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1. Introduction

In a previous paper of this series - hereinafter to be referred to as [1 ] - the
author introduced a new method for a large class of boundary value problems
connected with the flexure analysis of elastic plates of arbitrary shape where the
concept of'Lines of Equal Deflection', i.e. lines which are obtained by intersecting
the bent plate by planes parallel to the original plane of the plate, was introduced.
The present paper extends this analysis to the buckling analysis of thin elastic plates
with various forms of boundary conditions. It is shown that the proposed method
appears to be a powerful tool for the investigation of those problems of elastic
stability which could not be solved by conventional methods because of the difficul-
ty of the mathematical treatment.

It is well known that the plate problems may be considered under three general
classifications:

(i) bending problems, in which the plates are subjected to lateral loading only;
(ii) buckling problems, in which the plates are subjected to edge loading only;
(iii) combined loading problems, in which the plates are subjected to lateral

loading and edge loading simultaneously.

In our previous analysis we have considered bending problems. We will now
consider the remaining two types of problems. The thin plating structures used in
aircraft are subjected to lateral loads from the pressure cabin or from the lift on
the wings and to edge loading due to bending of fuselage and wings. The thin-
walled structures used in ship construction are subjected to lateral pressure from
the water and to edge loading due to bending of the hull. These and many other
examples demonstrate the importance of plate problems subjected to a combination
of lateral pressure and edge load.

2. Theory

From the point of view of the mathematical theory of elasticity, the technical
theory of the buckling of thin plates is of an approximate character. We will assume
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here that the forces are applied in the plane of the plate and at its edges such that
a plane stress system is induced in the plate. If in particular, large compressive

stresses are developed in the plate, the plane state may become unstable and the
plate may bend or buckle. We will further assume that the deflection w(x, y) is
always small; and that small bending of the plate does not affect the plane stresses
set up by the forces applied at the edges. The second assumption is really condition-
ed on the first, for if the plate were to bend considerably, the stretch of the plate
due to bending might modify the plane stress system appreciably.

Consider a laterally loaded elastic plate subjected to the action of a combina-
tion of compressive and shearing forces applied to its middle plane at the edges.
The deflected form maintained by the plate in a state of neutral equilibrium may be
described by a family of lines of equal deflection. Taking the xo j-plane as usual
to be the middle plane of the plate and directing the z-axis perpendicular to that
plane, we shall suppose that the family of lines of equal deflection u(x, y) = Const,
is known. Hence, intersections between the deflection surface z = w(x,y) and the
planes z = Const, yield contours which after projection on to the xoy plane are
the level curves u(x, y) = Const.

Consider the equilibrium of an element of the plate bounded by any line of
equal deflection. In our previous paper [1] it was assumed that the plate was bent
by lateral loads alone and consequently the equilibrium equation, obtained by
equating the total downward load acting on an element bounded by any line of
equal deflection to the resultant upward contribution of the shear forces and the
portion of the edge reaction which is due to the distribution along the edge of the
twisting moment on the same contour u(x, y) = Const., was found to be

(2.1)
d

where the contour integrals are taken around a closed path u = Const, and the
double integration over the area bounded by the closed contour u = Const.
R, F, G, etc. are the following expressions involving u and its partial derivatives:
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where t = ux+Uy,D and [i are the flexural rigidity and Poisson's ratio of the plate
respectively.

If, in addition to lateral loads, there are forces acting in the middle plane of
the plate, stretching of this plane is produced and the corresponding stresses should
be considered. Suppose that there are resultant forces Nx, Ny and Nxy per unit
length in the middle plane of the plate acting on the sides of a small element dxdy
lying entirely inside the contour u = Const, in addition to a surface load and
moments and shear forces (Fig. 1). Ths differential equation following the condition

Figure 1

that there may be static equilibrium in a distorted configuration in which the nor-
mal displacement of a point of the middle surface of the plate is w(x, y), can be
derived from the equation (2.1) for bending by interpreting the quantity q properly.
The quantity q is transverse force per unit area, which in general may vary along the
surface of the plate and therefore is considered as a function of x and y. In the
present case such a transverse force is also furnished by the vertical components of
the plane stress system. The contributions of the inplane forces Nx, Ny and Nxy

are readily seen from the Fig. 2 which is a plan view of the plate element dxdy. We

