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Abstract

We extend the boson process first to a large class of Cox processes and second to an
even larger class of infinitely divisible point processes. Density and moment results are
studied in detail. These results are obtained in closed form as weighted permanents, so
the extension is called a permanental process. Temporal extensions and a particularly
tractable case of the permanental process are also studied. Extensions of the fermion
process along similar lines, leading to so-called determinantal processes, are discussed.
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1. Introduction

Cox process models for spatial point processes form a rich class of models for aggregated
point patterns (see, e.g. [5], [6], [9], [24], and [29]). In applications a spatial point pattern is
observed within a bounded window S ⊂ R

d , and a Cox process restricted to S is a finite random
subset X of S whose distribution is usually specified indirectly using a nonnegative random
intensity function � ≡ (�(x))x∈S such that

∫
S

�(x) dx < ∞ almost surely. Given the random
intensity function, X is a Poisson process on S with intensity �, so the marginal density of the
point process X is

f (x) = E

[
exp

(
|S| −

∫
S

�(x) dx

) n∏
j=1

�(xj )

]
(1)

for finite point configurations x = {x1, . . . , xn} ⊂ S (see, e.g. [24]). Here n(x) ≡ n, the
number of points in x, can be any nonnegative integer; the points in x are pairwise different;
the density is with respect to the unit-rate Poisson process on S; the expectation is with respect
to �; and |S| is the volume of S.

For most models so far considered in the literature, apart from simple cases such as that of a
mixed Poisson process where � is the product of a positive random variable and a nonnegative
deterministic function, the expectation in (1) is computable only by Markov chain Monte Carlo
methods. Examples are shot noise Cox processes [3], [23] and log Gaussian Cox processes
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[25]. Indeed, closed-form expressions for densities of other kinds of spatial point process model
are also unknown, apart from trivial cases closely related to Poisson processes. For example,
for the important class of Markov point processes [31], the normalizing constant of the density
cannot be evaluated explicitly.

Boson and fermion processes [2], [17], [18] and their extensions [27] are the major exception,
in that analytic expressions are available for the density and the moments. In the first version of
this paper, [21], we were not aware of the long and technical paper [27], which in many ways
covers the results of the present paper. Since our approach is more natural and more direct,
it may have more appeal to statisticians and probabilists. The present paper gives a unified
exposition, which includes the proofs of the results, points to the results of [27], and highlights
new facts.

The main difference between [27] and our paper is that the authors of the former began
with a certain determinantal expansion due to Vere-Jones [32] and showed that it is the Laplace
transform of a point process. We work in the reverse direction, beginning with an explicit
Cox process which extends the boson process, and obtaining its moments, deriving its density
function, and extending it to a class of infinitely divisible point processes called permanental
processes.

1.1. The permanental process as a Cox process

The absence of a closed form for the density (1) motivated us to study a class of flexible Cox
process models with intensity functions defined, for any positive integer k and real covariance
function C(x, x′), x, x′ ∈ S, by

�(x) = Z1(x)2 + · · · + Zk(x)2, (2)

where Zj ≡ (Zj (x))x∈S, j = 1, . . . , k, are independent, zero-mean Gaussian processes with
covariance function C/2 (as in [27], we assume for simplicity that the covariance matrix
is real; most statements are similar for complex Gaussian processes). From the viewpoint
of applications, this point process is similar to the log Gaussian Cox process. The main
mathematical difference is that � has a convergent moment generating function whereas the
log Gaussian process does not. As a result, the density function for the Cox process X is
available analytically in the form of a weighted matrix permanent. Consequently, X is called
a permanental process with parameters α = k/2 and C.

The boson (or photon) process [6], [11], [17], [18] corresponds to the α = 1 case. Another
special case is that of a mixed Poisson process, i.e. C(x, x′) = c is constant and, hence,
�(x) ∼ (c/2)χ2(k) does not depend on x ∈ S.

The moments and the density of the Cox process were obtained in [27] from the expansion
of a certain Fredholm determinant, which is in fact the moment generating function of �. In the
arguments that follow, the moments, cumulants, generating functions, and densities are derived
directly.

1.2. Permanents

For any points x1, . . . , xn ∈ S, the symbol [C](x1, . . . , xn) denotes the n × n matrix with
(i, j)th entry C(xi, xj ). The key building block is the sum of cyclic products

cyp[C](x1, . . . , xn) =
∑

{σ : #σ=1}
C(x1, xσ(1)) · · · C(xn, xσ(n)),
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whereσ is a permutation of {1, . . . , n} and #σ is the number of cycles. For realα, theα-weighted
permanent (α-permanent)

perα[C](x1, . . . , xn) =
∑
σ

α#σ C(x1, xσ(1)) · · · C(xn, xσ(n))

is the sum over all permutations (see [32]). This is a polynomial in α of degree n in which the
coefficient of degree r is the sum of products over permutations having exactly r cycles. The
usual permanent has α = 1 (see [22]).

