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1. Introduction

It has been proved, see [1], that a closed infinite dimensional subspace of c0 is
isomorphic to c0 if and only if it is the range of a bounded linear projection. In [6] we
proved half of the order-theoretic analogue of this result. In fact we showed that an
infinite dimensional subspace of c0 which is the range of a positive projection is
order-isomorphic to c0. We left open the question whether the converse holds also true.
In this paper we answer this question negatively by providing an example in Section 4.
In Section 3 we give necessary and sufficient conditions in order that an ordered-
subspace of c0 be the range of a positive projection.

2. Terminology

By c0 we denote the linear space of all real sequences x = (x(l), x(2), . . . ) which
converge to zero, ordered by the natural coordinatewise ordering which makes c0 a
Banach lattice (|x|^|y| implies ||x||^||y||, where |x| =xV(—x) denotes the supremum of
x and -x). The positive cone of c0 denned by this ordering is denoted by CQ and the
unit ball by U. By an ordered-subspace of c0 we mean a closed, infinite dimensional
subspace X of c0 such that X = X+ — X+, where X+ = XC\CQ. Such a subspace is
considered everywhere in this paper to be ordered by the cone X+. The closed unit ball
of X is denoted by Ux- A bipositive topological isomorphism between two ordered
topological linear spaces is called an order-isomorphism and then the spaces are said to
be order-isomorphic. By a projection we mean a continuous linear idempotent operator.
We write U-basis for an unconditional basis. The ordering associated with a basis (x,,)
is given by the cone X+ = {x e X: x = X Anxn, A i?0 for all n eN}. For terminology and
notation used here and not defined here we refer to [3], [4] and [6].

3. The main results

Our first theorem concerns those ordered-subspaces of c0 which are order-isometric
to c0. Unlike the situation for lp spaces (see [6]) these are not necessarily sublattices.
For example, the subspace

X = {xeco:x(l)=4(x(2)

is order-isometric to c0 without being a sublattice.

41

https://doi.org/10.1017/S0013091500004119 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004119


42 PANAYOTIS C. TSEKREKOS

Theorem 1. Let X be an ordered- subspace of c0 Then, X is order-isometric to c0 if and
only if X is the range of a positive contractive projection.

Proof. Suppose that X is order-isometric to c0 and let (*„) be the sequence in X
which corresponds to (cn) under the order-isometry T. Evidently | |xj | = 1 for every

, and for each neN, there exists a minimum natural number fc,, such that
= 1- Since T is an isometry

^ l for all nfm, n,m = 1,2, . . .

which implies that

10 n f m.

Now, for every xec 0 , x(fcn)—>0, and since ( e j and (x j are equivalent, Ix(kn)xn€
X.

The mapping P from c0 into X defined by

Px=Ix(kn)xn

is linear, Pxn = x,, for every neN, and Px = x for every x e X. Also

n e N

This implies that | |P| |^1 and, since P is a projection, finally that ||P|| = 1.
To prove the converse, suppose that X is an ordered-subspace of c0 so that it is the

range of a positive contractive projection. By virtue of Theorem 6 of [6], X is
order-isomorphic to c0, and more precisely the order of X is induced by a U-basis. So,
let (xn) be a normalised L/-basis defining the ordering of X. If zx^z2 denotes the
supremum of two elements of X in the ordering defined by X+, then, since ||P|| = 1 and
P(zxVz2) = z-iVz2, we have that l|z1Vz2V... Vzn | |^ l for every neN and every
zl5 z2, • • . , zn e Ux. Now, it can be easily proved (see also Theorem 2 of [5]) that for
the order-isomorphism T from X to c0 defined by

we have

This implies that \\T\\= 1. For each n eN and Ax, A 2 , . . . , A,, real numbers, we have

T(A1x1V . . . VABxB) = Aie, V.. .Vknen,

which implies

|A,| V. . -V|An| = ||A1e1 V.. .VAneJ|s;||T|| ||A1x1V . . . VA^xJI^HAjXiV . . . V ^ x J . (1)

On the other hand, the relation

1 |A1x1V...VAnxn|=g|x1V...Vxn|
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implies, since c0 is a Banach lattice, that

1
MV...VIAJ

or
. (2)

Now, relations (1), (2) imply that

||A1x1V...VAnxn|| = |A1|V...V|An|.

I I " II nLet x=JJknxn=VX.nxn be an arbitrary element of X. Clearly, V AjXj —»||x||, so,

On the other hand

i

Relations (3) and (4) imply ||x|| = ||Tx|| for every xeX, which completes the proof.

Before stating the next results we need first a definition.

Definition 1. Let X be an ordered-subspace of c0 and let l ^A <oo. We say that X
has the k-positive extension property (A-P.E.P. in short) if A is the least real number for
which every positive linear functional x* on X with ||x*|| = 1 has a positive extension y*
on c0 with ||y*||gA. An ordered-subspace X of c0 is said to have the bounded positive
extension property (B.P.E.P. in short) if it has the A-P.E.P. for some A.

