u) − 1} du =

∫ ∞

0

{ ∞∑
k=0

sk
P(X(u) = k) −

∞∑
k=0

P(X(u) = k)

}
du

=
∞∑

k=0

(sk − 1)

∫ ∞

0
P(X(u) = k) du

=
∞∑

k=1

(sk − 1)

∫ ∞

0
P(X(u) = k) du,

which is governed by
∫ ∞

0 P(X(u) = k) du, the mean amount of time the branching process X
spends with k individuals alive. Somewhat surprisingly, it appears that

∫ ∞
0 P(X(u) = k) du

depends on Q only through E[Q].
Conjecture 2.1. Given that E[Q] = 1. For all k = 1, 2, . . . ,∫ ∞

0
P(X(u) = k) du = δk−1

k
. (2.2)
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Proof. The general statement of the conjecture has alluded full proof. We present a proof
of (2.2) in the case Q ∼ Exp(1) and outline results which support the conjecture.

Since, for 0 ≤ s ≤ 1,

∞∑
k=1

(sk − 1)
δk−1

k
= 1

δ
log

(
1 − δ

1 − sδ

)
,

the conjecture holds if ∫ ∞

0
{φ(s, u) − 1} du = 1

δ
log

(
1 − δ

1 − sδ

)
. (2.3)

Using (2.3) it is trivial to see that the conjecture holds for (Q, δ = 0) for any Q, where
φ(s, u) = 1 + (s − 1)P(Q > u).

For Q ∼ Exp(1), using (2.1),∫ ∞

0
{φ(s, u) − 1} du =

∫ ∞

0

(1 − δ)(1 − s)

δ(1 − s) − (1 − sδ) exp((1 − δ)u)
du.

By a change of variable with y = exp((1 − δ)u) and using partial fractions, we have dy/y =
(1 − δ) du and∫ ∞

0
{φ(s, u) − 1} du =

∫ ∞

1

(1 − s)

y{δ(1 − s) − (1 − sδ)y} dy,

= (1 − s)

∫ ∞

1

{
1

δ(1 − s)y
+ 1 − sδ

δ(1 − s){δ(1 − s) − (1 − sδ)y}
}

dy

= 1

δ

∫ ∞

1

{
1

y
+ 1 − sδ

δ(1 − s) − (1 − sδ)y

}
dy

= 1

δ
[log(y) − log |δ(1 − s) − (1 − sδ)y|]∞1

= 1

δ

[
log

(
y

|δ(1 − s) − (1 − sδ)y|
)]∞

1

= 1

δ

{
log

(
1

1 − sδ

)
− log

(
1

1 − δ

)}

= 1

δ
log

(
1 − δ

1 − sδ

)
,

as required by (2.3).
For Q ∼ Exp(γ1) + Exp(γ2) with γ −1

1 + γ −1
2 = 1 and δ ≥ 0, we can model the individuals

as having a two-stage lifetime: one stage of length Exp(γ1) followed by another stage of length
Exp(γ2). Then φ(s, u) = ϕ1((s, s), u), where ϕk(z, u) (k = 1, 2) denotes the probability
generating function for the total number of individuals in each life stage at time u given that
there is an initial ancestor in life stage k at time 0. Note that ϕ1(z, u) and ϕ2(z, u) solve the
backward Kolmogorov equations

∂ϕ1(z, t)

∂t
= δϕ1(z, t)

2 + γ1ϕ2(z, t) − (δ + γ1)ϕ1(z, t),

∂ϕ2(z, t)

∂t
= δϕ1(z, t)ϕ2(z, t) + γ2 − (δ + γ2)ϕ2(z, t)
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subject to the initial conditions ϕk(z, 0) = zk . Using MAPLE® 16, it is possible to get an (long
and unwieldy) analytic expression for φ(s, u) with numerical integration used to evaluate (2.3)
for a wide range of choices of δ, γ1, γ2 and s to verify that (2.3) holds.

It is difficult to prove analytically the conjecture for general Q, although it is possible to
show that, for any Q with E[Q] = 1 and δ small, but positive,

∫ ∞
0 P(X(u) = 2) = δ/2 + o(δ).

Thus, the result was checked using Monte Carlo estimation of
∫ ∞

0 P(X(u) = k) du using a
range of choices of Q and δ with 10 000 simulations used for each combination. In all cases
the results were consistent with (2.2) with small Monte Carlo error.