To each permutation σ of {1, . . . , n} there corresponds a partition B of the index set
{1, . . . , n}, each cycle of σ generating a block of B. Thus, the α-permanent can be expressed,
in the form of a sum over the partition lattice Bn, as

perα[C](x1, . . . , xn) =
∑

B∈Bn

α#B
∏
b∈B

cyp[C](x(b)),

where #B is the number of blocks, and x(b) is the set of x-values in block b ∈ B. Consequently,
as will be demonstrated later, the relationship between cyclic products and the α-permanent is
precisely the relationship between cumulants and moments.

Valiant [30] has shown that the exact computation of permanents of general matrices is a
sharp-P-complete problem, so no deterministic polynomial-time algorithm is available. How-
ever, polynomial-time algorithms exist for certain special cases, such as that of general fixed-
rank matrices [1], and for approximate Monte Carlo computation of general nonnegative
matrices [16]. For most statistical purposes, approximate computation of permanent ratios,
which is a less demanding task, is sufficient. In addition, analytic approximations are available
for large α. Statistical aspects and algorithms for calculating weighted permanents, permanent
ratios, and likelihoods will be discussed in more detail in future work.

1.3. Outline

The product moments and the density of the permanental process are established in Section 2
under the assumption that C is continuous and 2α is a positive integer. Section 3 shows that if
certain weak conditions are satisfied (e.g. C need not be a covariance function), a point process
X with a density of the same form exists for each α ≥ 0 and is infinitely divisible. This process
is a Poisson randomization and there exists a nontrivial conditional limit process as α → 0,
given that X is not empty. The Poisson randomization provides an easy way of simulating
the process. Section 4 discusses temporal extensions of the permanental process. The special
permanental process in which C is proportional to a projection is discussed in Section 5; it is
deemed special on account of its striking and unusual properties. Section 6 concludes the paper
with a discussion on how to extend the fermion process along similar lines as was the boson
process, whereby so-called determinantal point processes [14], [28] are obtained. While the
permanental process is attractive, the determinantal process is repulsive.

2. The permanental Cox process

Throughout Sections 2.1–2.3, 2α is assumed to be a positive integer, so the permanental
process X is the Cox process driven by (2).

2.1. Moment properties

For a finite point process with density f with respect to the unit-rate Poisson process � on
S, the nth-order product density (see, e.g. [18] and [29, p. 111]) is given by ρ(n)(x1, . . . , xn) =
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E f (�∪ {x1, . . . , xn}) for any n ∈ N and pairwise-different points x1, . . . , xn ∈ S. Intuitively,
ρ(n)(x1, . . . , xn) dx1 · · · dxn is the probability of observing n points from X occurring jointly
in each of n infinitesimally small balls with centres x1, . . . , xn and volumes dx1, . . . , dxn.
Moreover, the nth-order factorial moment measure has density ρ(n) with respect to the Lebesgue
measure on R

dn.
Since X is a Cox process driven by (2), its nth-order product density is given by

ρ(n)(x1, . . . , xn) = E[�(x1) · · · �(xn)].
Theorem 1, below, shows that this is a weighted permanent.

2.1.1. General results

Lemma 1. Let (Z(x))x∈S be a zero-mean, real Gaussian process with covariance function
C/2. For any not necessarily distinct x1, . . . , xn ∈ S, the joint cumulant of order n of the
variables Z(x1)

2, . . . , Z(xn)
2 is

cumn(Z(x1)
2, . . . , Z(xn)

2) = cyp[C](x1, . . . , xn)/2. (3)

Proof. This is a standard application of the lattice-sum formula [19], [20] for generalized
cumulants as a sum of products of ordinary cumulants. All Gaussian cumulants are 0 except
those of order two, so the result is a sum of products of covariances, Ci1,j1 · · · Cin,jn , where
Ci,j ≡ C(xi, xj ). Since each value 1, . . . , n occurs once as a first index and once as a second
index, (j1, . . . , jn) is a permutation of (i1, . . . , in). Noncyclic permutations do not satisfy the
lattice connectivity condition, so the sum is restricted to cyclic permutations. For each cyclic
permutation, there are 2n−1 distinct partitions of the 2n indices that satisfy the connectivity
condition, all giving rise to the same product, C1,σ (1) · · · Cn,σ(n)/2n. Consequently, the joint
cumulant is one-half the sum of the cyclic products.

Theorem 1. For any not necessarily distinct x1, . . . , xn ∈ S,

E[�(x1) · · · �(xn)] = perα[C](x1, . . . , xn). (4)

Proof. Since �(x) in (2) is the sum of k independent, identically distributed (i.i.d.) random
processes, the joint cumulant of order n of �(x1), . . . , �(xn) is k times the joint cumulant of
Z(x1)

2, . . . , Z(xn)
2, which is given by (3). The joint moment of order n is the sum of cumulant

products over subpartitions of {1, . . . , n}, one cumulant for each block of the partition. Since
permutation cycles determine the blocks of the partition, the number of blocks is equal to the
number of cycles. As a result, the term corresponding to the permutation σ has a factor (k/2)#σ ,
so the sum is the weighted permanent with weight α = k/2.

