ON POSITIVELY COMPLEMENTED SUBSPACES OF c_0

by PANAYOTIS C. TSEKREKOS

(Received 18th June 1980)

1. Introduction

It has been proved, see [1], that a closed infinite dimensional subspace of c_0 is isomorphic to c_0 if and only if it is the range of a bounded linear projection. In [6] we proved half of the order-theoretic analogue of this result. In fact we showed that an infinite dimensional subspace of c_0 which is the range of a positive projection is order-isomorphic to c_0 . We left open the question whether the converse holds also true. In this paper we answer this question negatively by providing an example in Section 4. In Section 3 we give necessary and sufficient conditions in order that an orderedsubspace of c_0 be the range of a positive projection.

2. Terminology

By c_0 we denote the linear space of all real sequences x = (x(1), x(2), ...) which converge to zero, ordered by the natural coordinatewise ordering which makes c_0 a Banach lattice $(|x| \le |y| \text{ implies } ||x|| \le ||y||$, where |x| = xV(-x) denotes the supremum of x and -x). The positive cone of c_0 defined by this ordering is denoted by c_0^+ and the unit ball by U. By an ordered-subspace of c_0 we mean a closed, infinite dimensional subspace X of c_0 such that $X = X_+ - X_+$, where $X_+ = X \cap c_0^+$. Such a subspace is considered everywhere in this paper to be ordered by the cone X_+ . The closed unit ball of X is denoted by U_X . A bipositive topological isomorphism between two ordered topological linear spaces is called an order-isomorphism and then the spaces are said to be order-isomorphic. By a projection we mean a continuous linear idempotent operator. We write U-basis for an unconditional basis. The ordering associated with a basis (x_n) is given by the cone $X_+ = \{x \in X : x = \sum \lambda_n x_n, \lambda \ge 0$ for all $n \in \mathbb{N}\}$. For terminology and notation used here and not defined here we refer to [3], [4] and [6].

3. The main results

Our first theorem concerns those ordered-subspaces of c_0 which are order-isometric to c_0 . Unlike the situation for l_p spaces (see [6]) these are not necessarily sublattices. For example, the subspace

$$X = \{x \in c_0: x(1) = \frac{1}{2}(x(2) + x(3))\}$$

is order-isometric to c_0 without being a sublattice.

41

Theorem 1. Let X be an ordered-subspace of c_0 Then, X is order-isometric to c_0 if and only if X is the range of a positive contractive projection.

Proof. Suppose that X is order-isometric to c_0 and let (x_n) be the sequence in X which corresponds to (e_n) under the order-isometry T. Evidently $||x_n|| = 1$ for every $n \in \mathbb{N}$, and for each $n \in \mathbb{N}$, there exists a minimum natural number k_n such that $x_n(k_n) = 1$. Since T is an isometry

 $||x_n \pm x_m|| = 1$ for all $n \neq m, n, m = 1, 2, ...$

which implies that

$$x_n(k_m) = \begin{cases} 1 & n = m \\ 0 & n \neq m. \end{cases}$$

Now, for every $x \in c_0$, $x(k_n) \to 0$, and since (e_n) and (x_n) are equivalent, $\sum x(k_n)x_n \in X$.

The mapping P from c_0 into X defined by

$$Px = \sum x(k_n)x_n$$

is linear, $Px_n = x_n$ for every $n \in \mathbb{N}$, and Px = x for every $x \in X$. Also

$$||P|| = \sup_{\|x\| \le 1} ||Px|| \le \sup_{n \in \mathbb{N}} |x(k_n)| \le ||x||.$$

This implies that $||P|| \le 1$ and, since P is a projection, finally that ||P|| = 1.