We proceed under the assumption that Conjecture 2.1 holds.

Lemma 2.1. For any Q such that E[Q] = 1, the unique stationary distribution B∗
N for the

branching process BN satisfies, for all 0 ≤ s ≤ 1,

E[sB∗
N ] = exp

(
αN

∫ ∞

0
{φ(s, u) − 1} du

)
=

(
1 − δ

1 − sδ

)αN/δ

. (2.4)

Proof. Since BN starts in stationarity, BN(0)
d= B∗

N and we consider E[sBN(0)].
For i = 1, 2, . . . , let Ci = [−i, −(i−1)). Then the total number of individuals immigrating

into the population in Ci is Ci ∼ Po(αN) and the immigration times are uniformly distributed
over Ci . Let −Ui,j ∼ U [−i, −(i − 1)) (j = 1, 2, . . . , Ci) denote the immigration of the j th
individual in Ci . Note that the labelling of the immigrants in Ci does not refer to the time
order of the immigrations, instead using a construction which gives i.i.d. immigration times
for the Ci individuals. Let Xi,j (u) denote the total number of individuals in the branching
process originating from the j th immigrant in Ci at u units of time after immigration. Then
BN(0) = ∑∞

i=1
∑Ci

j=1 Xi,j (Ui,j ), where, for fixed i, the Xi,j (Ui,j ) are i.i.d. with

E[sXi,j (Ui,j )] =
∫ −(i−1)

−i

φ(s, u) du.

Since the Ci are i.i.d., we have

E[sBN(0)] = E

[
s
∑∞

i=1
∑Ci

j=1 Xi,j (Ui,j )
]

=
∞∏
i=1

E[E[sXi,1(Ui,1)]Ci ]

=
∞∏
i=1

E

[{∫ −(i−1)

−i

φ(s, −u) du

}Ci
]

=
∞∏
i=1

exp

(
αN

{∫ −(i−1)

−i

φ(s, −u) du − 1

})

= exp

(
αN

∞∑
i=1

{∫ −(i−1)

−i

φ(s, −u) du − 1

})

= exp

(
αN

∫ ∞

0
{φ(s, u) − 1} du

)
.

satisfying (2.4).
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Then, for r = 0, 1, . . ., B∗
N has probability mass function

P(B∗
N = r) = �(αN/δ + r)

�(αN/δ)r! δαN/δ(1 − δ)r , (2.5)

which, for αN/δ ∈ N, gives B∗
N ∼ NBin(αN/δ, 1 − δ). Throughout we use the term negative

binomial distribution to refer to the generalised distribution given by (2.5), and note that
E[B∗

N ] = Nα/(1 − δ) and var(B∗
N) = Nα/(1 − δ)2.

An immediate corollary of Lemma 2.1 concerns the asymptotic distribution of

Z∗
N = B∗

N − E[B∗
N ]√

N
= B∗

N − Nα/(1 − δ)√
N

.

Corollary 2.1. We have

Z∗
N

d−→ Z∗ ∼ N

(
0, α

∫ ∞

0
E[X(u)2] du

)
= N

(
0,

α

(1 − δ)2

)
as N → ∞.

Thus far we have focused upon B∗
N and Z∗

N which are independent of the distributional form
of Q. We now turn to ZN(·) and show that, as N → ∞, ZN(·) converges weakly to a Gaussian
process Z(·), where the covariance function of Z(·) does depend upon the distributional form
of Q. To prove this, we proceed as in Scalia-Tomba (1990), by defining, for N ≥ 1, ZN on
D[0, ∞) endowed with the Skorokhod topology (see Billingsley (1968) and Lindvall (1973)).
Note that with a suitable choice of metric, D[0, ∞) becomes a complete, separable metric
space. We show that the finite-dimensional distributions of ZN(·) converge weakly to those of
Z(·) (Lemma 2.3), and then, for any T > 0, ZN ⇒ Z on D[0, T ] as N → ∞ (Theorem 2.1).

Before we state and prove Lemma 2.3, a central limit theorem for the finite-dimensional
distributions of ZN(·), we give a simple but useful result.

Lemma 2.2. For any λ > 0 and n ≥ 1, let Xn ∼ Po(λn) and let Y1, Y2, . . . be i.i.d. according
to Y with E[Y 2] < ∞. Then, as n → ∞,

Zn = 1√
n

( Xn∑
i=1

Yi − E[Xn]E[Y ]
)

d−→ Z ∼ N(0, λE[Y 2]) as n → ∞.

