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Nonabelian H1 and the Étale Van Kampen
Theorem

Michael D. Misamore

Abstract. Generalized étale homotopy pro-groups πét
1 (C, x) associated with pointed, connected, small

Grothendieck sites (C, x) are defined, and their relationship to Galois theory and the theory of pointed

torsors for discrete groups is explained.

Applications include new rigorous proofs of some folklore results around πét
1 (ét(X), x), a descrip-

tion of Grothendieck’s short exact sequence for Galois descent in terms of pointed torsor trivializa-

tions, and a new étale van Kampen theorem that gives a simple statement about a pushout square of

pro-groups that works for covering families that do not necessarily consist exclusively of monomor-

phisms. A corresponding van Kampen result for Grothendieck’s profinite groups πGal
1 immediately

follows.

1 Introduction

The étale fundamental group πét
1 (X, x) of a pointed, connected, locally noetherian

scheme was defined by Artin and Mazur in [AM69] by means of the cofiltered cat-

egory of pointed representable hypercovers of X and pointed simplicial homotopy

classes of maps between them. The significance of this object may be seen immedi-

ately in the case X = Spec k, where k is a field. Fixing a geometric point x : SpecΩ→
Spec k associated with some separable closure Ω/k, one may directly compute that

πét
1 (Spec k, x) ∼= Gal(Ω/k), the absolute Galois group of k with respect to Ω. As the

definition of the term “hypercover” is independent of the underlying Grothendieck

topology, one may generalize the definition of πét
1 to apply to the hypercovers of any

pointed, connected, small Grothendieck site (C, x), where the “point” x is interpreted

as a geometric morphism x : Set → Shv(C) of toposes. The object of this paper is to

explain some of the basic properties of πét
1 (C, x) at this level of generality, includ-

ing its relationship with Grothendieck’s Galois theory and discrete group torsors and

their trivializations, and to prove a new van Kampen theorem for πét
1 (ét(X), x) (and

some of its generalizations), which simplifies and extends previous work (in particu-

lar [Sti06, Zoo02]) in a new homotopy theoretic direction.

The principal technical device at work here is that of groupoids H-Torsx of pointed

H-torsors for constant group sheaves H := Γ
∗H associated with discrete groups H.

The characterization of these groupoids as homotopy fibres by Jardine in [Jar09b]

allows one to give precise proofs of facts that previously (to the author’s knowledge)

had the status of folklore; in particular, Theorem 3.5 shows that the pro-groupe fon-

damental élargi G associated with the full subtopos SLC(C) of sums of locally con-
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stant objects of Shv(C) is pro-isomorphic to (a Čech hypercover version of) πét
1 (C, x).

The subtlety here lies in the identification

πét
1 (C, x) ∼= πét

1 (SLC(C), x),

as the latter pro-group is easily shown (Proposition 3.7) to be pro-isomorphic to

G. Artin and Mazur apparently thought they proved this in [AM69, §10], but in

fact those methods only achieve the identification of πét
1 (C, x) as a representing pro-

object in πGrp, the category of groups and homotopy classes of homomorphisms

between them, rather than Grp itself. The proof here is new and requires the homo-

topy theoretic characterization of pointed torsors. Pointed torsors may also be used

to rigorously establish the bit of folklore that the profinite completion πét
1 (ét(X), x)̂

of the nonfinite étale πét
1 of a connected locally noetherian scheme is pro-isomorphic

to Grothendieck’s profinite fundamental group πGal
1 (X, x) associated with the finite

étale site Finét(X) based at x (Proposition 3.9). Proposition 3.8 establishes that the

πét
1 (C, x) constructed from arbitrary (not just Čech) pointed representable hypercov-

ers agrees with the Čech variants thereof whenever the site C admits a “rigid diagram

of hypercovers”, as is the case for the small étale site of any connected locally noethe-

rian scheme.

With these issues out of the way, one may study trivializations of pointed torsors

and use them to show how Grothendieck’s short exact sequence for Galois descent

1→ πGal
1 (C/(Y, y), y)→ πGal

1 (C, x) ։ GY → 1

associated with connected Galois objects (Y, y) in pointed Galois categories (C, x, Fx)

arises naturally from short exact sequences in pointed nonabelian H1
x (C,−); see

Corollary 5.5.