- ) *
Figure 2
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must therefore find the resultant vertical contribution made by such forces. As
shown in [2], the net downward contribution of the membrane forces is

i- *>2 ^2 ->2 ~i

.T o w „ 1T d w ,T o w , ,
Nx —- +2NXV 1- Nv —- dx dy

L dx2 dxdy dy2]
Therefore, it is to be expected that the governing equilibrium equation (2.1) will
be altered as a consequence of such forces. Whereas in the previous case they had
to support a downward load of intensity q per unit area and equation (2.1) resulted,
they now have to support a downward load

/ .r S2w . d2w ,T d2w rd
2w _ dw

q' = q + Nx— +2NxyJ~ +Ny— = q + K — +L —
dx dxdy dy du du

per unit area and so the governing equation is

, . du3 J du2 J du

^ 2 +

du du
where

K = Nx u
2
x + Ny u

2 + 2Nxy ux uy

L = Nxuxx + Nyuyy + 2Nxyuxy

and as before, the contour integrals are taken around a closed path u = Const.
and the double integrals over the area bounded by the closed contour u = Const.

While deriving the above expressions for K and L, we make use of the relations

dw dw du dw dw dw

dx du dx du dy du

d2w d2w dw
= •—r ux uy H uxy, etc.

dxdy du du
The equation (2.3) should be used in determining the deflection surface of a plate
if the forces Nx, Ny and Nxy are not small in comparison with the critical values of
these forces. In the general case, these forces vary from one point in the plate to
another and solution of the equation (2.3) is rather difficult. However, if this equa-
tion has a solution which is compatible with the boundary conditions of the problem
considered, the equilibrium of the unbent configuration will be neutral.

3. Boundary conditions

Typical boundary conditions for a plate of arbitrary shape are here expressed
in terms of the deflection w and its derivatives with respect to u. However, the
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boundary conditions depend on the nature of fastening of the edge of the plate
which, in general, will be a curved boundary with normal n. If the boundary of
the plate does not move in the direction perpendicular to the plane of the plate (a
case corresponds to elastically supported edges), then clearly the contour of the
plate belongs to the family of the lines of equal deflection and we may consider
this contour without loss in generality as u = 0.
We thus get

(3.1) for u = 0, w = 0 and P ~ + Q — = X —
du du du

where X is a Const. If X = 0, we obtain simply supported edges, and for X = oo, we
have clamping at the edges. The second condition in (3.1) is obtained from the
consideration of the expression for Mn and dw/dn as given in [1] viz:

(3.2) Mn = P ^ + Q ^ ,
du du

. > dw , dw
(3.3) — = V* —

dn du
where

P = -Dt,
(3-4) D

Q — \.uxx UX + uyy uy + VUyy Ul + l^xx uy + 2(1 ~ H)uxy
 Ux uy]-

t

Still one more condition is obtained at the centre, i.e., at the point of maximum
deflection of the plate. The deflection of the plate at the centre in equilibrium
position must be a finite quantity and therefore, the tangent plane at the centre
must be horizontal.

4. Calculation of critical loads

A special class of problems is obtained from (2.3) by assuming q s 0. In
other words, there are assumed to be no lateral forces to cause bending. In addition,
we always take homogeneous boundary conditions for w. For the sake of simplicity
we also assume that the horizontal forces at the boundary are normal compressive
forces which depend linearly on a factror of proportionality. Under these circum-
stances, it is clear that w = 0 is always a solution of (2.3), since w is assumed to
satisfy homogeneous boundary conditions. This is also the unique solution for w
when the applied compressive forces are small enough. However, there is always
a critical value of the compressive forces at which the plane state becomes unstable
and the plate bends, or buckles, in engineering terminology. Mathematically this
means that a bifurcation of the solutions takes place for this critial value and
solutions appear for which w is not identically zero. We will be here interested to
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investigate the lowest critical values for which a bifurcation takes place (or, for
which bucking just begins).

It is to be noted that the discussion of the buckling problems of plates in the
previous paragraph leads to a linear differential equation derived under the assump-
tion that the deflections of the plate are small in comparison with its thickness.
Therefore the solution of this differential equation applies only to the incipient
state of buckling at which an infinitely small distortion of the plate is implied and
consequently gives only the critical load at which the elastic equilibrium of the
plate bscomes unstable. It is obvious that the linear theory of plates no longer
applies when the behaviour of the plate above the buckling load is to be investi-
gated, since finite deflections of the order of magnitude of the plate thickness must
be considered. This problem becomes a non-linear stress problem and requires a
new basic theory.