In the complex version of Theorem 1, Z1, . . . , Zk are independent, zero-mean, complex
Gaussian processes with covariance function

cov(Zr(x), Z̄s(x
′)) = δrsC(x, x′),

where C is Hermitian. The joint cumulant of |Z1(x1)|2, . . . , |Z1(xn)|2 in Lemma 1 is thus
cyp[C](x1, . . . , xn), and the joint moment in Theorem 1 is perk[C](x1, . . . , xn). The result for
α = 1

2 was given in [15], the result for α = 1 was given in [17] and [18], and the result in the
case where 2α is a positive integer was given in [27, Theorem 4.1].
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2.1.2. Generating functions. Let (Z(x))x∈S be a zero-mean, real Gaussian process with co-
variance function C/2. For any not necessarily distinct x1, . . . , xn ∈ S, the joint moment
generating function of the variables Z(x1)

2, . . . , Z(xn)
2 is

M(t) = E exp(t1Z(x1)
2 + · · · + tnZ(xn)

2) = |I − t[C](x1, . . . , xn)|−1/2,

where t = diag{t1, . . . , tn} is a diagonal matrix and I denotes the identity matrix.
Since � in (2) is a sum of k = 2α independent processes, the joint cumulant generating

function of �(x1), . . . , �(xn) is

log M(t) = −α log |I − t[C](x1, . . . , xn)|. (5)

Since this function has a Taylor expansion about the origin, it follows from the calculations in
Section 2.1.1 that the cumulant coefficients in the Taylor expansion are cyclic products.

As it happens, M(t) is also proportional to the probability generating function for certain
multivariate binomial and negative binomial distributions (see [13]). The coefficients in the
expansion of this determinant were obtained in [32] in the form of α-permanents. The connec-
tion with Gaussian processes was noted in [27] . With a suitably modified covariance function,
M(t) is both the Laplace transform and the probability generating function of the associated
Cox process. A more general operator expansion of the Fredholm determinant, clarifying
these relationships and showing that the point process has product densities in the form of
α-permanents, was given in [27].

2.2. Conditions

In Section 2.3, and also sometimes later on, we assume that S is compact and that the
restriction of the covariance function C to S × S is a real, continuous function. Thus, by
Mercer’s theorem (see, e.g. [8, p. 344]), the covariance function has spectral representation

C(x, x′) =
∞∑

r=0

λrer (x)er (x
′), x, x′ ∈ S, (6)

with absolute and uniform convergence in S × S; the eigenvalues satisfy λ0 ≥ λ1 ≥ · · · ≥ 0
and

tr(C) :=
∫

S

C(x, x) dx =
∞∑

r=0

λr < ∞ (7)

(i.e. the trace of C is finite); the eigenfunctions er form an orthonormal basis of L2(S), the space
of square-integrable, real Borel functions on S with inner product 〈p, q〉 = ∫

S
p(x)q(x) dx; and

er is continuous if λr = 0. We take Zj (x) = ∑∞
r=0 Vj,rer (x), where the Vj,r are independent

N(0, λr/2)-distributed random variables. Clearly Z1, . . . , Zk are then independent, zero-mean
Gaussian processes with covariance function C/2. By (2), (7), and Fubini’s theorem,

E n(X) = E
∫

S

�(x) dx = α tr(C)

is finite, and ∫
S

�(x) dx =
k∑

j=1

∞∑
r=0

∞∑
s=0

Vj,rVj,s〈er , es〉 =
k∑

j=1

∞∑
r=0

V 2
j,r (8)

is almost surely finite.
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The rank of C is the number of nonzero eigenvalues. Note that C is a projection if and only
if each λr is either 1 or 0, and (7) implies that then rank(C) < ∞. For C proportional to a
projection of rank one, the permanental process is a mixed Poisson process.

For functions h : Sn → [0, ∞), we define∫
Sn

h(x) dx =
∫

S

· · ·
∫

S

h(x1, . . . , xn) dx1 · · · dxn,

where for n = 0 we interpret the integral as h(∅), ∅ being the empty point configuration.
Furthermore, if h(x1, . . . , xn) is a symmetric function, we do not distinguish between x as a
vector and x as a point configuration. Indeed product densities, weighted permanents, and many
other functions considered in the sequel are symmetric functions, and it is often convenient to
write ρ(n)(x), perα[C](x), cyp[C](x) and so on for a finite point configuration x ⊂ S of
n(x) = n points. Finally, we set

ρ(0)(∅) = perα[C](∅) = 1, cyp[C](∅) = 0.

2.3. Density function

Let the situation be as in Section 2.2. To derive the density of the permanental process, it is
convenient to introduce

λ̃r = λr/(1 + λr), r = 0, 1, . . . ,

and

C̃(x, x′) =
∞∑

r=0

λ̃r er (x)er (x
′), x, x′ ∈ S,

which, by combining the proof of Mercer’s theorem, the properties of C (see Section 2.2), and
the fact that 0 ≤ λ̃r ≤ λr , we can see to be a well-defined and continuous covariance function.
Furthermore, we define �̃ = (�̃(x))x∈S , X̃, and ρ̃(n) in the same way as � = (�(x))x∈S , X,
and ρ(n), respectively, except that we replace C by C̃. Finally,

D :=
∞∑

r=0

log(1 + λr) = −
∞∑

r=0

log(1 − λ̃r ) (9)

is well defined, since 0 ≤ log(1 + λr) ≤ λr and
∑

λr < ∞.