To prove the converse, suppose that X is an ordered-subspace of c_0 so that it is the range of a positive contractive projection. By virtue of Theorem 6 of [6], X is order-isomorphic to c_0 , and more precisely the order of X is induced by a U-basis. So, let (x_n) be a normalised U-basis defining the ordering of X. If $z_1 \nabla z_2$ denotes the supremum of two elements of X in the ordering defined by X_+ , then, since ||P|| = 1 and $P(z_1Vz_2) = z_1 \nabla z_2$, we have that $||z_1 \nabla z_2 \nabla \ldots \nabla z_n|| \leq 1$ for every $n \in \mathbb{N}$ and every $z_1, z_2, \ldots, z_n \in U_X$. Now, it can be easily proved (see also Theorem 2 of [5]) that for the order-isomorphism T from X to c_0 defined by

$$T(\lambda_1 x_1 + \lambda_2 x_2 + \ldots) = (\lambda_1, \lambda_2, \ldots)$$

we have

$$\frac{1}{2}\|\mathbf{x}\| \leq \|T\mathbf{x}\| \leq \|\mathbf{x}\|$$

This implies that $||T|| \leq 1$. For each $n \in \mathbb{N}$ and $\lambda_1, \lambda_2, \ldots, \lambda_n$ real numbers, we have

$$\Gamma(\lambda_1 x_1 \nabla \ldots \nabla \lambda_n x_n) = \lambda_1 e_1 V \ldots V \lambda_n e_n,$$

which implies

$$\|\lambda_1\|V\dots V\|\lambda_n\| = \|\lambda_1e_1V\dots V\lambda_ne_n\| \le \|T\| \|\lambda_1x_1\nabla\dots \nabla\lambda_nx_n\| \le \|\lambda_1x_1\nabla\dots \nabla\lambda_nx_n\|.$$
(1)

On the other hand, the relation

$$\frac{1}{|\lambda_1|V\ldots V|\lambda_n|}|\lambda_1x_1\nabla\ldots\nabla\lambda_nx_n| \leq |x_1\nabla\ldots\nabla x_n|$$

implies, since c_0 is a Banach lattice, that

$$\frac{1}{|\lambda_1|V\ldots V|\lambda_n|} \|\lambda_1 x_1 \nabla \ldots \nabla \lambda_n x_n\| \leq \|x_1 \nabla \ldots \nabla x_n\| \leq 1$$

or

$$\|\lambda_1 x_1 \nabla \dots \nabla \lambda_n x_n\| \leq |\lambda_1 V \dots V |\lambda_n|.$$
⁽²⁾

Now, relations (1), (2) imply that

$$\|\lambda_1 x_1 \nabla \ldots \nabla \lambda_n x_n\| = |\lambda_1| V \ldots V |\lambda_n|.$$

Let $x = \sum \lambda_n x_n = \nabla \lambda_n x_n$ be an arbitrary element of X. Clearly, $\left\| \sum_{i=1}^n \lambda_i x_i \right\| \xrightarrow{n} \|x\|$, so,

$$\|\mathbf{x}\| = \bigvee_{1}^{\infty} |\boldsymbol{\lambda}_{i}|. \tag{3}$$

43

On the other hand

$$\|T\mathbf{x}\| = \|\sum \lambda_i \mathbf{e}_i\| = \bigvee_{1}^{\mathbf{v}} |\lambda_i|.$$
(4)

Relations (3) and (4) imply ||x|| = ||Tx|| for every $x \in X$, which completes the proof.

Before stating the next results we need first a definition.

Definition 1. Let X be an ordered-subspace of c_0 and let $1 \le \lambda < \infty$. We say that X has the λ -positive extension property (λ -P.E.P. in short) if λ is the least real number for which every positive linear functional x^* on X with $||x^*|| = 1$ has a positive extension y^* on c_0 with $||y^*|| \le \lambda$. An ordered-subspace X of c_0 is said to have the bounded positive extension property (B.P.E.P. in short) if it has the λ -P.E.P. for some λ .

Theorem 2. Let X be an ordered-subspace of c_0 order-isomorphic to c_0 . Then X is the range of a positive projection if and only if it has the B.P.E.P.

Proof. If X is the range of a positive projection, then it clearly has the B.P.E.P. For the converse, suppose that X has the B.P.E.P. Now, let (x_n) be the basis of X which corresponds to the natural basis (e_n) of c_0 under the order-isomorphism, (x_n^*) the functionals associated with (x_n) with $m \le ||x_n^*|| \le M$, and y_n^* a positive extension of x_n^* on c_0 with $||y_n^*|| \le \lambda M$ for all $n \in \mathbb{N}$ and some $\lambda \ge 1$.