5. Buckling of elliptic plates

As an illustration of the method, let us consider the case of a thin elliptic plate
which is subjected to normal compressive forces ( — N) per unit length uniformly
distributed around its edges (Fig. 3).

y

Figure 3

We will assume that a plane stress system is induced in the plate because the
state of stress in a thin plate acted on by forces parallel to the mid-plane of the
plate is approximately plane stress. The plane stress system will therefore be one
of uniform compression throughout the elliptic plate. Our problem is to find the
critical value of the compressive forces at which the plane state becomes unstable
and the plate buckles. In the more general case in which normal forces and shearing
forces are acting on the boundary of the elliptic plate, the same general equation
(2.3) can be used for buckling analysis. However, if the forces are not uniformly
distributed along the edges of the elliptic plate, there may be difficulty in solving
the corresponding two-dimensional problem and determining Nx, Ny and Nxy as
functions of x and y. But if the two dimensional problem is solved and the forces
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Nx, Ny and Nxy are determined then the problem of buckling of a thin elliptic plate
can be fully analysed.

In our present case of an elliptic plate in a state of two-dimensional uniform
compressive forces (— N), we assume that the deflected surface of the plate is
described by a family of lines of equal deflection u{x, y) — coost. which by symme-
try consideration is taken to the form

(5..) „<„) = , _ ; ! -£
The differential equation of the deflection surface of the plate in this case is obtain-
ed from Eq. (2.3) by putting q = 0, i.e., by assuming that there is no lateral load
and Nx = Ny = —N and Nxy = 0 in the expressions for K and L. The buckling
equation then becomes

,J2w
„„ - . . . . . " du2

(5.2)

du.

Using Green's Theorem for the double integral and remembering that w and its
derivatives with respect to u are constant on the line u = Const., we finally obtain

(5.3)
du3J du2J du

Calculating the values of the expressions for R, F, G and t in (2.2), we obtain

R--~,

4

?t=T2>

where

a4 + b*

Substituting the above expression into (5.3), we obtain the equation

https://doi.org/10.1017/S1446788700010636 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010636


98 J. Mazumdar [8]

a b \a b / du J \a b

du3 J p3

( 5 .6 )

du J p

where the contour integrations are taken around the closed controur

x2 v2

u = 1 - — - y— = Const.
a2 b2

and the double integration extends over the ellipse

x2 y2
 t

The values of these integrals are found to be

C 1 (\ \^
(f) /J« . V Z_ (%
J p* 4 a6b6

® pds = 2nab,

(5.7)

with the help of (5.7), the differential equation (5.6) reduces finally to the form

(5.8) *?.-J-*?+*JL* = o
du3

 1 - M du2 4 1 - u du

where
(59) a 2 4a2b2(a2 + b2) N

3a-+2a2b2+ 3bA D

It is convenient to introduce a new independent variable/by

f2

(5.10) 1-M7

with respect to which Eq. (5.8) becomes
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Denoting dw/df = v, we finally arrive at a Bessel's differential equation

(5-12) f2 ~

with the general solution

(5.13) v =

where Ji(f) and Yt(f) are Bessel functions of first order of the first and second
kinds, respectively and Ct, C2 are integration Constants. Boundary conditions
at the edge u = 0 and at the center u = 1 must now be imposed. Let us consider
the following two cases.

CASE I. The edges of the plate are clamped.

Bill

(0
00

(iii)

dw

du

VT

= o = 0 ,

= 0,
u = 0

t* Yv

du u = l

= 0,

irai | inn

Figure 4

Suppose first that the plate is clamped (Fig. 4), so that we have the following
conditions:

(5-14)

further, clearly, dw/du # oo for u = 1.
The last condition is obtained by considering that the tangent plane to the

deflection surface of the plate at the centre must be horizontal in order to satisfy
the condition of symmetry. In terms of new variables v and / , these conditions
reduce to

(i) w | / = a - 0

(5.15) (ii) v\f^ = 0

(iii) W/=o = 0.