Theorem 2. The density of the permanental process X at any finite point configuration x ⊂ S

is
f (x) = e|S|−αD perα[C̃](x). (10)

Proof. Combining (1) and (8) yields

f (x) = e|S| E

[( k∏
j=1

∞∏
r=0

e−V 2
j,r

)( n∏
j=1

�(xj )

)]
,

where (recall) Vj,r ∼ N(0, λr/2), j = 1, . . . , k, r = 0, 1, . . . , are independent random vari-
ables. If gr is the density of N(0, λr/2) and g̃r is the density of N(0, λ̃r/2), then e−v2

gr(v) =
g̃r (v)/(1 + λr)

1/2. Consequently,

E

[( k∏
j=1

∞∏
r=0

e−V 2
j,r

)( n∏
j=1

�(xj )

)]
= E

[ n∏
j=1

�̃(xj )

] ∞∏
r=0

(1 + λr)
−α.

Hence, from (4), we obtain (10).
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Theorem 2 was first established for the special case of the boson process (α = 1) by Macchi
[17], [18], who noted that C̃ is the root of the integral equation

C̃(x, x′) +
∫

S

C̃(x, y)C(y, x′) dy = C(x, x′).

For the case where 2α is a positive integer, see [27, Theorem 6.17].

2.4. Convolution and superposition

Let h be a symmetric function defined on finite subsets x ⊂ S and, for each real α and
nonempty configuration x = {x1, . . . , xn}, let

Hα(x) =
∑

B∈Bn

α#B
∏
b∈B

h(x(b)).

Here, x(b) ⊂ x is the subset corresponding to block b ∈ B. The convention for the empty set
is h(∅) = 0 and Hα(∅) = 1. Formally, Hα(x) is the moment determined by the cumulants
αh(w), w ⊆ x. Functions of this type are important in the theory of point processes because
they satisfy the convolution property

∑
w⊆x

Hα(w)Hα′(w̄) =
∑

B∈Bw

∑
B ′∈Bw̄

α#B(α′)#B ′ ∏
b∈B

∏
b′∈B ′

h(x(b))h(x(b′))

=
∑

B∈Bx

∏
b∈B

h(x(b))
∑
A⊆B

α#A(α′)#Ā

=
∑

B∈Bx

(α + α′)#B
∏
b∈B

h(x(b))

= Hα+α′(x), (11)

where Bx is the set of partitions of x and w̄ is the complement of w in x. Note that, in the
second line of the above display, A ⊆ B and Ā ⊆ B are complementary subsets of B, so #A

is the number of blocks of B that occur in A. Either subset, A or Ā, could be empty.
One consequence of the convolution property is that if Hα is the product density of a point

process X and Hα′ is the product density of an independent process X′, then Hα+α′ is the
product density of the superposition process X ∪ X′. In addition, for any θ > 0, the function
θαHα(x) also satisfies the convolution property, and it is in this form that the result applies to
the convolution of densities in (10). We shall exploit (11) later.

2.5. Positivity conjectures

If 2α is a positive integer, perα[C](x) is the expected value of a positive random variable and
is thus positive for every finite point configuration x ⊂ S. Let G(C) be the set of real α for which
perα[C](x) ≥ 0 at all point configurations x ⊂ S. Evidently G(C) is an additive semigroup
containing the nonnegative half-integers. If C(x, x′) is nonnegative then G(C) contains all
α ≥ 0 and the natural questions are, is perα[C](x) an unnormalized density with respect to the
unit-rate Poisson process? and, if so, what is the normalizing constant?

In fact, for each α, 0 < α < 1
2 , it is usually possible to find a symmetric, positive, semidef-

inite matrix A = [C](x) such that perα A < 0, and [27, Conjecture 7.2] states that this is
always possible. We have been unable to prove [27, Conjecture 7.1], namely that perα[C](x) is
nonnegative for noninteger values of 2α ≥ 1. However, extensive numerical work points to the
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following conjecture regarding the roots of the permanent polynomial for nonzero, symmetric,
positive, semidefinite matrices A: for complex numbers α,

perα(A) = 0 �⇒ Re(α) < 1
2 .

3. Extensions

3.1. Conditions

In the remainder of the paper, unless otherwise stated we relax the conditions in Section 2.2
and define C in terms of C̃ as follows.