We can also suppose that $\operatorname{supp} y_n^* \subseteq \operatorname{supp} x_n$ for each $n \in \mathbb{N}$, where $\operatorname{supp} z = \{i \in \mathbb{N} : z(i) \neq 0\}$, for otherwise we can take another extension $y_n'^*$ of x_n^* with $y_n'^* \leq y_n^*$ and satisfying the above condition. Indeed, suppose that $\operatorname{supp} y_n^* \notin \operatorname{supp} x_n$. Since $y_n^*(x_m) = x_n^*(x_m) = \delta_{nm}$, $\operatorname{supp} y_n^* \subseteq \mathbb{N} \setminus \bigcup \sup_{m \in \mathbb{N} \setminus \{n\}} x_m$. By nullifying those coordinates of y_n^* which do not belong to $\operatorname{supp} x_n$ we get another extension $y_n'^*$ of x_n^* with the required property. Notice that for each $n \in \mathbb{N}$, $m \leq ||y_n'^*|| \leq \lambda M$ and also that $\operatorname{supp} y_n'^* \cap \operatorname{supp} y_m'^* = \emptyset$ for all $n \neq m$, $n, m \neq 1, 2, \ldots$. It follows now easily that $y_n^* \to 0$ with respect to the

weak-star topology $\sigma(c_0)$. The mapping P from c_0 onto X defined by

$$Px = \sum y_n^*(x) x_n$$

is clearly a positive projection.

The following theorem has been also proved in [2] in much greater generality, although I was not aware of this fact. However, I cite it here in the following form, for I think the explicit mention of the constants serves the purpose of this paper better.

Theorem 3. Let X be an ordered-subspace of c_0 . If X has the λ -P.E.P., then $X \cap (U - c_0^+) \subseteq \overline{\lambda U_X - X_+}$. Conversely such a relation implies that X has the μ -P.E.P. with $\mu \leq \lambda$.

Proof. Suppose that X has the λ -P.E.P. but the given inclusion does not hold. Then we can find an element $u - p \in X \cap (U - c_0^+)$, with $u \in U$ and $p \in c_0^+$, such that $u - p \notin \lambda U_X - X_+$. By the separation theorem, there exists an $x^* \in X^*$ with $||x^*|| = 1$ such that

$$x^*(u-p) > \sup x^*(\overline{\lambda U_X} - X_+) \ge \lambda$$

Take an extension $y^* \ge 0$ of x^* with $||y^*|| \le \lambda$. Then,

$$\lambda < x^*(u-p) = y^*(u-p) \leq y^*(u) \leq ||y^*|| \leq \lambda$$

which of course cannot be true.

To prove the converse, take a positive linear functional x^* on X with $||x^*|| = 1$. If q denotes the Minkowski functional of $U - c_0^+$, then, since $X \cap (U - c_0^+) \subseteq \lambda U_X - X_+$, we have that $x^*(x) \leq \lambda q(x)$ for every $x \in X$. By the Hahn-Banach theorem x^* can be extended to a linear functional y^* such that $y^*(x) \leq \lambda q(x)$ for every $x \in c_0$. If follows that y^* is positive and, since $q(x) \leq ||x||$ for all $x \in c_0$, $||y^*|| \leq \lambda$.

A simple calculation shows that an ordered-subspace of c_0 which is order-isomorphic to c_0 and has the λ -P.E.P. is the range of a positive projection P with $||P|| \leq \lambda$. So, recalling that a closed, infinite-dimensional sublattice X of c_0 is lattice-isometric to c_0 and has the 1-P.E.P., [4, prop. 33.15], we immediately conclude that X is the range of a positive contractive projection. It is also tempting to see how the "only if" part of Theorem 1 follows from Theorems 2 and 3. To this end it is enough to show that $X \cap (U - c_0^+) \subseteq \overline{U_X - X_+}$. Notice that the unit ball U_X of X is an upward directed subset of c_0 . Suppose then that there is $u - p \in X \cap (U - c_0^+)$ such that $u - p \notin \overline{U_x - X_+}$. Then, according to Theorem 3.1.12 [3], there exists an $y^* \in c_0^*$ with $||y^*|| = 1$ and $y^*(u - p) >$ sup $y^*(U_X - X_+) \ge 1$. Then, $1 < y^*(u - p) \le y^*(u) \le 1$ which cannot be true. Whence, X has the 1-P.E.P. and consequently it admits a positive projection of norm one.