The final section of this paper uses the general methods established above to prove

a new variant (Corollary 6.5) of étale van Kampen theorem which is both simple to

state (it is just a pushout as in the usual topological van Kampen theorem) and does

not require the covering family to consist exclusively of monomorphisms (as in the

case of coverings by open subschemes or substacks; cf. [Zoo02]). Corollary 6.6 shows

in particular how this result specializes to a statement about Grothendieck’s profi-

nite fundamental groups. The methods employed to prove these statements are con-

ceptual, homotopy theoretic, and in fact give the presumably stronger Theorem 6.4

whose statement does not in any direct way depend upon the underlying topology.

2 Torsors and (Geometrically) Pointed Torsors

Étale homotopy theory begins with the observation that, for suitably nice Grothen-

dieck sites C, the canonical constant sheaf functor Γ
∗ : Set → Shv(C) has a left

adjoint Π : Shv(C) → Set called the connected components functor. Naturally, this

functor has the geometric interpretation of sending a scheme to its set of scheme-

theoretic connected components whenever one is working with some good enough

site of schemes with a subcanonical topology (i.e., all representable presheaves are

sheaves).
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2.1 Connectedness and Local Connectedness

Recall that a sheaf F on a site C is called connected if, whenever there is a coprod-

uct decomposition F = F1 ⊔ F2, either F1 = ∅ or F2 = ∅, where ∅ denotes

the initial sheaf on C. A site C is called locally connected if every sheaf on C splits

uniquely (up to canonical isomorphism) as a coproduct of connected sheaves, and if

representable sheaves similarly decompose as coproducts of connected representable

sheaves. On the sites of interest here any connected scheme will represent a connected

representable sheaf (see e.g., [Zoo01, Lemma 3.3]). It is known that the étale sites

of locally noetherian Deligne–Mumford stacks are locally connected ([Zoo01, 3.1]).

Under these conditions, the aforementioned connected components functor Π ex-

ists (defined by sending each sheaf to its set of connected components) and is easily

shown to be left adjoint to Γ
∗. A Grothendieck site C with terminal sheaf ∗ will be

called connected if ∗ is connected. However the functor Π may arise, the results below

depend only upon its existence.

2.2 Closed Model Structures and Hypercovers

Say that a category C is small if its class of morphisms Mor(C) forms a set. Any small

Grothendieck site C admits a closed model structure on the associated category of

simplicial (pre)sheaves where the cofibrations are monomorphisms, the weak equiv-

alences are the local weak equivalences, and the fibrations are what will be called here

the global fibrations. These closed model structures are due to Joyal in the sheaf case

(in Joyal’s famous letter to Grothendieck) and Jardine in the presheaf case; the reader

is encouraged to refer to [Jar87] for terms not defined here. These are known as the

“injective” model structures, and will sometimes be used in what follows.

A morphism f : X → Y of simplicial (pre)sheaves will be called a local fibration

if it has the local right lifting property with respect to all the standard inclusions

Λ
n
k →֒ ∆

n of k-horns into the standard n-simplices for n ≥ 0 (cf. [Jar86, §1] for a

definition and discussion of the local right lifting property). A morphism f : X → Y

of simplicial (pre)sheaves will be called a local trivial fibration if it is simultaneously

a local fibration and a local weak equivalence; by a theorem of Jardine ([Jar87, 1.12])

these are exactly the morphisms of simplicial (pre)sheaves having the local right lift-

ing property with respect to the standard inclusions ∂∆n →֒ ∆
n of boundaries of

the standard n-simplices for n ≥ 0. By a simple adjointness argument beginning

with the observation that ∂∆n ∼= skn−1∆
n, one sees that this local lifting property is

equivalent to the assertion that the (pre)sheaf morphisms

X0 → Y0

Xn → coskn−1Xn ×coskn−1Yn
Yn

are local epimorphisms for n ≥ 1. This is true in particular when Y = K(Z, 0), the

constant (or “discrete”) simplicial (pre)sheaf associated with a (pre)sheaf Z. When Z

is a scheme and X is representable by a simplicial scheme this amounts to the classical

definition of a hypercover f : X → Z (cf. [AM69]; these observations appeared in

[Jar94]). For this reason and others it is now standard to call any local trivial fibration
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of simplicial (pre)sheaves on a small Grothendieck site C a hypercover. This is what is

meant by the term“hypercover” in the remainder of this paper.

