Canad. Math. Bull. Vol. 20 (1), 1977

A NOTE ON THE HOPFICITY OF FINITELY GENERATED FREE-BY-NILPOTENT GROUPS

BY JAMES BOLER

Our purpose is to deduce from a theorem of P. Hall the following observation.

THEOREM 1. Let G be a finitely generated group and F a free normal subgroup of G with G/F nilpotent. Then G is hopfian.

Here a group G is hopfian if every epiendomorphism $G \rightarrow G$ is an automorphism.

Proof of Theorem 1. Because G/F is nilpotent and subgroups of free groups are free we may assume $F = G_n$, some term of the lower central series of G. Thus F and its commutator subgroup F' are fully invariant in G, giving rise to an induced epiendomorphism $\theta_1: (G/F') \rightarrow (G/F')$.

Now G/F' is finitely generated abelian-by-nilpotent. P. Hall [4] showed that such groups are residually finite and hence by a theorem of A. I. Mal'cev [5] are hopfian. This means that θ_1 is an automorphism so that ker $\theta \subseteq F'$. If we let θ_2 be θ restricted to F and $\theta_3: (F/F') \rightarrow (F/F')$ the induced map, we must show ker $\theta_2 = 1$. But θ_3 is 1-1 since ker $\theta \subset F'$, and any endomorphism θ_2 of a free group whose induced map θ_3 on the commutator quotient is a monomorphism must itself be one-one. Thus ker $\theta = 1$ and Theorem 1 is proved.

Theorem 1 provides a corollary to the recent result of R. Bieri [3] that if G is finitely generated with a non-trivial centre and the cohomological dimension cdG of G is ≤ 2 , G' is free. In this case G is of course free-by-abelian so that by Theorem 1 we have

COROLLARY 1. If G is finitely generated, $\zeta G \neq 1$ and $cdG \leq 2$, G is hopfian.

Thus by a result of B. B. Newman [6], each finitely generated torsion-free one-relator group with centre is hopfian. G. Baumslag and D. Solitar [2] have provided examples of non-hopfian torsion-free one-relator groups.

G. Baumslag [1] has shown by an ingenious argument that finitely generated free-by-cyclic groups are residually finite. The problem of strengthening Theorem 1 by replacing hopficity by residual finiteness seems difficult however. It is not even known whether finitely generated free-by-abelian of rank 2 groups are residually finite.

Received by the editors May 20, 1976.

J. BOLER

References

1. G. Baumslag, Finitely generated cyclic extensions of free groups are residually finite, Bull. Aus. Math. Soc. 5 (1971), 87–94.

2. G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199–201.

3. R. Bieri, Normal subgroups in duality groups and in groups of cohomological dimension 2, Jour. Pure Appl. Alg. 7 (1976), 35-51.

4. P. Hall, On the finiteness of certain soluble groups, Proc. Lond. Math. Soc. (3) 9 (1959), 595-622.

5. A. I. Mal'cev, On isomorphic matrix representations of infinite groups, Mat. Sbornik 8 (1940), 405-422.

6. B. B. Newman, Some results on one-relator groups, Bull. Amer. Math. Soc. 74 (1968), 568-571.

OKLAHOMA STATE UNIVERSITY STILLWATER, OKLAHOMA