Before stating the next lemma, we explain some of the terminology and notation used in it.

Given an ordered-subspace X of c_0 , a lattice in its own ordering, and a subset A of X, we denote by ∇A the set $\{x \in X : \text{ there exist } \alpha_1, \ldots, \alpha_n \in A \text{ such that } \alpha_1 \nabla \ldots \nabla \alpha_n = x\}$.

We say that A admits finitely many suprema, if for every $n \in \mathbb{N}$ and $\alpha_1, \ldots, \alpha_n \in A$, $\alpha_1 \nabla \ldots \nabla \alpha_n \in A$.

Lemma 1. Let X be an ordered-subspace of c_0 , order-isomorphic to c_0 . Then, the following relations hold true:

(a) $X \cap (U - c_0^+) \subseteq \{\nabla [X \cap (U - c_0^+)]\} \cap X_+ - X_+ = \nabla K - X_+ \text{ where } K = X \cap (U - c_0^+);$

(β) the sets $\nabla U_X - X_+$, $\overline{\nabla U_X - X_+}$ admit finitely many suprema; (γ) the sets ($\nabla U_X - X_+$) $\cap X_+$, $\overline{\nabla U_X - X_+} \cap X_+$ are bounded.

Proof. (a) Take $u - p \in X \cap (U - c_0^+)$. Since $0 \in X \cap (U - c_0^+)$,

$$(u-p)^{+} = (u-p)\nabla 0 \in K$$
$$(u-p)^{-} = (p-u)\nabla 0 \in X_{+}$$

Hence, $u - p = (u - p)^{+} - (u - p)^{-} \in K - X_{+}$

(β) Let $u_1 - x_1$, $u_2 - x_2 \in \nabla U_X - X_+$. Then, $u_1 \nabla u_2 - x_1 \Delta x_2 \in \nabla U_X - X_+$. On the other hand $(u_1 - x_1)\nabla(u_2 - x_2) \leq u_1\nabla u_2 - x_1\Delta x_2$. So, $[u_1\nabla u_2 - x_1\Delta x_2] - (u_1 - x_1)\nabla(u_2 - x_2) = p \in \mathbb{R}$ X_+ , and finally

$$(u_1 - x_1)\nabla(u_2 - x_2) = u_1\nabla u_2 - (x_1\Delta x_2 + p) \in \nabla U_X - X_+.$$

To prove that the second set has the required property, take x_1, x_2 from $\nabla U_X - X_+$. There exist sequences $(u_n^1 - x_n^1)$, $(u_n^2 - x_n^2)$ from the set $\nabla U_X - X_+$ such that

$$u_n^1 - x_n^1 \to x_1, \quad u_n^2 - x_n^2 \to x_2.$$

It follows that $(u_n^1 - x_n^1)\nabla(u_n^2 - x_n^2) \rightarrow x_1\nabla x_2$, and consequently, $x_1\nabla x_2 \in \overline{\nabla U_x - X_+}$. (γ) It is clear.

Theorem 4. Let X be an ordered-subspace of c_0 , order-isomorphic to c_0 and $K = X \cap (U - c_0^+)$. Then, X has the B.P.E.P. if and only if $M(K) < +\infty$. where M(K) = $\sup \{ \|x\| : x \in \nabla K \cap X_+ \}.$

Proof. Suppose $M(K) < +\infty$. Then, there exists $\lambda > 0$ such that

$$\nabla K \cap X_+ \subseteq \lambda U_X.$$

Hence, $\nabla K \cap X_+ \subseteq \lambda U_X - X_+$, and by Lemma 1

$$X \cap (U - c_0^+) \subseteq \nabla K \cap X_+ - X_+ \subseteq \lambda U_X - X_+.$$

This implies, by Theorem 3, that X has the B.P.E.P.