2.3 Torsors and Homotopy Theory

Recall that a torsor X for a sheaf of groups G on a small Grothendieck siteC is a sheaf X

with an G-action such that there is a sheaf epi U ։ ∗ to the terminal sheaf ∗ of C and

a G-equivariant sheaf isomorphism X×U ∼= G×U called a trivializaton of X along U .

This implies that the sheaf-theoretic quotient X/G is isomorphic to the terminal sheaf

∗. The simplicial sheaf EG×GX is defined in sections U as the nerves of the translation

categories EG(U )(X(U )) for the actions of G(U ) on X(U ); each such category is a

groupoid, so π̃n(EG ×G X) ∼= 0 for n ≥ 2 and, as the isotropy groups locally vanish

and the action is locally transitive, there is a local weak equivalence EG ×G X ≃ ∗
(here π̃n denotes the sheaf of homotopy groups in degree n; for the definition of

a translation category see [GJ99, 1.8, IV]). As there is an isomorphism of sheaves

π̃0(EG×G X) ∼= X/G one sees that X is a G-torsor if and only if the map EG×G X →
∗ of simplicial sheaves is a local weak equivalence (this is another observation of

Jardine; cf. [Jar09a, 3.1]). The maps X → Y of G-torsors are G-equivariant maps of

sheaves, induced as fibres of comparisons of local fibrations EG ×G X → BG (resp.

for Y ), and hence are local weak equivalences of constant simplicial sheaves, and thus

are isomorphisms (following the notes of Jardine). The category of G-torsors on

C is therefore a groupoid denoted by G-Tors(C); its path component set is denoted

H1(C,G), and this is the definition of nonabelian H1 of C with coefficients in G. This

set is pointed by the isomorphism class of the trivial G-torsor represented by G itself.

It has been known at least since [AM69] appeared that the étale fundamental

group πét
1 (X, x) based at some geometric point x determines H1(C,H) for constant

sheaves of discrete groups H where C := ét(X), the étale site of a connected locally

noetherian scheme X pointed by x (i.e., where the covering families are taken to be

surjective sums of étale morphisms; here “étale” is not taken to include “finite”). The

following is a quick homotopy-theoretic argument to establish this. It is based on an

earlier argument of Jardine made in the setting of a Galois category in the sense of

[SGA03, V]. First, we have a lemma.

Lemma 2.1 For any connected, small, Grothendieck site C and any hypercover U → ∗
of the terminal sheaf, one has π0(ΠU ) ∼= ∗.

Proof The canonical map U → ∗ induces a map backwards

[∗,K(Γ∗S, 0)]→ [U ,K(Γ∗S, 0)]

in the homotopy category for any set S; this is an isomorphism, since U → ∗ is

a hypercover. On the other hand U and ∗ are cofibrant and K(Γ∗S, 0) is globally

fibrant, so these determine isomorphisms

π(∗,K(Γ∗S, 0)) ∼= π(U ,K(Γ∗S, 0)),

where π denotes taking simplicial homotopy classes of maps. One has Π(∗) = ∗,
since C is connected, but then by adjunction π(∗,K(S, 0)) ∼= π(ΠU ,K(S, 0)), so
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Hom(∗, S) ∼= Hom(π0(ΠU ), S) for any set S. Setting S = {0, 1} completes the argu-

ment.

One may paraphrase this by saying that any hypercover of the terminal sheaf on a

connected site is automatically path-connected.

Proposition 2.2 For any connected, pointed, small, Grothendieck site C there are bi-

jections

πcts(π
ét
1 (C),H) ∼= H1(C,H)

natural in discrete groups H, where πét
1 (C) is the étale fundamental group à la Artin–

Mazur constructed by means of pointed (not necessarily representable) hypercovers, and

where πcts is defined as in the proof.

Proof There is a sequence of identifications

πcts(π
ét
1 (C),H) := lim

−→
(U ,u)∈HR∗(C)

π(π1(ΠU , u),H)

∼= lim
−→

(U ,u)∈HR∗(C)

π(ΠU ,BH)

∼= lim
−→

(U ,u)∈HR∗(C)

π(U ,BΓ∗H)

∼= [∗,BΓ∗H]

∼= π0(H-Tors(C)) := H1(C,H),

where the transition from simplicial homotopy classes of maps to homotopy classes

of maps is the generalized Verdier hypercovering theorem applied to the locally fi-

brant objects U and BΓ∗H (cf. [Jar09c, Theorem 3]); HR∗(C) is the category of (ge-

ometrically) pointed hypercovers of the terminal sheaf (implicitly over the basepoint

of C) and pointed simplicial homotopy classes of maps between them; B denotes the

sectionwise nerve functor; and H-Tors(C) denotes the groupoid of H-torsors associ-

ated with the constant sheaf of groups Γ∗H.