Proof. The lemma is straightforward to prove using convergence of moment generating
functions; hence, the details are omitted.

Lemma 2.3. For all m ∈ N and t ∈ R
m with 0(= t0) ≤ t1 < t2 < · · · < tm, as N → ∞,

ZN(t) = (ZN(t1), ZN(t2), . . . , ZN(tm))

converges in distribution to a multivariate normal distribution with mean 0 and covariance
matrix (t), with the (k, l)th element of (t) equal to

α

∫ tm

−∞
ν(tk − u, tl − u) du, (2.6)

where, for s, t ∈ R, ν(s, t) = E[X(s)X(t)] with X(t) = 0 for t < 0.
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Proof. Fix m ∈ N and t ∈ R
m. Let φ = (φ1, φ2, . . . , φm) ∈ R

m and VN(t, φ) =∑m
i=1 φiZN(ti). For i = 1, 2, . . . , m, let Ĉi = (ti−1, ti]. Then the total number of

individuals immigrating into the population in the interval Ĉi is ĈN
i ∼ Po(αN(ti − ti−1)) and

the immigration times are uniformly distributed over Ĉi . Let X̂i,j (u) denote the total number
of individuals in the branching process originating from the j th immigrant in Ĉi at u units of
time after immigration. Note that, for u < 0, X̂i,j (u) = 0.

For i = 1, 2, . . . , m and j = 1, 2, . . . , ĈN
i , let Û i,j ∼ U(ti−1, ti). Then

VN(t, φ) =
m∑

i=1

φiZN(ti)

= 1√
N

m∑
k=1

φk

{ ∞∑
i=1

(CN
i∑

j=1

Xi,j (tk − Ui,j ) − E[CN
i ]E[Xi,1(tk − Ui,1)]

)

+
m∑

i=1

( ĈN
i∑

j=1

X̂i,j (tk − Û i,j ) − E[ĈN
i ]E[X̂i,1(tk − Û i,1)]

)}

=
∞∑
i=1

1√
N

{CN
i∑

j=1

m∑
k=1

φkX
i,j (tk − Ui,j ) − E[CN

i ]
m∑

k=1

φkE[Xi,1(tk − Ui,1)]
}

+
m∑

i=1

1√
N

{ ĈN
i∑

j=1

m∑
k=1

φk(X̂
i,j (tk − Û i,j ) − E[ĈN

i ]
m∑

k=1

φkE[X̂i,1(tk − Û i,1)]
}
.

(2.7)

By Lemma 2.2, for each i,

1√
N

{CN
i∑

j=1

m∑
k=1

φkX
i,j (tk − Ui,j ) − E[CN

i ]
m∑

k=1

φkE[Xi,1(tk − Ui,1)]
}

d−→ N

(
0, αE

[{ m∑
k=1

φkX
i,1(tk − Ui,1)

}2])
(2.8)

and

1√
N

{ ĈN
i∑

j=1

m∑
k=1

φk(X̂
i,j (tk − Û i,j ) − E[ĈN

i ]
m∑

k=1

φkE[X̂i,1(tk − Û i,1)]
}

d−→ N

(
0, α(ti − ti−1)E

[{ m∑
k=1

φkX̂
i,1(tk − Û i,1)

}2])
(2.9)

as N → ∞. Now

αE

[{ m∑
k=1

φkX
i,1(tk − Ui,1)

}2]
= α

m∑
k=1

m∑
l=1

φkφlE[Xi,1(tk − Ui,1)Xi,1(tl − Ui,1)]

=
m∑

k=1

m∑
l=1

φkφlα

∫ −(i−1)

−i

ν(tk − u, tl − u) du (2.10)
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and

α(ti − ti−1)E

[{ m∑
k=1

φkX̂
i,1(tk − Û i,1)

}2]

= α(ti − ti−1)

m∑
k=1

m∑
l=1

φkφl

∫ ti

ti−1

1

ti − ti−1
ν(tk − u, tl − u) du

=
m∑

k=1

m∑
l=1

φkφlα

∫ ti

ti−1

ν(tk − u, tl − u) du. (2.11)

Therefore, combining (2.7)–(2.11) with the fact that the evolution of each branching process is
independent, we have

VN(t; φ)
d−→ N

(
0,

m∑
k=1

m∑
l=1

φkφlα

∫ tm

−∞
ν(tk − u, tl − u) du

)
as N → ∞. (2.12)

The lemma follows by applying the Cramér–Wold device (see Billingsley (1968, pp. 48–49))
to (2.12). This completes the proof.