Suppose now that X has the B.P.E.P. By Theorem 3, there exists $\lambda > 0$ such that

$$X \cap (U - c_0^+) \subseteq \overline{\lambda U_X - X_+} \subseteq \overline{\lambda (\nabla U_X) - X_+}$$

Hence, $\{\nabla [X \cap (U - c_0^+)]\} \cap X_+ \subseteq \overline{\lambda(\nabla U_X) - X_+} \cap X_+$.

By Lemma 1, the set at the right side of the above inclusion is bounded, so $M(K) < +\infty$.

4. The example

We are going to construct a sequence (x_n) of positive elements of c_0 such that (i) (x_n) is an unconditional basic sequence;

(ii) $X = [x_n]$, the closed linear span of (x_n) , is an ordered-subspace of c_0 with

$$X_{+} = \left\{ \sum_{1}^{\infty} \lambda_{n} x_{n} \colon \lambda_{n} \geqq 0 \quad \text{for all} \quad n \in N \right\};$$

(iii) $||x_1 + \ldots + x_n|| < M$ for all $n \in N$ and some positive real M. These conditions and Theorem 2 of [5] will imply that $[x_n]$ is order-isomorphic to c_0 . However, X, as we shall see, cannot be the range of a positive projection. Consider the element

$$x_1 = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right)$$

Now, to each prime number p_n , $p_n < p_{n+1}$ for all $n \in N \setminus \{1\}$, we correspond the element

$$x_n = \left(0, 0, \dots, 0, 1, 0, 0, \dots, 0, \frac{1}{\sqrt{p_n^2}}, 0, \dots\right),$$

where the only non-zero coordinates are those corresponding to the positions $p_n, p_n^2, p_n^3, \ldots, p_n^k, \ldots, k \in \mathbb{N}$. More specifically, the p_n -coordinate is equal to 1 and the p_n^k th to $1/\sqrt{p_n^k}$. Clearly $||x_n|| = 1$ for all the $n \in \mathbb{N}$ and (iii) holds true for M = 2. To show that (x_n) is a basic sequence it is sufficient to show that

$$\|\lambda_1 x_1 + \ldots + \lambda_n x_n\| < \|\lambda_1 x_1 + \ldots + \lambda_n x_n + \ldots + \lambda_m x_m\|$$
(A)

for all $n, m \in \mathbb{N}$ with n < m and $\lambda_1, \lambda_2, \ldots, \lambda_m$ arbitrary real numbers. Indeed, put

$$x = \lambda_1 x_1 + \ldots + \lambda_n x_n$$
 and $y = \lambda_1 x_1 + \ldots + \lambda_n x_n + \ldots + \lambda_m x_m$

and let i_0 be the coordinate at which $||x|| = |x(i_0)|$. We distinguish the following two cases:

(a) $i_0 \notin \bigcup_{j=2}^n \operatorname{supp} x_j$. Then, $i_0 = 1$ and since x(1) = y(1), $||x|| \le ||y||$. (b) $i_0 \in \bigcup_{j=2}^n \operatorname{supp} x_j$. Then, since $\operatorname{supp} x_k \cap \operatorname{supp} x_1 = \emptyset$, $k \ne 1$, we have that $x(i_0) = 0$. $y(i_0)$ and consequently $||x|| \leq ||y||$.