Lemma 2.1 was used in a subtle way to conflate the fundamental groupoid of ΠU

with the fundamental group of (ΠU , u), as they are homotopy equivalent (in the sense

of taking their nerves) in this case. This argument applies to any topology, not just

the étale, and so is valid for the analogues of πét
1 in any other setting where one can

talk about hypercovers in a pointed connected site.

The converse question of whether the pointed sets H1(C,H) together with their

naturality in discrete groups H determine πét
1 (C) is more difficult to answer. Propo-

sition 2.2 may be interpreted as establishing that the functor

H1(C,−) : πGrp→ Set

is pro-representable by πét
1 (C), where πGrp is the category of groups and simplicial

homotopy classes of homomorphisms between them (known elsewhere as homomor-

phisms up to conjugacy or “exterior” homomorphisms). As representing pro-objects
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are unique up to (unique) pro-isomorphism ([SGA72, 8.2.4.8, I]), one knows that

H1(C,−) determines πét
1 (C) up to (unique) pro-isomorphism in πGrp, but one does

not know at this stage of the argument that it is determined up to (unique) pro-

isomorphism in Grp. In the case that H need only vary over abelian groups this prob-

lem does not arise since the conjugacy relation degenerates. Geometrically pointed

torsors (or just “pointed torsors” for short) were introduced precisely to fix this prob-

lem wherever Galois theory (in the modern topos theoretic sense) is available.

3 Pointed Torsors and Galois Theory

3.1 Pointed Torsors

Geometrically pointed torsors may be motiviated by the following simple example

from the Galois theory of fields. Fix a base field k and choose a separably closed

extension x : k →֒ Ω. This determines a geometric point

x : SpecΩ→ Spec k

of the associated scheme Spec k. Considering any Galois extension f : k →֒ L of k,

the possible lifts y (i.e., geometric points) making the associated diagram

Spec L

f

��

SpecΩ

y
;;vvvvvvvvv

x

// Spec k

commute coincide with the possible embeddings L →֒ Ω over k, which are of course

permuted by the action of the associated Galois group Gal(L/k). The scheme Spec L

represents a Gal(L/k)-torsor trivializing over itself; however, if one requires that the

Galois action respect a fixed choice of lift (i.e., one makes a fixed choice of geometric

point y : SpecΩ → Spec L over x), then only the trivial action is possible, as the

associated embedding has been fixed. This property of having no nontrivial pointed

automorphisms means that groupoids of such pointed torsors over k and pointed

equivariant maps between them are particularly simple from a homotopy theoretic

point of view. They are disjoint unions of contractible path components.

Suppose C is some site of schemes having finite limits and finite coproducts that

contains a separably closed field Ω := SpecΩ. So long as the topology is defined

by families of maps that are stable under pullback, Verdier’s criterion from [SGA72,

Exposé III], applies and determines a site morphism x : C/Ω→ C/X associated with

any map x : SpecΩ → X to some object X. If C is a site with the étale topology then

this further determines a geometric morphism

x∗ : Shv(ét(X)) ⇆ Shv(ét(Ω)) ≃ Set : x∗,

where one recognizes x∗ as the functor sending any étale sheaf on X to its stalk at the

geometric point x. One readily verifies that the choice of a global section u : ∗ →
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x∗(U ) associated to a sheaf U represented by an object U → X of ét(X) is equivalent

to the choice of a geometric point u : SpecΩ→ U over x.

More generally, suppose that x∗ : Shv(C) ⇆ Set : x∗ is a geometric morphism

with direct image functor x∗ for some small Grothendieck site C; such a pair (C, x)

will be called a pointed site with basepoint x. The functor x∗ is an inverse image func-

tor so is exact and thus preserves local weak equivalences: by exactness x∗ commutes

with Kan’s Ex∞ functor and thus it suffices to prove the statement for locally fibrant

objects, but then one may factor the map as a local weak equivalence right inverse to

a hypercover followed by a hypercover (cf. e.g., [GJ99, 8.4, II]), and one may directly

check that x∗ preserves hypercovers by using their definition in terms of coskeleta.