Denote by R+ the set of nonnegative real numbers. We assume that α ∈ R+, S is compact,
and C̃ : S2 → R+ is symmetric and continuous. Here C̃ ≥ 0 ensures that perα[C̃] ≥ 0 for all
α ∈ R+, which is needed in Theorem 3, below. By the spectral theorem, for Lebesgue-almost
all (x, x′) ∈ S × S,

C̃(x, x′) =
∞∑

r=0

λ̃r er (x)er (x
′), (12)

where the eigenfunctions er form an orthonormal basis of L2(S), er is continuous if λ̃r = 0,
and |λ̃0| ≥ |λ̃1| ≥ · · · . Note that the eigenvalues λ̃r are now allowed to be negative (a simple
example is given in Section 3.3). We also assume that the spectral norm ‖C̃‖ = |λ̃0| is strictly
less than 1, and that

∑∞
r=0 |λ̃r | is finite. These assumptions are of course satisfied when C̃ is a

continuous covariance function (cf. Section 2.2). The assumptions imply absolute and uniform
convergence of the series in (12) for Lebesgue-almost all (x, x′) ∈ S × S.

For integers r ≥ 2, recursively define the continuous and symmetric function

C̃r (x, x′) =
∫

S

C̃r−1(x, x′′)C̃(x′′, x′) dx′′ =
∞∑

j=0

λ̃r
j ej (x)ej (x

′),

where C0 ≡ 1 and the second equality follows from the spectral theorem and the continuity
of C̃. Note that, for integers r ≥ 2,

C̃r (x, x′) ≤ ‖C̃‖r−2
∞∑

j=0

λ̃2
j |ej (x)| |ej (x

′)|,

where by Mercer’s theorem the sum is a finite constant, c. Furthermore, for integers n ≥ 1
and points x, x′ ∈ S, C̃n(x, x′) := ∑n

r=1 C̃r (x, x′) is a continuous function. The sequence
C̃1(x, x′), C̃2(x, x′), . . . is Cauchy since, for integers p and q, p > q ≥ 1,

|C̃p(x, x′) − C̃q(x, x′)| ≤
p∑

r=q+1

|C̃r (x, x′)| ≤ c

p∑
r=q+1

‖C̃‖r−2 ≤ c
‖C̃‖q−1

1 − ‖C̃‖ ,

where the right-hand side is arbitrarily small for sufficiently large q since ‖C̃‖ < 1. Conse-
quently,

C(x, x′) :=
∞∑

r=1

C̃r (x, x′), x, x′ ∈ S,
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is a well-defined continuous, symmetric function. This definition of C is in accordance with
Section 2.2, since it is easily seen that C has eigenvalues λr = λ̃r/(1 − λ̃r ) and eigenfunc-
tions er . Observe also that C is nonnegative, since each term C̃r is nonnegative. Moreover, as
‖C̃‖ < 1, D (see (9)) is well defined and satisfies

D = −
∞∑

r=0

log(1 − λ̃r ) =
∞∑

n=1

∞∑
r=0

λ̃n
r

n
=

∞∑
n=1

tr(C̃n)

n
,

where the reversal of the order of summation requires the eigenvalues to be absolutely summable
and less than 1 in absolute value. The latter sum may provide a fast way of approximating D.

By admitting negative eigenvalues of C and noninteger values of 2α, the connection with
(2) is severed, so it may appear unlikely that the extensions of the permanental process to be
established below are Cox processes in general. However, Clifford andWei [4] considered a Cox
process on R driven by a squared radial Ornstein–Uhlenbeck process, and their Equation (39)
for the product densities ρ(n) can in fact be rewritten as a weighted permanent, showing that
their Cox process is our extension of the permanental process for any value of α > 0 when C is a
stationary exponential covariance function. The issue at this point is connected with the infinite
divisibility of squared Gaussian processes [10], [12]. Griffiths [12] proved that the square of a
Gaussian Markov process is infinitely divisible, which explains why the Clifford–Wei process
exists for all α > 0.

3.2. Density of the extended process

In [27, Theorem 1.4] it was shown that, for each α ≥ 0,

fα(x) := e|S|−αD perα[C̃](x) (13)

is the density of a point process in S with cumulant generating function (5) and product density
perα[C](x). Alternative and simpler proofs were provided in [21]; here we give a simpler proof
of (13), since we shall refer to the same technique in the proof of Corollary 2. We let Xα (or
just X) denote the permanental process with density (13). Note that Xα = ∅ almost surely if
α = 0 or C̃ ≡ 0.

Theorem 3. For each α ∈ R+, the permanental process is well defined.

Proof. For integers n ≥ 1,

∫
Sn

cyp[C̃](x) dx =
∑

{σ : #σ=1}

∞∑
r1,...,rn=0

∫
Sn

n∏
j=1

λ̃rj erj (xj )erj (xσ(j)) dx

= (n − 1)!
∞∑

r1,...,rn=0

∫
S

λ̃r1er1(x1)ern(x1) dx1

×
∫

S

λ̃r2er1(x2)er2(x2) dx2 · · ·
∫

S

λ̃rnern−1(xn)ern(xn) dxn

= (n − 1)!
∞∑

r=0

λ̃n
r , (14)
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where the second identity follows from Fubini’s theorem, since each cyclic product has the
same integral. Furthermore, with the convention that cyp[C̃](∅) = 0,

∞∑
n=0

1

n!
∫

Sn

cyp[C̃](x) dx =
∞∑

n=1

∞∑
r=0

λ̃n
r

n
= D. (15)

For integers r ≥ 0, define cyp(r)[C̃](x) to be the sum of products over permutations having
exactly r cycles, with the convention that cyp(r)[C̃](∅) = 1 and cyp(r)[C̃](x) = 0 if either
r > n(x) or r = 0 < n(x). Then

Dr

r! =
∞∑

s1=0

· · ·
∞∑

sr=0

1

r! s1! · · · sr !
∫

Ss1
· · ·

∫
Ssr

cyp[C̃](x1) · · · cyp[C̃](xr ) dx1 · · · dxr

=
∞∑

n=0

1

n!
∫

Sn

cyp(r)[C̃](x) dx.