Hence the proof of the inequality (A) has been completed. To prove that (x_n) is an unconditional basic sequence, it is sufficient to show that the convergence of each series $x = \sum_{n=1}^{\infty} \lambda_n x_n$ is unconditional. By virtue of [4, Cor. 31.2], it is sufficient to show that the series $\sum_{n=1}^{\infty} \lambda_n x_n$ is \bigcup -Cauchy. Indeed, since supp $x_n \cap \text{supp } x_m = \emptyset$, $n \neq m \neq 1$, $[x_n]_2^{\infty}$ is a closed sublattice which, as is well known, is isomorphic to c_0 ; hence $(x_n)_2^{\infty}$ is a \bigcup -basic sequence equivalent to the usual basis of c_0 . So, for the sequence $(x_n)_2^{\infty}$ we have that,

given $\varepsilon > 0$, there exists a finite subset Φ'_0 of \mathbb{N} such that all finite subsets

46

 $\Phi' \supseteq \Phi'_0$ of \mathbb{N} , $\|\sum_{\Phi} \lambda_i x_i - \sum_{\Phi'_0} \lambda_i x_i\| < \varepsilon$. But then

$$\left\|\sum_{\Phi'}\lambda_{i}x_{i}-\sum_{\Phi'_{0}}\lambda_{i}x_{i}\right\|=\left\|\sum_{\Phi}\lambda_{i}x_{i}+\lambda_{1}x_{1}-\sum_{\Phi'_{0}}\lambda_{i}x_{i}-\lambda_{1}x_{1}\right\|=\left\|\sum_{\Phi}\lambda_{i}x_{i}-\sum_{\Phi_{0}}\lambda_{i}x_{i}\right\|<\varepsilon$$

where $\Phi = \Phi' \cup \{1\}$ and $\Phi_0 = \Phi'_0 \cup \{1\}$, which proves the required result. We are going now to prove that

$$X_{+} = \left\{ \sum_{n \in \mathbb{N}} \lambda_{n} x_{n} : \lambda_{n} \ge 0 \quad \text{for all} \quad n \in \mathbb{N} \right\}.$$

Take $x \in X_+$, Since (x_n) is a \cup -basis for X, $x = \sum_{1}^{\infty} \lambda_n x_n$. The fact that $x \ge 0$ implies that each coordinate is a non-negative real number. Since $x(1) = \lambda_1$, we have $\lambda_1 \ge 0$. Moreover, for each $n \in \mathbb{N}$, the coordinates of x at the positions $p_n^2, p_n^3, \ldots, p_n^k, \ldots$ must also be non-negative numbers i.e.

$$\lambda_1/p_n^k + \lambda_n/\sqrt{p_n^k} \ge 0$$
 for all $k \in \mathbb{N}$,

or

 $\lambda_1/\sqrt{p_n^k} + \lambda_n \ge 0.$

As $k \to \infty$, the above inequality gives $\lambda_n \ge 0$, as required. Finally, relation (iii) implies that the *M*-constants of *X* are bounded, so, by Theorem 2 of [5], $[x_n]$ is order-isomorphic to c_0 .

However, X cannot be the range of a positive projection. For if P is such a projection consider $P[kx_1 \wedge x_2]$, $k \in \mathbb{N}$, where the infimum is calculated in c_0 .

As we have

$$0 \leq P[kx_1 \wedge x_2] \leq kPx_1, Px_2$$

and $Px_1 = x_1$, $Px_2 = x_2$ are disjoint in $[x_n]$, $P[kx_1 \wedge x_2] = 0$. But now observe that P is norm continuous and that $kx_1 \wedge x_2 \rightarrow x_2$ in norm, so $Px_2 = 0$, a contradiction.

REFERENCES

1. A. PELZYNSKI, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.

2. H. FAKHOURY, Extensions uniformes des formes lineaires positives, Ann. Inst. Fourier, Grenoble 23 (1973), 75-94.

3. J. O. JAMESON, Ordered linear spaces Lecture Notes in Mathematics, 141, Springer-Verlag, Berlin, 1970).

4. J. O. JAMESON, Topology and normed spaces (Chapman and Hall, London, 1974).

5. P. C. TSEKREKOS, Some applications of L-constants and M-constants on Banach Lattices, J. London Math. Soc. (2) 18 (1978), 133-139.

6. P. C. TSEKREKOS, Ordered-subspaces of some Banach lattices, J. London Math. Soc. (2) 18 (1978), 325-333.

NATIONAL TECHNICAL UNIVERSITY OF ATHENS 42 Patission Street Athens 147 Greece