As x∗ is exact it also preserves the Borel construction EH ×H X associated with any

H-torsor X for any sheaf of groups H on C, so in summary it preserves the local weak

equivalence EH ×H X
≃
−→ ∗, and thus sends H-torsors on C to x∗H-torsors in Set.

A geometrically pointed H-torsor on the pointed site (C, x) for a sheaf of groups

H is an H-torsor Y on C together with a global section y : ∗ → x∗(Y ). A morphism

of (geometrically) pointed H-torsors is a morphism of the underlying H-torsors that

respects the points. Lemma 1 of [Jar09b] establishes in particular that the groupoid

H-Tors(C)x of pointed H-torsors on C is the homotopy fibre of the map

H-Tors(C)→ x∗(H)-Tors(Set).

Suppose now that H is a constant sheaf of groups. Then every pointed H-torsor on

C is locally constant on C, so the groupoids H-Tors(C)x for variable discrete groups

H all belong to the subtopos SLC(C) ⊂ Shv(C) of sums of locally constant objects

of Shv(C). The inverse image x∗ : Shv(C) → Set then restricts (cf. [Moe95]) to an

inverse image x∗ : SLC(C)→ Set.

3.2 Digression on Galois Theory

Now assume that (C, x) is also connected. In [Moe89], Moerdijk showed that there

are then pointed topos equivalences

SLC(C) ≃ Shv(G/U) ≃ BG

analogous to that of classical Galois theory, where G is a prodiscrete localic group

(pro-object in the category of localic groups, which themselves are group objects in

the category of locales). Here one may conflate the diagram G with its limit object

lim
←−

G in localic groups (in a sense this is the reason for considering localic rather than

topological groups in this context). Here, prodiscrete means that G may be interpeted

as a cofiltered diagram of discrete localic groups, just as classical Galois theory deals

with limits of discrete topological groups. The site G/U is that of the right cosets

G/U for localic open subgroups U of G (these are discrete), with the obvious G-

action and all G-equivariant maps between them as G-sets, where a G-set Z is a set Z

with a G-action in the localic sense. The topos BG is that of all discrete G-sets, and

in particular the latter equivalence asserts that any discrete G-set of the form G/U

for a localic open subgroup U represents a sheaf on the site G/U, so the topology is
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subcanonical. It is known that any prodiscrete localic group corresponds to a pro-

group with surjective transition maps, and the canonical maps G → Gi are all also

surjective ([Moe89, 1.4]).

Under Moerdijk’s equivalence the inverse image x∗ : SLC(C) → Set goes to the

functor g∗ : BG→ Set that forgets the G-action [Moe95]. This functor obviously re-

flects epis, so it is faithful and thus the topos BG has enough points, namely {g}.
This point g restricts to a forgetful functor u : G/U → Set. Recall that if Set is

equipped with the standard topology where the covering families are surjections,

then there is an equivalence Shv(Set) ≃ Set determined by F 7→ F(∗) on the one

hand and X 7→ Hom(−,X) on the other. Following [Jar09b], the direct image

u∗ ≃ g∗ : Set → Shv(G/U) sends any set X to the sheaf Hom(u(−),X) on G/U,

and the left adjoint u∗ ≃ g∗ : Shv(G/U)→ Set is the left Kan extension defined by

u∗(F)(∗) := lim
−→
∗/X

F(X),

where the index category ∗/X has maps ∗ → X as objects, where the X are sets of the

form G/U for open localic subgroups U and morphisms are commutative triangles

over morphisms in the category G/U. The identity elements e : ∗ → Gi represent the

pro-group G itself in this index category, and this subcategory is cofinal as usual, so

one arrives at the useful characterization

u∗(F) = lim
−→

i

F(Gi).

The pointed topos (Shv(G/U), u) has enough points, since it is pointed equivalent to

(BG, g), and in fact the list {u} suffices, since equivalences of categories are faithful

functors.

A word of explanation: intuitively, the subtopos SLC(C) captures and isolates the

covering space theory of Shv(C). The category of locally constant finite sheaves on

the étale site of a scheme X is known (by descent theory) to be equivalent to the finite

étale site of X. More generally, any locally constant sheaf of sets on ét(X) for a scheme

X is represented by a (not necessarily finite) étale map (cf. [SGA72, 2.2, Exposé IX,

III]), so the connection with geometry is closer than one might expect a priori.