Thus, for any real α > 0, since perα[C̃](x) = ∑∞
r=0 αr cyp(r)[C̃](x), we have

∞∑
n=0

1

n!
∫

Sn

perα[C̃](x) dx = eαD.

This identity also holds for α = 0.

3.3. Infinite divisibility

The infinite divisibility of fα means that if, for each integer n ≥ 1, Y1, . . . , Yn are i.i.d.
permanental processes with density fα/n, then the superposition

⋃n
j=1 Yj is a permanental

process with density fα . By combining the convolution property (11) for weighted permanents
with the density (13), we see that if Xα and Xα′ are independent permanental processes, then the
superposition Xα ∪ Xα′ is a permanental process with density fα+α′ . Consequently, since fα

exists for all α ∈ R+, the permanental process is infinitely divisible. See also [27, Theorem 6.9].
In particular, this implies infinite divisibility of the number of points N = n(X), with

cumulant generating function

log E etN = −αD + log

( ∞∑
n=0

etn

n!
∫

Sn

perα[C̃](x) dx1 · · · dxn

)

= −αD + log

( ∞∑
n=0

1

n!
∫

Sn

perα[et C̃](x) dx1 · · · dxn

)

= −αD − α

∞∑
r=0

log(1 − et λ̃r ), t ≤ − log ‖C̃‖. (16)

Thus, N is distributed in the same way as the sum of independent negative binomial random
variables with probability density functions


(n + α)


(α)n! λ̃n
r (1 − λ̃r )

α, n = 0, 1, . . . ,
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for r = 0, 1, . . . (taking 00 = 1). Consequently, N is overdispersed and

E N = α

∞∑
r=0

λ̃r

1 − λ̃r

= α

∞∑
r=0

λr, var N = α

∞∑
r=0

λ̃r

(1 − λ̃r )2
= α

∞∑
r=0

λr(1 + λr).

The probability that Xα is empty is e−αD , which tends to 1 as α tends to 0. The conditional
distributions given Xα = ∅ have a nontrivial limit density f0(x | not ∅) as α → 0, and we let
W denote the number of points in this limiting process.

Corollary 1. For finite, nonempty point configurations x ⊂ S,

f0(x | not ∅) = e|S| cyp[C̃](x)/D (17)

and

P(W = n) = D−1
∞∑

r=0

λ̃n
r

n
, n = 1, 2, . . . . (18)

Moreover, Xα is a Poisson randomization; that is, if R is a Poisson distributed random variable
with mean αD, then Xα is distributed in the same way as the superposition of R i.i.d. point
processes with density f0(x | not ∅).

Proof. The conditional density given that Xα is nonempty is

e|S| perα[C̃](x)

1 − e−αD
,

which tends to (17) as α tends to 0. Equation (15) shows that f0(x | not ∅) is a density with
respect to the unit-rate Poisson process on S. Combining (14) and (17) yields (18). Finally, by
the same arguments as in the proof of Theorem 3, for any event F of finite point configurations
x ⊂ S,

P(Xα ∈ F) =
∞∑

n=0

e−αD

n!
∫

Sn

1{x∈F } perα[C̃](x) dx

=
∞∑

r=0

(αD)re−αD

r!
∞∑

s1=0

· · ·
∞∑

sr=0

e−|S|

s1! · · · e−|S|

sr !

×
∫

Ss1
· · ·

∫
Ssr

1{x1∪···∪xr∈F } f0(x1 | not ∅) · · · f0(xr | not ∅) dx1 · · · dxr ,

from which it follows that Xα is a Poisson randomization.

From (18) we obtain the expected number of points:

E W = D−1
∞∑

r=0

λ̃r

1 − λ̃r

=
∞∑

r=0

λr

D
.

