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ABSTRACT. Empirical data on the volume/area scaling of glaciers and ice caps are compared with the-
oretical models of longitudinal glacier profiles. Ice caps are described well by theoretical solutions of the
differential equations modeling longitudinal profiles, but glaciers for which the surface slope is approxi-
mated by the ice thickness divided by the length are not. A power-law profile recently derived analytic-
ally, reproduces exactly the thickness-length scaling, first predicted by scaling analysis for ice caps.
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1. INTRODUCTION
A volume/area scaling relation for glaciers and ice caps is
widely used to estimate the volume of glaciers and the loss
of ice in relation with global climate change and sea-level
rise (e.g., Raper and Braithwaite, 2006; Meier and others,
2007; Bahr and others, 2009; Leclercq and others, 2011;
Radic ́ and Hock, 2011; Mernild and others, 2013). Other
scaling relations (e.g. basal stress/area or response timescal-
ing are used successfully in glaciology (e.g. Jóhannesson
and others, 1989; Pfeffer and others, 1998; Harrison and
others, 2001, 2003; Lüthi, 2009; Raper and Braithwaite,
2009; Clarke and others, 2013). A volume/area scaling of
the form

V ¼ cSγ ; ð1Þ

where V and S are the volume and surface area of glaciers or
ice caps (km3 and km2, respectively), has been shown to fit
empirical data. From the theoretical point of view, this rela-
tion Eqn (1) is derived using scaling analysis (Bahr and
others, 1997, 2015) according to the Buckingham Pi
theorem (Buckingham, 1914). Note the recent review (Bahr
and others, 2015), which dispels common misconceptions,
and references therein for a detailed exposition. While it is
easy to determine the area S using, for example, aerial
surveys, it is much more difficult to assess directly the
volume, V of the ice. The exponent γ in Eqn (1) is believed
to be a universal constant, as is theoretically sound in
scaling analysis, while the value of c is characteristic of the
specific glacier or ice cap considered (Bahr and others,
2015). Different values of γ are predicted for ice caps and
for valley glaciers, but the exponent is believed to be univer-
sal within each of these two classes (Bahr and others, 2015).
It is conceivable, at least in principle, that more than two
classes exist, and other authors report a range of values for
different types of glaciers (Adhikari and Marshall, 2012).
However, the transition from one value of γ to another
appears to be abrupt, not gradual, as described by percola-
tion theory (Bahr and Pfeffer, 2016).

The law Eqn (1) is used in a statistical sense and it can also
be used for individual glaciers and ice caps if one contents
oneself with obtaining an order of magnitude estimate for
the volume V.

The universal exponent γ is predicted using scaling ana-
lysis and assuming certain closure relations that determine
how various quantities scale with length (Bahr and others,
2015). Fundamental quantities involved in the scaling rela-
tions for glaciers and ice caps are the glacier longitudinal di-
mension l, width w and thickness h. For valley glaciers (but
not for ice sheets and ice caps), a shape factor F is also intro-
duced, which describes how the valley walls partially
support the ice (Hooke, 2005; Greve and Blatter, 2009;
Cuffey and Paterson, 2010). While the shape factor is not ne-
cessary in every derivation of the volume/area scaling law (in
fact it is used only in one of the three derivations of Bahr and
others (Bahr and others, 2015), it is assumed (Bahr and
others, 1997) that S ∼ [l][w] and

V∼½l�½w�F½h� ð2Þ

with

½w�∼½l�q ; ð3Þ

F∼½l�f ; ð4Þ

½h�∼½l�s ; ð5Þ

where, a posteriori, f= 0 is found to be appropriate (Bahr and
others, 2015). A further assumption used in scaling analysis is
that the mass-balance rate _b of the ice is described by a
power law,

_b ¼ cmlm : ð6Þ

Numerous authors have analyzed empirical data for glaciers
and ice caps determining values for the parameters q, m and
γ (Bahr and others, 2015). Scaling analysis does not need to
assume a priori a scaling relation h∼ [l]s. However, it is clear
that the extension in the third-spatial dimension is relevant
for the volume of the ice and the volume/area relation Eqn
(1) clearly has implications for theoretical models of the
local ice thickness h(x) (where x is a longitudinal coordinate
along the ice bed). Longitudinal glacier profiles have been
the domain of a separate body of literature aiming at
solving analytically ordinary differential equations derived
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from specific assumptions on the physical behaviour of ice
under stress, which a priori has nothing to do with the
theory of scaling. It is, however, interesting to relate these
two separate areas of glaciology.