3.3 Characterization of πét
1

Under Moerdijk’s equivalence the groupoid H-Tors(C)x of pointed H-torsors over

x for any constant sheaf of groups H on a connected site C goes to a groupoid

H-Tors(G/U)u of pointed H-torsors over u. Equivalences of categories preserve path

components and pointed torsors over x and u have no nontrivial (pointed) automor-

phisms since x∗ and u∗ are faithful on SLC(C), so there are induced weak equivalences

of groupoids

H-Tors(C)x ≃ H-Tors(G/U)u

natural in H. It therefore suffices to study the latter class of groupoids for the purpose

of computing π0(H-Tors(C)x). By [Jar09b, Lemma 1] the groupoid H-Tors(G/U)u is
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the homotopy fibre of the canonical map

u∗ : H-Tors(G/U)→ H-Tors(Set).

Lemma 2 and Corollary 11 of [Jar09b] in this context determine bijections

π0(H-Tors(C)x) ∼= π0(H-Tors(G/U)u) ∼= lim
−→
i∈I

Hom(Č(Gi),BH)

natural in H, where I is the indexing category for the prodiscrete localic group G,

Č(Gi) is the simplicial Čech resolution associated with the G-equivariant epi Gi ։ ∗,
and all the elements of Hom(Č(Gi),BH) are automatically pointed maps, since H is

a constant sheaf of groups (rather than groupoids). Example 13 of [Jar09b] applies

to give bijections

H1
x (C,H) := π0(H-Tors(C)x) ∼= lim

−→
i

Hom(Gi ,H)

natural in H, and the latter may be further identified with the set Homloc.(G,H) of

maps of prodiscrete localic groups from G to H to complete the analogy with the case

of ordinary torsors discussed above.

The upshot of all this is summarized in the following proposition.

Proposition 3.1 Suppose (C, x) is a connected (thus locally connected), small, Gro-

thendieck site pointed by a choice of geometric morphism x : Set → Shv(C) (“point” in

topos language). Then the pro-group G associated with the subtopos SLC(C) of Shv(C) is

determined up to unique pro-isomorphism by the pointed nonabelian H1
x (C,−) functor

associated with x.

Proof After the above discussion one must only note that H1
x (C,−) is pro-represen-

table by G and that representing pro-objects are unique up to unique pro-isomorph-

ism.

The pro-group G here is (up to descent arguments for pointed H-torsors) what

Grothendieck called the “pro-groupe fondamental élargi” based at x ([SGA70, p. 110,

Book 2]). The expected explicit identification of G is given by G ∼= πét
1 (C, x), where

the latter group is the fundamental pro-group of Artin–Mazur defined by means of

pointed representable hypercovers. The standard reference for this identification is

[AM69, §10], but unfortunately the argument there boils down to the characteriza-

tion of unpointed nonabelian H1(|ΠK|,H) for hypercovers K in classical topological

covering space theory, so it cannot be considered to give a complete characterization

of G. In other words, it runs into the same “homomorphisms up to simplicial homo-

topy” versus “actual homomorphisms” problem mentioned after Proposition 2.2.

Aspects of the statement πét
1 (ét(X), x) ∼= G for small étale sites ét(X) of connected

locally noetherian schemes or DM stacks have also been considered in [SGA70, p. 111,

Book 2]. There, Grothendieck considers pointed descent data for split pointed H-

torsors, and shows that such sets are representable by fundamental groups of certain
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pointed simplicial sets. Unfortunately the argument there does not appear to ad-

dress the issue of representability of descent data when H is infinite. The following

argument is an alternative homotopy-theoretic approach to these matters.