Theorem 2. Let X be an ordered-subspace of c0 order-isomorphic to c0. Then X is the
range of a positive projection if and only if it has the B.P.E.P.

Proof. If X is the range of a positive projection, then it clearly has the B.P.E.P. For
the converse, suppose that X has the B.P.E.P. Now, let (x̂ ,) be the basis of X which
corresponds to the natural basis (en) of c0 under the order-isomorphism, (x*) the
functionals associated with (x«) with m ^||x*||^M, and y* a positive extension of x* on
c0 with ||y*||SAM for all neN and some AS1.

We can also suppose that supp y* £ supp xn for each neN, where supp z =
{ieN: z(i)^0}, for otherwise we can take another extension y'* of x* with yj,*^y*
and satisfying the above condition. Indeed, suppose that supp y* £ supp xn. Since
y*(xm) = x*(xm) = 8nm, supp y* c(^j\ u supp xm. By nullifying those coordinates of y*

meN\{n}

which do not belong to supp xn we get another extension y'* of x* with the required
property. Notice that for each neN, m = ||y«*ll = AM and also that supp y'n*nsupp y'* =
0 for all ni= m, n, mi= 1, 2 , . . . . It follows now easily that y* —» 0 with respect to the
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weak-star topology cr(c0). The mapping P from c0 onto X defined by

P* = I y*(x)xn

is clearly a positive projection.
The following theorem has been also proved in [2] in much greater generality,

although I was not aware of this fact. However, I cite it here in the following form, for I
think the explicit mention of the constants serves the purpose of this paper better.

Theorem 3. Let X be an ordered-subspace of c0. // X has the k-P.E.P., then
X D(L7 - Co) £ A[/x - X+. Conversely such a relation implies that X has the fx-P.E.P.
with (iSA.

Proof. Suppose that X has the A-P.E.P. but the given inclusion does not hold. Then
we can find an element u-peXC){U — cj), with ueU and peco, such that
u — p^ KUX — X+. By the separation theorem, there exists an x*eX* with
that

x*(u-p)>supx*(AC/x-X+)£A.

Take an extension y*^0 of x* with ||y*||^A. Then,

which of course cannot be true.
To prove the converse, take a positive linear functional x* on X with ||x*||= 1. If q

denotes the Minkowski functional of U-CQ, then, since Xn(C/-Co)£ At/X — X+, we
have that x*(x)g Aq(x) for every xeX. By the Hahn-Banach theorem x* can be
extended to a linear functional y* such that y*(x)SAq(x) for every xec0 . If follows
that y* is positive and, since q(x)S||x|| for all xec 0 , ||y*||^A.

A simple calculation shows that an ordered-subspace of c0 which is order-isomorphic
to c0 and has the A-P.E.P. is the range of a positive projection P with ||P||SA. So,
recalling that a closed, infinite-dimensional sublattice X of c0 is lattice-isometric to c0

and has the 1-P.E.P., [4, prop. 33.15], we immediately conclude that X is the range of
a positive contractive projection. It is also tempting to see how the "only if" part of
Theorem 1 follows from Theorems 2 and 3. To this end it is enough to show that
X H (U — Co) c Ux — X+. Notice that the unit ball Ux of X is an upward directed subset
of c0. Suppose then that there is u — peXf)(U — CQ) such that u — p£ LJX—X+. Then,
according to Theorem 3.1.12 [3], there exists an y*ec* with ||y*|| = 1 and y*(« —p)>
sup y * ( U x - X + ) S l . Then, K y * ( M - p ) S y * ( « ) g l which cannot be true. Whence, X
has the 1-P.E.P. and consequently it admits a positive projection of norm one.

Before stating the next lemma, we explain some of the terminology and notation
used in it.

Given an ordered-subspace X of c0, a lattice in its own ordering, and a subset A of
X, we denote by VA the set {x e X: there exist au ... ,aneA such that ô V . . . Van =
x}.

We say that A admits finitely many suprema, if for every neN and au ... ,aneA,
a ,V. . .VaneA.
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Lemma 1. Let X be an ordered-subspace of c0, order-isomorphic to c0. Then, the
following relations hold true:

(a) Xn(t7-Co)c{V[Xn(L/-Co)]}nX+-X+ = Vi<:-X+where K = Xn(L/-Cp);
((3) the sets Vl / X -X + , VUx -X+ admit finitely many suprema;
(y) the sets (VUx-X+)nX+, VUX-X+C\X+ are bounded.

Proof, (a) Take u - p e X n ( I / - c J ) . Since OeXn(CJ-cJ) ,

( u - p ) - = (p-u)V06X+

Hence, u - p = (w-p)+ — ( u - p ) ~ e K - X +

(/3) Let ^ - X ] , u 2 -x 2 eVL/ X -X + . Then, u1Vu2-x1Ax2eVC/X-X+. On the other
hand (u1-x1)V(u2-x2)^u1Vu2~x1Ax2. So, [«1Vu2-x1AxJ-(u1-x1)V(u2-x2) = pG
X+, and finally

To prove that the second set has the required property, take xu x2 from VUX-X+.
There exist sequences (u^-xj,), (u\ — x?) from the set V l / X - X + such that

It follows that (ui-xi)V(u^-x^)^^x1Vx2, and consequently, x1Vx2eVUx-X+.
(y) It is clear.