Since the function Y^f) becomes infinite a t / = 0, the last condition in (5.15)
requires that in dealing with a full plate, we must take C2 = 0 in (5.13). Substitut-
ing now the second condition, we have aside from the trivial case obtained for
C1 = 0, non-vanishing solutions, given by
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Jj. (a) = 0

or
l + 2n

(5-16) Z(-l

n=o

This transcendental equation has infinitely many roots,

(5.17) a = 3.83, 7.02, 10.15, • • •

the lowest non-zero one being a = 3.83, which corresponds to the lowest critical
buckling pressure obtained from (5.9)

(5-18) Ncr = •"" • " : 7 (3.83)2D
4a b (a +b )

Denoting alb = p > 1, we represent this critical value by the formula

(5.19) Ncr = y ~2
b

where

(5 20) v = li^V±V±l)
4(p* + p2)

The numerical values of the constant factor y for various values of the ratio
a/b are computed in Table I.

a/b =

7

P 1.0

14.67

1.1

13.46

1.2

12.63

1.3

11.98

TABLE 1

1.4 1

11.66 11

.5

.38

2.0

10.82

3.0

10.76

4.0

10.83

5.0

10.88

0 0

11.00

CASE II. The edges of the plate are simply supported.
Suppose now that the plate is simply supported along its edges (Fig. 5). In

Figure 5

this case also, as in the previous case, we will consider that the lines of equal
deflection form a family of similar and similarly situated concentric ellipses starting
from the outer boundary as one of the lines. The differential equation (5.12) for
the deflection surface of the plate therefore remains unchanged. Only the conditions
(5.14) need to be altered. In this case, instead we have the following conditions:
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(5.21)

Buckling of elastic plates

(0 vv|u=0 = 0,

101

2du du
= 0,

(iii)
du

tl=0

= 0;
u = l

further, clearly, dwjdu is finite for « = 1.
The expressions (3.4.) for P and Q in this case reduce to

P = -
4Z>

(5.22)

As we see, the second condition in (5.21) may be satisfied in this particular
case only approximately, because the functions P and Q appearing in this condition
are not functions of u alone. We will therefore as in [1] satisfy this condition by
taking the mean values of P and Q on the line u = Const. Consequently, we have
for the second condition of (5.21) a modified condition

(5.23) (i_M)f^_iZ^f^ =o
du 2 duju=0

Using the new variables, these conditions ultimately take the form

(0 w| / = . = 0

(5.24) (ii) 7'] =0
df f

(iii) v\f=0 = 0

As in the previous case, the constant C2 must be taken equal to zero. From the
second condition, we obtain

(5.25) = 0

Using the derivative formula for Bessel function Jx (/)

f5 26} dJ^f) __ . -. Jj(f)
df j

in which Jo represents the Bessel function of zero order, we express the condition
(5.25) to the form

(5.27) j 0 ( a ) _ l z / f j 1 ( a ) = o

https://doi.org/10.1017/S1446788700010636 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010636


102 J. Mazumdar [12]

Taking \i = 0.3 and using tables of the function Jo and J^, we find the smallest
root of the transcendental equation to bs a = 2.05. Then from Eq. (5.9)

4a2b2(a2-

D

where

4 ( / + p 2 )

The numerical values of yt for various values of p are computed in Table 2.

TABLE 2

p

Yi

1.0

4.20

1.1

3.85

1.2

3.62

1.3

3.43

1.4

3.34

1

3

.5

.26

2.0

3.10

3.0

3.08

4.0

3.10

5.0

3.11

0 0

3.15

6. Concluding remarks

We have thus obtained a direct method for the evaluation of the critical loads
for plates having various forms of end and side constraints. To examine the
effectiveness of the method, we have discussed a technically important problem.
Since in the author's knowledge, there are no exact theoretical or experimental
results for buckling of thin elliptic plates with which comparisons of our results can
be made, we may as a basis for comparisons and also as confirmation of the pro-
posed method consider that the case for elliptic plates reduces to that of circular
plates in the limiting case when a = b for which the exact solutions are known.
It is interesting to note from the above two tables that for a = b, both cases I and
II yield the exact result for the corresponding circular cases [2]. We may therefore,
expect that for other cases (at least in the cases of uniform normal compressive
inplane pressure), the method outlined above for buckling analysis may give us a
fairly good result. It is to be mentioned that the buckling of a thin clamped elliptic
plate compressed uniformly along the normal on its periphery has been attacked
previously by S. Woinowsky-Krieger [3] by the use of the Rayleigh-Ritz method
and by Y. Shibaoka [4] by the use of Mathieu Functions. The author believes that
the solution obtained in this paper for buckling of clamped elliptic plates is an
exact one.
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