We exploit the fact that Z is a stationary Gaussian process to prove, firstly, that Z has almost
surely continuous sample paths, and secondly, that {ZN } satisfies Condition (A) of Aldous
(1978). Then ZN ⇒ Z as N → ∞ follows from Corollary 1 of Aldous (1978).

For t ≥ 0, let

H(t) = α

∫ t

−∞
{ν(t − u, t − u) − 2ν(t − u, −u) + ν(−u, −u)} du

= 2α

∫ t

−∞
{ν(−u, −u) − ν(t − u, −u)} du

= 2α

∫ t

−∞
E[X(−u)(X(−u) − X(t − u))] du.

Then, for all 0 ≤ s ≤ t , cov(Z(s), Z(t)) = cov(Z(0), Z(t−s)) = H(t−s). By Corollary 25.6
of Rogers and Williams (1994, Chapter I), Z has almost surely continuous sample paths if there
exist θ > 0 and C < ∞ such that, for all t ≥ 0,

H(t) ≤ Ctθ . (2.13)

It suffices to prove (2.13) for 0 ≤ t ≤ 1 as the result can then easily be extended for all
t ≥ 0. We prove (2.13) in Lemma 2.4 below for θ = 1 under the assumption that Q satisfies
εQ = sup{x≥0} fQ(x) < ∞. This assumption covers most choices of Q made in the epidemic
literature including the gamma distribution with shape parameter greater than or equal to 1. We
discuss relaxing the assumption after Lemma 2.4.

Lemma 2.4. For all 0 ≤ t ≤ 1 and εQ = sup{x≥0} fQ(x) < ∞,

|H(t)| ≤ Ct,

where C = 2α(exp(R) − 1)(1 − δ)−2 and R = δ + εQ.

https://doi.org/10.1239/aap/1396360112 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1396360112


SIS epidemics with general infectious period distributions 249

Proof. For 0 < s < t and t − s ≤ 1, consider E[X(s){X(t) − X(s)}]. For an individual,
aged q, the infinitesimal rates at which they give birth and die are δ and fQ(q), respectively.
Therefore, a straightforward coupling shows that {|X(t) − X(s)|}|X(s) = k ≤st (W(t) −
W(s))|W(s) = k, where W(·) is a pure birth process in which each individual gives birth at
the points of a homogeneous Poisson point process with rate R and ‘≤st’ denotes stochastically
less than. Thus, (W(t) − W(s)) is an upper bound for the total number of births and deaths in
the branching process in the interval (s, t] with

E[{|X(t) − X(s)|} | X(s) = k] ≤ E[(W(t) − W(s)) | W(s) = k]
= k{exp(R(t − s)) − 1}.

Hence,
|E[X(s){X(t) − X(s)}]| ≤ E[X(s)2{exp(R(t − s)) − 1}]

≤ (t − s)(exp(R) − 1)E[X(s)2], (2.14)

since, for u ≤ 1, exp(Ru) − 1 ≤ u(exp(R) − 1). Therefore, for 0 ≤ t ≤ 1,

|H(t)| =
∣∣∣∣2α

∫ t

−∞
E[X(−u)(X(−u) − X(t − u))] du

∣∣∣∣
≤ 2α

∫ t

−∞
|E[X(−u)(X(−u) − X(t − u))]| du

≤ 2α

∫ t

−∞
t (exp(R) − 1)E[X(−u)2] du

≤ 2αt(exp(R) − 1)

∫ ∞

0
E[X(u)2] du

≤ 2αt
exp(R) − 1

(1 − δ)2

= Ct,

completing the proof.

The condition εQ < ∞ is almost certainly not required for (2.13) to hold. For Q ≡ 1, and
any small ε > 0, E[|X(1 + ε) − X(1 − ε)| | X(1 − ε)] ≈ 1, which prevents a bound of the
form (2.14). Dealing with this technicality should not prove difficult but is cumbersome taking
into account when individuals are born as well as the number alive at time t and, hence, we
omit a proof.

Theorem 2.1. We have
ZN ⇒ Z on D[0, ∞) as N → ∞.