Theorem 4. Let X be an ordered-subspace of c0, order-isomorphic to c0 and
iC = Xn(J7-cJ ) . Then, X has the B.P.E.P. if and only if M(K)< +<*>. where M(K) =
sup{\\x\\:xeVKnX+}.

Proof. Suppose M(K)< +°o. Then, there exists A > 0 such that

Hence, VKDX+c \UX-X+, and by Lemma 1

This implies, by Theorem 3, that X has the B.P.E.P.
Suppose now that X has the B.P.E.P. By Theorem 3, there exists A >0 such that

Hence, {V[X n (U- c£)]} n X+ £ A(V Ux) - X+ n X+.
By Lemma 1, the set at the right side of the above inclusion is bounded, so
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4. The example

We are going to construct a sequence (x^) of positive elements of c0 such that
(i) (x,,) is an unconditional basic sequence;

(ii) X = [xn], the closed linear span of (x j , is an ordered-subspace of c0 with

X+={f|Anxn:Ang0 for all n

(iii) 11*!+ .. .+ x J | < M for all neN and some positive real M. These conditions and
Theorem 2 of [5] will imply that [x^ is order-isomorphic to c0. However, X, as we shall
see, cannot be the range of a positive projection. Consider the element

x^(l,-, 3 , • • • . - , • . . ) •

Now, to each prime number pn, pn < pn+l for all n e N\{1}, we correspond the element

xn = (0, 0 , . . . , 0,1, 0, 0 , . . . , 0, -~, 0 , . . . ) ,
Pn

where the only non-zero coordinates are those corresponding to the positions
Pn, Pn» Pn. • • • > Pn. • • •. fc e ^ - More specifically, the pn-coordinate is equal to 1 and the
p£th to 1/Jpn. Clearly ||xj|= 1 for all the n eN and (iii) holds true for M = 2. To show
that (xn) is a basic sequence it is sufficient to show that

l|A1x1 + .. . + AnxB||<||A1x, + .. • + Anxr, + . . . . + AmxJ| (A)

for all n, m eN with n < m and A,, A2, . . . , Am arbitrary real numbers. Indeed, put

x = Atx,+. . . + Anxn and y = \txt + .. . + Anxn+ . . . +Amxm.

and let i0 be the coordinate at which ||x|| = |x(io)|. We distinguish the following two
cases:

(a) io4 Usuppx,, Then, t o = l and since x(l) = y(l), ||x||g||y||.
J=2

n

(b) ioe U supp x,. Then, since suppxfc Dsupp x1 = 0 , fc^l, we have that x(/0) =
1=2

y(i0) and consequently ||x||^||y||.
Hence the proof of the inequality (A) has been completed. To prove that (x,,) is an

unconditional basic sequence, it is sufficient to show that the convergence of each series
00

x =Y. Kxn is unconditional. By virtue of [4, Cor. 31.2], it is sufficient to show that the

series £ AnXn is |J-Cauchy. Indeed, since supp xn Dsupp xm = 0 , n^ m / 1, (XJJ is a
1

closed sublattice which, as is well known, is isomorphic to c0; hence (x^J is a U -basic
sequence equivalent to the usual basis of c0. So, for the sequence (x,,)^ we have that,
given e > 0, there exists a finite subset <&£, of M such that all finite subsets
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' 3 o ; of N, |E AjXj - 1 AfXiH < e. But then
•

1Y.T. E E EMi < e

*• *,', ii i i * *;, ii i i * * o H
where <£ = <J>'U{1} and <I>0 = Of, LJ {1}, which proves the required result. We are going
now to prove that („ -,

| E a o for all

Take xeX+, Since (x^) is a U-basis for X, x = £ A ^ . The fact that x SO implies that
i

each coordinate is a non-negative real number. Since x(l) = Ax, we have A1S0.
Moreover, for each neN, the coordinates of x at the positions pj;, pi,..., p£, . . . must
also be non-negative numbers i.e.

^0 for all keN,
or

As k-*o°, the above inequality gives An^0, as required. Finally, relation (iii) implies
that the M-constants of X are bounded, so, by Theorem 2 of [5], [x^] is order-
isomorphic to c0.

However, X cannot be the range of a positive projection. For if P is such a
projection consider P[fcx1Ax2], keM, where the infimum is calculated in c0.

As we have

0 ̂  P[kxx A x j s fcPxj, Px2

and Px1 = x1, Px2 = x2 are disjoint in [x^], P[kx!Ax2] = 0. But now observe that P is
norm continuous and that kx!Ax2—»x2 in norm, so Px2 = 0, a contradiction.
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