As an example of such a limit process, let S = [0, 2π ] and

C̃(x, x′) = θ(1 − cos(x − x′))
2π

, 0 < θ < 1,

so C̃(x, x) ≥ 0. The nonzero eigenvalues of C̃ are θ and −θ/2 and have multiplicities one
and two, respectively. Note that C̃ is not positive semidefinite and that E W is an increasing
function of θ with range (0, ∞).
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3.4. Simulation

A random point configuration with density f0(· | not ∅) is obtained by first generating the
size W = n, followed by a list of n points in S with joint density proportional to

C̃(x1, x2)C̃(x2, x3) · · · C̃(xn, x1),

and then ignoring the order. The joint density of the ordered values is not invariant under
permutation, but it is of Gibbs type with a cyclic graph in which each component has two
neighbours. Gibbs sampling or another Metropolis–Hastings algorithm may be used to simulate
from the ‘full conditionals’ with densities

π(xi | · · · ) ∝ C̃(xi−1, xi)C̃(xi, xi+1),

where xn+1 = x1.
This, together with the Poisson randomization in Corollary 1, provides one way of simulating

from fα . If C is positive semidefinite and 2α is a positive integer, a faster algorithm exploits
the doubly stochastic construction of the Cox process Xα , in that we simulate first the Gaussian
processes and second the Poisson process Xα | �. In the special case of a stationary exponential
covariance function C(x, x′) = β exp(−δ|x − x′|), x, x′ ∈ R, where β and δ are positive
parameters, Clifford and Wei [4] established an equivalence between our permanental process
and a simple stationary immigration–birth–death process, which is easy to simulate.

4. Two temporal extensions

Spatial birth–death processes satisfying a detailed-balance condition with respect to fα can
easily be constructed when a birth is the addition of a single point and a death is the deletion
of a single point [26]. The detailed-balance condition requires the evaluation of the so-called
Papangelou conditional intensity f (x ∪ {x})/f (x), which is a ratio of permanents, namely
perα[C̃](x ∪ {x})/perα[C̃](x). Below we consider two other spatio-temporal constructions.

4.1. An accretion process with independent increments

The Poisson randomization established in Corollary 2 implies that there exists a coupling
construction of the permanental processes Xα for all α ∈ R+. By interpreting α = t as time,
we obtain a continuous-time jump process (Xt )t≥0 where we have ‘evolution by accretion’ and
‘i.i.d. increments’.

The process is constructed as follows: (Xt )t≥0 is constant almost everywhere except at the
jump times, which are independent of the jumps; the jump times constitute a homogeneous Pois-
son process on R+ with rate D; the jumps are i.i.d. point processes with density f0(x | not ∅);
and Xt is the superposition of the jumps happening before or at time t . Note that X0 = ∅.

By Corollary 2, Xt is a permanental process with density ft . The jump process is clearly
Markovian and increasing (Xs ⊆ Xt if 0 ≤ s < t). Hence, for each s, 0 ≤ s ≤ s + t , the
increments Xs and Xs+t \ Xs are independent and have respective densities fs and ft .

4.2. Second temporal extension

In this section we assume that 2α is a positive integer and that the conditions of Section 2.2
are satisfied.

Consider a spatio-temporal Cox process for which the conditional intensity function at (x, t)

is �(x), from (2), which is constant in time. Let t > 0 be fixed and let X ⊂ S be the set of
points occurring in [0, t]. That is to say, X records the position of each point, but not the
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time of occurrence or the sequential order. Given �, the process is Poisson with intensity
function t�(x) for x ∈ S. According to Theorem 2, the density of X is given by (10) with
λr replaced by tλr . Thus, λ̃r = tλr/(1 + tλr ), and the corresponding covariance function is
denoted by C̃t . Given that n(X) = n, the conditional density of the points in Sn is proportional
to perα[C̃t ](x1, . . . , xn).

For inverse sampling, the number of points is fixed and the process is observed until the
time, Tn, at which n ≥ 1 points have occurred. What then is the joint density of Tn and the
n points? Let 
 = ∫

S
�(x) dx. Given �, the points are i.i.d. in S with density �(x)/
 and

Tn has the gamma distribution with shape parameter n and mean n/
, independent of the n

points. The conditional joint density at (x1, . . . , xn, t) is thus

�(x1) · · · �(xn)


n

tn−1
ne−t


(n − 1)! .

From the proof of Theorem 2, the unconditional joint density is

t−1 perα[C̃t ](x1, . . . , xn)

(n − 1)! ∏∞
0 (1 + tλr )α

and the marginal density on Sn of the points is

fn(x1, . . . , xn) =
∫ ∞

0

t−1 perα[C̃t ](x1, . . . , xn)

(n − 1)! ∏∞
0 (1 + tλr )α

dt. (19)

As will be shown in Section 5, unless C is proportional to a projection this is different from the
conditional density obtained in the preceding paragraph.

The eigenvalues λ̃r = tλr/(1 + tλr ) of C̃t are strictly less than 1, but increase in t with
limit 1 if λr > 0 and limit 0 otherwise, as t → ∞. Thus, if C has finite rank then the limit
limt→∞ C̃t is the orthogonal projection having the same range as C. Moreover, if, for example,
λr = e−r and δ > 0, then the eigenvalues of C̃t are near 1 for r < log t − δ log log t and
near 0 for r > log t + δ log log t . We interpret this result as stating that C̃t is approximately a
projection of rank log t when t is large. These special permanental processes are studied in the
next section.

5. The special permanental process

Let Q be a projection of rank m, i.e.
∫

S

Q(x1, x)Q(x, x2) dx = Q(x1, x2) (20)

and
∫
S

Q(x, x) dx = m. This means that Q has m unit eigenvalues and the others are 0. It is
assumed throughout this section that κ > 0 is a parameter and that the covariance function C =
κQ is a positive multiple of the projection; equivalently, C̃ = (κ/(1 + κ))Q. The associated
point process Xα is deemed special on account of its striking and unusual properties.