Proof. Fix T ≥ 0. By Lemma 2.4 and Corollary 25.6 of Rogers and Williams (1994,
Chapter I), Z has almost surely continuous sample paths.

By Chebychev’s inequality, for any εN → 0 as N → ∞, 0 ≤ t ≤ T , and ε > 0,

P(|ZN(t + εN) − ZN(t)| > ε) = P(|ZN(εN) − ZN(0)| > ε)

≤ 1

ε2 H(εN)

→ 0 as N → ∞.
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Thus, Condition (A) of Aldous (1978) holds and, since Z has almost surely continuous sample
paths and the finite-dimensional distributions of {ZN } converge to those of Z, it follows from
Corollary 1 of Aldous (1978) that

ZN ⇒ Z on D[0, T ] as N → ∞. (2.15)

Given that (2.15) holds for all T > 0, the theorem follows by Theorem 3′ of Lindvall (1973).

3. SIS epidemic

We turn our attention to the SIS epidemic model. For the Markov SIS epidemic model, it is
known that, as N → ∞, the proportion infected in the endemic equilibrium is ρ = 1 − 1/R0,
where R0 = βE[Q](= β) > 1. (For R0 ≤ 1, there is no endemic equilibrium.) Hence, for
E[Q] = 1, the endemic equilibrium is ρ = (β − 1)/β, and the mean of the quasistationary
distribution is approximately Nρ. Furthermore, the quasistationary distribution can be obtained
in this case; see Equation (4) of Clancy and Pollett (2003). However, the quasistationary
distribution is cumbersome, hence, the search for simple but good approximations (see Kryscio
and Lefèvre (1989), Nåsell (1996), (1999a), Clancy and Pollett (2003), Clancy and Mendy
(2011), and Clancy (2012)). In Clancy and Mendy (2011) a range of approximations are
considered for the supercritical case R0 > 1, including a negative binomial approximation
in the range 1 < R0 < 2 (0 < ρ < 1

2 ), which is the most common practical situation.
A negative binomial approximation based upon the distribution of B∗

N derived in Section 2
for an appropriate choice of α and δ will be used here and differs from the negative binomial
approximation obtained in Clancy and Mendy (2011). We provide a correction ỸN to B∗

N which
takes into account the overestimation of the number infected in the quasistationary distribution
using B∗

N . In particular, E[ỸN ] agrees with the means of the approximating quasistationary
distributions derived in Clancy and Mendy (2011, Section 3.2) up to but not including a term of
O(1/N). First, we consider Z∗

N and ZN(·) and their limits as N → ∞ for normalised versions
of the total number of infectives in Theorem 3.1. For large N , Z∗

N and ZN(·) are shown to
provide very good approximations to the epidemic process.

For N ≥ 1, the epidemic EN is the homogeneously mixing epidemic in a population size
N , where individuals have i.i.d. infectious periods according to Q and infectious indiviiduals
make infectious contacts at the points of a homogeneous Poisson point process with rate β.
The individual contacted by an infectious contact is equally likely to be any member of the
population, including the infective making the contact. An infectious contact with a susceptible
results in the individual becoming infected and instantaneously infectious, whilst infectious
contacts with infectives have no affect on the recipient. At the end of their infectious period an
infective returns to the susceptible state and consequently individuals can be infected multiple
times.

Let YN(t) be the total number of infectives in EN at time t , and let WN(t) = √
N(YN(t)/N −

ρ). Then YN(t) = Nρ + √
NWN(t) and the infinitesimal infection rate at time t is

β

N
YN(t)(N − YN(t)) = β

N
(Nρ + √

NWN(t))(N − Nρ − √
NWN(t))

= β

N
N2ρ(1 − ρ) + β

N
N3/2WN(t)(1 − 2ρ) − βWN(t)2

= β

N
N2ρ(1 − ρ) + β

N
N(YN(t) − Nρ)(1 − 2ρ) − βWN(t)2

= Nβρ2 + (2 − β)YN(t) − βWN(t)2. (3.1)
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Given (3.1), for 1 < β(= R0) < 2, we couple EN to BN with immigration rate αN = βρ2N

and birth rate δ = 2 − β < 1. Suppose that YN(0) ≈ ρN and that WN(t) is similar to ZN(t)

in having a Gaussian limit as N → ∞. Then the first two terms on the right-hand side of (3.1)
are O(N) and the last term is O(1) with high probability. Therefore, Nβρ2 + (2 − β)YN(t)

gives a linear approximation and upper bound, since βWN(t)2 ≥ 0, to the infection rate
βYN(t)(N −YN(t))/N which we will exploit. If YN(t) ≤ BN(t), the birth rate at time t in BN

is Nβρ2 + (2 − β)BN(t) and a simple coupling can be made between BN and EN such that a
birth at time t in BN has a corresponding infection in EN with probability