We examine the implications of the empirical values of
the exponent γ and of the parameters (q, m, n) for analytical
theoretical solutions of the differential equations that model
the longitudinal profile h(x) of the ice. These theoretical
models are based on assumptions about the microphysics
of ice (Hooke, 2005; Greve and Blatter, 2009; Cuffey and
Paterson, 2010). The simplest assumption used in the early
days of theoretical modeling is that of perfectly plastic ice
(Nye, 1952), which is however unrealistic. A better model
to describe the microscopic behaviour of ice is Glen’s law
(Glen, 1955), which relates the strain rates _εij and the devia-
toric stresses sij in the ice,

_εij ¼ AðσeffÞn�1sij; ð7Þ

where A is a (temperature-dependent) constant, σeff is the ef-
fective stress, and n= 3 for ice flow, while n→∞ for perfectly
plastic ice (Hooke, 2005; Greve and Blatter, 2009; Cuffey and
Paterson, 2010). A few analytical solutions h(x) are known
for the differential equations modeling the local ice thickness
(Hooke, 2005; Greve and Blatter, 2009; Cuffey and Paterson,
2010) and power-law relations h∼ [l]s emerge from these solu-
tions, although they are not usually noted in the literature.
These relations are compared below with the empirical
values of the exponent γ and the parameters (q,m,n) relevant
for the scaling analyses leading to Eqn (1).

2. USING DATA ON VOLUME/AREA SCALING TO
TEST LONGITUDINAL PROFILE MODELS
Let us consider now how the characteristic thickness h of a
glacier or ice cap scales with length, h∼ [l]s. Since the ice
volume is V∼ [l][w][h] and S∼ [l][w], a scaling relation Eqn
(1) is related to the scaling of the thickness. Theoretical
models of longitudinal glacier profiles h(x) solve nonlinear or-
dinary differential equations and make precise predictions for
the value of the scaling exponent s, which can be compared
with the result of scaling analysis and with data.

The scaling h∼ [l]s with exponent

s ¼ mþ nþ 1
2ðnþ 1Þ ð8Þ

is predicted for ice caps by Bahr and others (2015). Since V∼

[l][w][h] ∼ lq+s+1 and S∼ [l][w] ∼ [l]q+1, it is V∼S
qþsþ1
qþ1 or

γ ¼ 1þ s
qþ 1

¼ 1þ mþ nþ 1
2ðnþ 1Þðqþ 1Þ ð9Þ

for ice caps (Eqn (132) of Bahr and others, 2015). For glaciers,
instead, it is predicted that

s ¼ mþ 1
nþ 2

ð10Þ

and (Eqn (122) of Bahr and others, 2015)

γ ¼ 1þ s
qþ 1

¼ 1þ mþ 1
ðnþ 2Þðqþ 1Þ : ð11Þ

2.1. Ice caps
For ice caps, it is believed that m ≃ 0, corresponding to a
mass-balance rate independent of the length. For a horizon-
tal bed and thick ice, as is commonly assumed for ice caps
(Paterson, 1994; Hooke, 2005; Greve and Blatter, 2009;
Cuffey and Paterson, 2010), an order of magnitude estimate
provides h ∼ [l]1/2 (Faraoni and Vokey, 2015). This argument
assumes a surface slope θ ∼ h/l, which is typical of ice caps
and large glaciers. Setting m= 0 in Eqn (8) gives s= 1/2
and then γ= 1+ (1/2(q+ 1)) irrespective of the value of n
(although n= 3 is certainly the appropriate value for ice
flow). Because of the approximate cylindrical symmetry of
ice caps burying the underlying topography, S ∼ [w][l] ∼
[l]q+1 ∼ πl2 and q= 1, giving γ= 5/4= 1.25, which
matches the data (Bahr and others, 2015). Since, for the appro-
priate value m= 0 of the mass-balance rate parameter it can
only be s= 1/2, theoretical models for longitudinal ice-cap
profiles h(x) do not have wiggle room. Let us review them.

• Nye’s parabolic profile: for perfectly plastic ice is (Nye,
1951a, b; Cuffey and Paterson, 2010)

hðxÞ ¼ H

ffiffiffiffiffiffiffiffiffiffiffi
1� x

L

r
; ð12Þ

H ¼
ffiffiffiffiffiffiffi
2τb
ρg

s ffiffiffi
L

p
; ð13Þ

where τb is the basal stress. The maximum ice thickness H
corresponds to x= 0 and the glacier terminus is located at
x= L. Clearly, this model fits the data but the assumption of
perfectly plastic ice is unphysical (Paterson, 1994; Hooke,
2005; Cuffey and Paterson, 2010).