Corollary 2. Suppose that α > 0. For any finite point configuration x ⊂ S, the special
permanental process X has density

f (x) = e|S|(1 + κ)−n(x)−αm perα[C](x) (21)
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and the number N of points in X follows a negative binomial distribution with density

pn = 
(n + mα)


(mα)n!
(

κ

1 + κ

)n( 1

1 + κ

)mα

, n = 0, 1, . . . . (22)

Furthermore, conditional on N = n, the joint density of the n points in X is

fn(x1, . . . , xn) = perα[Q](x1, . . . , xn)

(mα)


(n + mα)
, (23)

and ∫
S

fn+1(x1, . . . , xn, x) dx = fn(x1, . . . , xn). (24)

Proof. We have perα[C̃](x) = perα[C](x)/(1 + κ)n(x). Since λ̃r = κ/(1 + κ) for m eigen-
values and λ̃r = 0 for the others,

∏∞
0 (1 + λr) = (1 + κ)m. Hence, (21) follows immediately

from Theorem 3. By (16), N has cumulant generating function −mα log(1 + κ(1 − et )),
from which (22) follows. Furthermore, (23) follows from (21) and (22) and the usual relation
between f and pnfn:

f (x) = pnfn(x1, . . . , xn)
e|S|

n! .

Finally, (24) follows straightforwardly from (20) and (23).

Equation (24) is Kolmogorov’s consistency condition for a stochastic process with marginal
densities fn. In other words, to each projection Q there corresponds an infinitely exchangeable
process taking values in S for which the n-dimensional joint density is fn. Furthermore,
(21) implies that (n(x), ρ(n(x))(x)) is a minimal sufficient statistic, and (23) states that fn is
proportional to ρ(n). In general, for other nontrivial Cox processes such as log Gaussian or shot
noise processes, no simple relationship exists connecting product densities with the density of
the process.

Again consider the space–time setting of Section 4.2, where now C = κQ. Suppose that
the point configuration x = {x1, . . . , xn} has been observed by inverse sampling with fixed n,
and that we wish to predict where the next point, Xn+1, is likely to occur. Since the density
fn in (19) reduces to that in (23), and since fn is the marginal density of fn+1, the conditional
density of Xn+1 at x is

fn+1(x1, . . . , xn, x)

fn(x1, . . . , xn)
= perα[Q](x1, . . . , xn, x)

(mα + n) perα[Q](x1, . . . , xn)
.

This predictive density is in fact the Bayes estimate of the intensity function �(x)/
, i.e. the
conditional expected value of the normalized intensity function at x given the observed point
configuration x.

6. The determinantal process

An analogous theory, in which the fermion process replaces the boson process, follows
similar lines, extending the work of [7] in a different direction. We sketch this below.

Suppose that C satisfies the conditions of Section 2.2, i.e. C is a covariance function with
spectral representation (6) such that

∑∞
0 λr < ∞. The fermion (or electron) process is a finite

point process with density
f̃1(x) := e|S|−D det[C](x)
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with respect to the unit-rate Poisson process on S, and its nth-order product density, ρ̃(n), is
given by

ρ̃(n)(x) := det[C̃](x)

(see [2], [6], and [18]). Note that det[C](x) and det[C̃](x) can be negative if C is not positive
semidefinite.

The determinant polynomial

det
α

[C](x1, . . . , xn) := per−α[−C](x1, . . . , xn)

with α#σ sgn(σ ) = (−1)n(−α)#σ in place of α#σ also satisfies the convolution property (11).
Consequently, for positive integer α, the family of point processes with density

f̃α(x) := e|S|−αD det
α

[C](x)

is closed under independent superposition (see also [27, Lemma 3.3]). A point process with
density f̃α is called a determinantal process. In contrast to the permanental process, and unless
the process is Poisson (i.e. C(x, x′) = 0 for x = x′), the points of the determinantal process
tend to repel one another.

Most of the results established for permanental processes have a dual form for determinantal
processes with C and C̃ interchanged. For example, the nth-order product density is

ρ̃(n)(x) := det
α

[C̃](x)

(see also [27, Theorem 4.1]). Furthermore, the special determinantal process in which C = κQ

is proportional to a projection of rank m has conditional densities

det
α

[Q](x1, . . . , xn)

(mα − n + 1)


(mα + 1)

for n ≤ mα only, and these satisfy the Kolmogorov consistency condition up to this order.
Furthermore, the number of points is binomial with index mα and parameter κ/(1+κ), making
it clear that the special determinantal process is defined for integer α only.

In general, the determinantal process cannot be extended to α ∈ (0, 1): if we claim fα to be
a density then, since ρ̃(2)(x, x′) = α2(C̃(x, x)C̃(x′, x′) − C̃(x, x′)2/α) has to be nonnegative,
continuity of the covariance function C̃, for example, implies that α ≥ 1.
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