Nβρ2 + (2 − β)YN(t) − βWN(t)2

Nβρ2 + (2 − β)BN(t)
= 1 −

{
O

(
WN(t)2

N

)
+ O

(
BN(t) − YN(t)

N

)}
. (3.2)

This is the key to using the subcritical branching process with immigration approximation for
the epidemic process. Thus, we compare YN(t) and WN(t) with BN(t) and ZN(t), respectively.

For any N , YN(t) → 0 a.s. as t → ∞ and, therefore, we are interested in the quasistationary
distribution of YN , Y ∗

N

d= {YN(t) | YN(t) > 0}t→∞. A natural approximation of Y ∗
N , regardless

of the choice of Q, is B∗
N ∼ NBin(Nβρ2/(2 − β), β − 1) which gives E[Y ∗

N ] ≈ Nρ and
var(Y ∗

N) ≈ N/β. Since EN and BN can easily be coupled such that the lifetimes (infectious
periods) of individuals are identical in both processes at time 0 and, for all t > 0, YN(t) ≤ BN(t),
it is clear that E[Y ∗

N ] ≤ Nρ. We return later to give an improved approximation ỸN of Y ∗
N and,

hence, E[Y ∗
N ] taking into account the last term in (3.1).

For the epidemic EN , we initialise the population at time 0 by drawing the number of
infectives and the remaining lengths of the infectious periods of the infectives from the stationary
distribution of BN . For large N , the probability of attempting to start with 0 or more than N

infectives is negligible. Thus, YN(0) = BN(0) and WN(0) = ZN(0), and whenever an initial
individual (alive at time 0) dies in BN , the corresponding individual recovers in EN . By
exploiting the coupling given above using (3.2), and following Section 2 and Scalia-Tomba
(1990) by defining the processes WN and ZN for N ≥ 1, on D[0, ∞) endowed with the
Skorokhod topology we proceed by proving Theorem 3.1.

Theorem 3.1. We have
WN ⇒ Z on D[0, ∞) as N → ∞,

where Z denotes the Gaussian limit of ZN obtained in Section 2 with covariance function given
by (2.6).

To prove Theorem 3.1, we introduce a difference process DN with DN(t) = BN(t)−YN(t),
the difference between the total number of individuals alive in BN and the total number
of individuals infectious in EN at time t . Individuals arrive into DN at the points of an
inhomogeneous Poisson point process with rate

(2 − β)DN(s) + βWN(s)2 = (2 − β)DN(s) + β(−DN(s) + ZN(s))2.

The lifetimes of individuals arriving in DN are distributed according to Q.
Now, for t ≥ 0, ZN(t) − WN(t) = DN(t)/

√
N . Then, for any T > 0,

WN ⇒ Z on D[0, T ] as n → ∞,

follows from Theorem 2.1 by Theorem 4.1 of Billingsley (1968) if

sup
0≤t≤T

∣∣∣∣DN(t)√
N

∣∣∣∣ → 0 as N → ∞. (3.3)
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To prove (3.3), it is useful to bound DN(t) from above by the total number of individuals,
UA(t), in a pure birth-immigration process. Let UA(0) = 0, and suppose that individuals
arrive in the birth-immigration process at rate UA(t) + A. It is trivial to show that E[UA(t)] =
A{exp(t) − 1} and, hence, by Markov’s inequality, for any A > 0 and all ε > 0,

P

(
sup

0≤t≤T

UA(t) > ε
√

N
)

= P(UA(T ) > ε
√

N)

≤ 1

ε
√

N
E[UA(T )]

→ 0 as N → ∞. (3.4)

Lemma 3.1. For any T > 0,

sup
0≤t≤T

∣∣∣∣DN(t)√
N

∣∣∣∣ → 0 as N → ∞.