• Vialov profile: The Vialov longitudinal profile for ice satis-
fying Glen’s law (Vialov, 1958; Paterson, 1994; Hooke,
2005; Greve and Blatter, 2009; Cuffey and Paterson,
2010) is

hðxÞ ¼ H 1� x
L

� �nþ1=n
� �n=2ðnþ1Þ

; ð14Þ

H ¼ 2
ρg

� �n=2ðnþ1Þ ðnþ 2ÞC
2A

� �1=2ðnþ1Þ ffiffiffi
L

p
: ð15Þ

It is a solution of the nonlinear Vialov differential equation
for the longitudinal profile h(x) (Vialov, 1958) when _b=
const. (corresponding to m= 0). Also for the Vialov exact
profile, the maximum thickness H scales with

ffiffiffi
L

p
.

• New power-law solutions of the Vialov equation: A new
analytical formal solution of the Vialov differential equa-
tion for longitudinal glacier profiles corresponding to
mass-balance rate _b ¼ cmxm is the power-law profile
(Faraoni and Vokey, 2016),

hðxÞ ¼ H
x
L

� �s
; s ¼ nþmþ 1

2ðnþ 1Þ ; ð16Þ

H ¼ nþ 2
2A

� �
cmLnþmþ1

βρgð Þn
� �1=2ðnþ1Þ

≡ h0Ls ; ð17Þ

where now, x= 0 is the glacier terminus and the maximum
thickness H of the ice is attained at x= L. The value
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Eqn (16) of s reproduces exactly, for all values of the para-
meters (n,m,q), that of Eqn (8) first predicted by Bahr and
others (2015) by scaling analysis.

For _b ¼ const: ≡ c0 (corresponding to m= 0) one obtains
(Faraoni and Vokey, 2016)

hðxÞ ¼ H

ffiffiffi
x
L

r
; ð18Þ

H ¼ 2
ρg

� �n=2ðnþ1Þ ðnþ 2Þc0
2A

� �1=2ðnþ1Þ ffiffiffi
L

p
≡ h0

ffiffiffi
L

p
: ð19Þ

Apart from the value of the constant H (which is, however,
still proportional to

ffiffiffi
L

p
), this new profile reproduces the

parabolic profile originally derived by Nye for plastic
ice. Although this assumption is almost universally regarded
as unphysical, a parabolic profile is nevertheless widely
used in studies of both ice caps and glaciers (e.g. Benn and
Hulton, 2010; Ng and others, 2010). The solution Eqn (18)
of the Vialov equation assumingGlen’s lawwith n= 3 justifies
this widespread use (Faraoni and Vokey, 2016) and agrees
with the empirical value 1/2 of the exponent s for ice caps.
It is important to be aware of the fact that this value of s is
not tied to the unphysical assumption of perfectly plastic ice,
as is instead widely believed.

• Böðvarsson’s profile: This analytical longitudinal profile is
derived from a model in which driving stress is balanced
by sliding resistence. The profile is (Böðdvarsson, 1955)

hðxÞ ¼ H 1� x
L

� �2
� �

ð20Þ
with

hð0Þ ¼ H ¼ ak
6

L2 ; ð21Þ

where a and k are constants related to the mass-balance
rate (through M= a(H−H0)) and basal stress (through
τb=−kρghu) (Böðdvarsson, 1955). Note that the ice thick-
ness scales as H∝ L2. In this model, Eqn (8) with (m, n,
q)= (0, 3, 1) gives s= 1/4= 0.25. We conclude that the
Bövarsson model is not a realistic description of ice caps lon-
gitudinal profiles.

• Bueler profile: In this longitudinal profile (Bueler, 2003;
Bueler and others, 2005) the basal stress τb ¼
�ρghdh=dx is finite at the ice terminus, contrary to the
Vialov and other profiles. It is given in (Bueler, 2003;
Bueler and others, 2005; Greve and Blatter, 2009):

hðxÞ¼H nþ1ð Þx
L
�n

x
L

� �nþ1=n
þn 1�x

L

� �nþ1=n
�1

� �n=2ðnþ2Þ
;

ð22Þ

H¼ 2
n

	
nþ2ð Þα
2A

� �1=n 1
ρg

#n=2ðnþ1Þ
Ln=2ðnþ1Þ; ð23Þ

where α is a parameter appearing in the mass-balance rate
(Bueler, 2003; Bueler and others, 2005)

_bðxÞ ¼ α
x
L

� �1=n
þ 1� x

L

� �1=n
� 1

� �n�1

: ð24Þ

In this profile the maximum ice thickness scales as

H∝ Ln=2ðnþ1Þ ¼ L3=8≃L0:375 ð25Þ

for n= 3. The mass-balance rate Eqn (24) is not of the form
cmx

m and one cannot discuss the parameter m here.
However, Eqn (8) can only agree with s= n/2(n+ 1) if
m=−1, which is unphysical. Therefore, the Bueler profile
is not a reliable match of ice caps longitudinal profiles.