Proof. Fix T , ε, δ > 0, and choose Aδ > 0 such that, for all sufficiently large N ,

P

(
sup

0≤t≤T

ZN(t)2 > Aδ

)
≤ δ

2
. (3.5)

This can be done since ZN ⇒ Z on D[0, T ] as N → ∞ by Theorem 2.1.
Using the Cauchy–Schwarz inequality and conditional upon sup0≤t≤T ZN(t)2 ≤ Aδ , it

follows that, for 0 ≤ t ≤ T , the birth rate in DN on the interval [0, T ] is bounded above by

(2 − β)DN(s) + 2β

N
DN(s)2 + 2βAδ.

Also while (2β/N)DN(s) ≤ β − 1, the birth rate in DN is bounded above by DN(s) + 2βAδ .
Therefore, if we let A = 2βAδ , sup0≤t≤T ZN(t)2 ≤ Aδ and UA(T ) ≤ N(β − 1)/(2β)

together imply that sup0≤t≤T DN(t) ≤ UA(T ).
For all sufficiently large N , ε

√
N ≤ N(β − 1)/(2β) and, hence,

P

(
sup

0≤t≤T

∣∣∣∣DN(t)√
N

∣∣∣∣ > ε

)

≤ P

(
UA(T ) > ε

√
N, sup

0≤t≤T

ZN(t)2 ≤ Aδ

)
+ P

(
sup

0≤t≤T

ZN(t)2 > Aδ

)

≤ P(UA(T ) > ε
√

N) + P

(
sup

0≤t≤T

ZN(t)2 > Aδ

)
, (3.6)

with the right-hand side of (3.6) being less than δ for all sufficiently large N by (3.5) and (3.4).

Proof of Theorem 3.1. Fix T > 0. By Theorem 2.1, Lemma 3.1, and Billingsley (1968,
Theorem 4.1),

WN ⇒ Z on D[0, T ] as N → ∞. (3.7)

Since (3.7) holds for all T > 0, the theorem follows from Lindvall (1973, Theorem 3′).

A corollary of Theorem 3.1 is that

W ∗
N = √

N

(
Y ∗

N

N
− ρ

)
d−→ Z∗ ∼ N

(
0,

1

β

)
as N → ∞.
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Returning to E[Y ∗
N ] for finite N , we use Theorem 3.1 to give an improved approximation.

Note that Y ∗
N = B∗

N − D∗
N with E[B∗

N ] = Nρ and D∗
N

d= {DN(t) | DN(t) > 0}t→∞, the
quasistationary distribution of the difference process. Now DN evolves with birth rate (2 −
β)DN(t) + βWN(t)2, that is, a subcritical branching process with a time inhomogeneous
immigration rate. For s ≥ 0, let GQ(s) = P(Q > s), the probability the infectious period of
an individual exceeds s units of time. Hence,

E[DN(t)] =
∫ t

0
E[(2 − β)DN(s) + βWN(s)2]GQ(t − s) ds

=
∫ t

0
(2 − β)E[DN(s)]GQ(t − s) ds +

∫ t

0
βE[WN(s)2]GQ(t − s) ds.

Whilst the distribution of DN(t) depends upon t , for large t , {DN(t) | DN(t) > 0} D≈ D∗
N . Also,

using Theorem 3.1, we can replace WN(s) by Z(s)
d= Z∗, giving, for large t , with u = t − s,

E[DN(t)] ≈ E[D∗
N ]

≈
∫ ∞

0
(2 − β)E[D∗

N ]GQ(u) du +
∫ ∞

0
βE[(Z∗)2]GQ(u) du

= (2 − β)E[D∗
N ]

∫ ∞

0
GQ(u) du + βE[(Z∗)2]

∫ ∞

0
GQ(u) du,

where
∫ ∞

0 GQ(u) du = E[Q] = 1 and E[(Z∗)2] = 1/β. Hence, E[D∗
N ] ≈ (2 − β)E[D∗

N ] +
β/β, giving E[D∗

N ] ≈ 1/(β − 1). Therefore, E[Y ∗
N ] ≈ Nρ − 1/(β − 1) which agrees with

Clancy and Mendy (2011, Section 3.2) and Nåsell (2003) up to an O(1/N) term. Similarly,
var(Y ∗

N) = N/β agrees with that given in Clancy and Mendy (2011, Section 3.2) up to an O(1)

term. The key difference being that the construction of our approximation is not restricted to
Q ∼ Exp(1).

Finally, the above motivates approximating Y ∗
N by ỸN ∼ NBin(Nβρ2/(2 − β) − 1, β − 1)

to take account of the overestimation of Y ∗
N by B∗

N with E[ỸN ] = Nρ − 1/(β − 1). The
exact quasistationary distribution is difficult to obtain for nonexponential infectious periods.
However, simulations can be used to estimate Y ∗

N . Simulations for N between 100 and 500 with
Nρ > 50 showed that dTV(Y ∗

N, ỸN) was typically about two-thirds of dTV(Y ∗
N, B̃N), where

dTV(·, ·) denotes total variation distance. This was confirmed for exponentially distributed
infectious periods, where comparisons can be made with the approximations of the quasista-
tionary distribution obtained in Clancy and Mendy (2011). In Figure 1, the approximations ỸN

and B∗
N are compared with the negative binomial and beta-binomial approximations proposed

in Clancy and Mendy (2011) over 1 < β < 2 for N = 50. Note that, as β → 2, both
ỸN and B∗

N converge to Po(N/2). We observe that only the approximation B∗
N is defined for

β ≤ 1.14 and this approximation is best for β ≤ 1.3. For β around 1.4, the approximation
ỸN is best and, for β > 1.46, the beta-binomial approximation of Clancy and Mendy (2011)
performs best. More generally, for Nρ > 25, the beta-binomial approximation of Clancy and
Mendy (2011) is preferable, although the negative binomial approximations given in this paper
consistently outperform the negative binomial approximation of Clancy and Mendy (2011)
especially for Nρ < 25 when such an approximation is particularly useful. The distribution of
B∗

N is independent of Q, which supports using the approximating quasistationary distributions
obtained in Clancy and Mendy (2011) and elsewhere for general Q.
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Figure 1: Plot of dTV against β for ỸN (solid line), B∗
N (dash–dot line), negative binomial Clancy and

Mendy (2011) (dotted line), and beta-binomial Clancy and Mendy (2011) (dashed line) with N = 50.

4. Conclusions

Throughout this paper we have sought to give insight to the endemic behaviour of an SIS
epidemic with a general infectious period distribution. As noted in Section 1, the branching
process approximation for the early stages of an SIR epidemic continues to hold for an SIS
epidemic and it is therefore straightforward to compute key quantities such as R0 and the
probability of (early) extinction of the epidemic in terms of the infectious period distribution.
The branching process approximation is based upon a linearisation of the epidemic process and
it is the same idea that is employed in this paper, not to the initial stages of the epidemic but
to the endemic level. This allowed us to derive a simple approximation in Section 2 and to
obtain interesting results for the resulting subcritical branching process with immigration. In
particular, that the distribution of B∗

N depends only upon α, δ, and E[Q] and not the distributional
form of Q.

The evolution of BN(t) and, consequently, ZN(t) do depend upon Q. This suggests that the
time to extinction from the endemic equilibrium will depend upon Q. A small simulation study
with N = 200 and β = 1.25 was conducted to observe the effect of the distribution of Q on the
mean time to extinction. It was observed that the mean time to extinction increased as var(Q)

increased. This is worthy of further consideration, but quantitative results concerning the time
to extinction are limited; seeAndersson and Djehiche (1998) for an exception. In Nåsell (1999a)
and Andersson and Britton (2000) for SIR epidemics with demography and in Britton and Neal
(2010) for SIS household epidemics, the coefficient of variation of the Gaussian endemic limit
has been used to give a qualitative assessment of the time to extinction for different sets of
parameters. This approach is not appropriate here as, for a given β, all choices of Q with a
given E[Q] will have the same Gaussian endemic limit and, hence, coefficient of variation. For
a better understanding of the effect of Q on the time to extinction, it is necessary to study the
behaviour of ν(s, t) = E[X(s)X(t)] and its impact on the covariance of Z(t) given by (2.6). In
particular, using the Gaussian approximation for studying the time to extinction is equivalent to
studying the first passage of a (stationary) Gaussian process across some extremal value. For a
fixed β and, hence, a fixed mean and variance of Z(t), the first passage time will generally take
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longer if cov(Z(0), Z(t)) is larger, and it is hence conjectured that the mean extinction time
will be increasing as cov(Z(0), Z(t)) increases. However, given the form of cov(Z(0), Z(t))

in (2.6), it is difficult to make simple, general statements about the effect of the distributional
form of Q on cov(Z(0), Z(t)).
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