2.2. Glaciers
For glaciers, the parameter values (m, n, q)= (2, 3, 0.6) are
believed to be appropriate (Bahr and others, 2015).
Equations (10) and (11) then give s= 3/5= 0.60 and γ=
1.375, while the observed value is γ= 1.36 (Bahr and
others, 2015). The theoretical models for longitudinal
glacier profiles make the following predictions.

• Nye’s parabolic profile: The longitudinal profile (Eqns (12)
and (13)) for perfectly plastic ice predicts H∝

ffiffiffi
L

p
and s=

0.5; hence this model seems inadequate to describe
glaciers.

• Vialov profile: For ice satisfying an n= 3 Glen law and for
constant mass-balance rate, the Vialov profile, Eqns (14)
and (15), again predicts s= 0.5. This model also seems in-
appropriate for glaciers.

• Power-law profiles: For mass-balance rate of ice described
by Eqn (6), the new power-law profile obtained as an ana-
lytical solution of the Vialov equation by Faraoni and
Vokey (2016) is

hðxÞ ¼ H
x
L

� �s
; s ¼ nþmþ 1

2ðnþ 1Þ ; ð26Þ

H ¼ nþ 2
2A

� �
cmLnþmþ1

ðβρgÞn
� �1=2ðnþ1Þ

≡ h0Ls : ð27Þ

These equations apply to large glaciers where the slope
θ= h/l. Assuming (m, n, q)= (2, 3, 0.6) gives s= 3/4= 0.75
and γ= 1.47. This value of γ does not coincide with the
observed value γ= 1.36 but is close to the number 1.46
reported by Adhikari and Marshall (2012) for a population
of glaciers in steady state, in contrast with the value γ=
1.36 attributed by these authors to a state of glacier retreat
causing greater reduction in V than in S. However, letting γ
vary continuously while keeping c in Eqn (1) fixed, as done
by Adhikari and Marshall (2012), is inconsistent with the
scaling theory of Bahr and others (2015), as pointed out in
this reference. Whether the numerical coincidence above
is significant could be established by further analysis of the
data.

• Böðvarsson’s profile: Eqns (20) and (21) predict s= 2
which, together with n= 3 yields m= 12, ruling out this
model for the description of glaciers.

• Bueler’s profile: Eqns (22) and (23) has s= (n/2(n+ 1))=
0.375 for n= 3, which is reproduced only if m=−1.
We conclude that the Bueler profile is also ruled out as
a model of glaciers.

For glaciers, no known analytical model of longitudinal
profile derived from theory fits well the volume/area scaling
law. For ice caps, the theoretical model of Vialov for constant
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mass-balance rate and the new parabolic solution of Faraoni
and Vokey (2016) corresponding to m= 0 fit well the empir-
ical data for the volume/area scaling law. The power-law
profile Eqn (9) originally predicted with scaling analysis by
Bahr and others (2015) is reproduced only as an exact solu-
tion of the Vialov differential equation obtained by assuming
the ice follows Glen’s law in Faraoni and Vokey (2016). The
profiles, Eqns (18) and (16) are compared in Figure 1.

3. CONCLUSIONS
The volume/area scaling widely used, especially in relation
to climate change, ice loss and sea-level rise, does not
need to assume explicit models for the local ice thickness,
i.e. the longitudinal glacier profile. Nevertheless, it is interest-
ing to relate it to these models, thus connecting two branches
of glaciology, which were, thus far, separated. Since the
volume of a glacier or ice cap depends on its third-spatial di-
mension (the thickness), the empirical values obtained for the
volume/area scaling law have implications for theoretical
models of longitudinal glacier profiles. Assuming the ice
thickness scales with length as [h]∼ [l]s, ice caps are well
modelled by a parabolic profile, but this cannot come from
the microphysical assumption of perfectly plastic ice,
which is unrealistic. Instead, a parabolic profile can be
obtained by the Vialov equation based on Glen’s law for
the behaviour of ice (Faraoni and Vokey, 2016). What is
more, the power-law profile Eqn (16) obtained analytically
by Faraoni and Vokey (2016) reproduces the scaling expo-
nent first predicted by scaling analysis by Bahr and others
(2015) for ice caps.

Contrary to ice caps, for valley glaciers no known theoret-
ical solution of the ordinary differential equations describing
longitudinal profiles fits well the empirical data on volume/
area scaling. In any case, the volume/area scaling law Eqn
(1) applies to ensembles of glaciers (i.e. to fictitious average
glaciers and to other statistics of many glaciers) and it is not
expected to apply to measurements of single, specific gla-
ciers. The discrepancy noted here between theory and

observations suggests that more accurate theoretical model-
ing of longitudinal profiles is needed for valley glaciers.
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