Fix a pointed, small, Grothendieck site (C, x), a constant sheaf of groups H on

C with stalk also denoted H, and a pointed representable sheaf epi (U , u) ։ ∗ of

Shv(C). Let ?|U : Shv(C) → Shv(C/(U , u)) denote the corresponding restriction

functor; this functor is exact (right adjoint of a topos morphism and it preserves sheaf

epis), so it sends pointed H-torsors on C (with respect to x) to pointed H-torsors

(with respect to u) on C/(U , u), and morphisms of pointed H-torsors on C to mor-

phisms of pointed H-torsors on C/(U , u). Let FU denote the homotopy fibre of the

induced map

H-Torsx

?|U
−→ H-Torsu

of groupoids, where H-Torsx is the groupoid of pointed H-torsors on C with respect

to x and H-Torsu is the groupoid of pointed H-torsors on C/(U , u) with respect to

u. Then the objects of FU are morphisms H → T|U of pointed H-torsors (the trivial

H-torsor H being pointed by e ∈ H), and the morphisms are commutative triangles

T|U

m|U

��

H

??��������
// T ′

|U

of morphisms of pointed H-torsors on C/(U , u), where m : T → T ′ is a morphism

of pointed H-torsors on C. The objects of FU correspond exactly to pointed trivial-

izations σ : (U , u)→ T so that FU is equivalent to the groupoid FU whose objects are

pointed trivializations of the form σ and whose morphisms are commutative trian-

gles

T

m

��

(U , u)
σ ′

//

σ
<<yyyyyyyyy

T ′

of pointed maps in C, where m is a morphism of pointed H-torsors. The map FU →
H-Torsx is that which forgets the pointed trivializations.

Lemma 3.2 With the definitions above, there are bijections

π0(FU ) ∼= Hom(Č(U , u),BH),

natural in discrete groups H, where Č(U , u) is the pointed Čech resolution associated

with the pointed sheaf epi (U , u) ։ ∗ of C.
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Proof By [Jar09b, Lemma 2] the path components of FU correspond to the path

components of the cocycle category hČ (∗,BH)x of those pointed Čech cocycles under

(U , u). Each pointed trivialization σ : (U , u)→ T determines a pointed Čech cocycle

∗
≃
←− Č(U , u)

σ∗

−→ Č(T)→ BH.

Such cocycles are initial in their respective path components of hČ (∗,BH)x, so these

path components correspond to certain maps Č(U , u) → BH. Any element in

Hom(Č(U , u),BH) determines a pointed H-torsor T equipped with a fixed pointed

trivialization σ by (U , u), so this correspondence is surjective, hence bijective.

In order to study torsor trivializations on C, it is convenient to introduce a well-

ordered category Ex whose objects are representable pointed sheaf epimorphisms

Ui ։ ∗ on C to the terminal sheaf, whose morphisms are fixed choices of pointed

epis U j ։ Ui of objects for j > i, and with the property that any constant group

torsor on C trivializes on some such object Ui ։ ∗ (hence also on any object with a

larger index). The key property of Ex is that it is (co)filtered.

Say that a pointed H-torsor (T, t) admits a pointed trivialization if there exists a

pointed representable sheaf epi (U , u) ։ ∗ and a pointed section σ : (U , u) → T.

Pointed trivializations exist in most cases of interest.

Lemma 3.3 Suppose (C, x) is a pointed small Grothendieck site with a subcanoni-

cal topology (i.e., representable presheaves are sheaves) and arbitrary small coproducts.

Then any pointed H-torsor for a sheaf of groups H on C admits a pointed trivialization

by a representable sheaf epi.

Proof Any pointed H-torsor (T, t) admits some ordinary trivialization σ : V → T

from a sheaf epi V ։ ∗, but then the composite V → T → ∗ is an epi so that

the canonical map T → ∗ is also an epi. As a sheaf, T is a colimit of representable

presheaves Ui for some small index category I, which are sheaves since the topology is

subcanonical, and there is a sheaf epi U := ⊔i∈IUi ։ T so that the composite U →
T → ∗ is a sheaf epi. In particular the map U ։ T is a representable trivialization of

T, and as it is a sheaf epi, any point t ∈ x∗(T) lifts to some point u ∈ x∗(U ), so that

(U , u) ։ T is a pointed trivialization of T.

This is true in particular for pointed sites of connected locally noetherian schemes

and DM stacks with nonfinite étale topologies. The homotopy long exact sequence

associated with the fibre sequence

FU → H-Torsx → H-Torsu

in groupoids for a representable pointed sheaf epi (U , u) ։ ∗ has the form

1→ π1(H-Torsu)→ π0(FU )→ π0(H-Torsx)→ π0(H-Torsu)

for any constant sheaf of groups H on a pointed connected site (C, x), since the ob-

jects of H-Torsx have no pointed automorphisms. The trivial pointed torsor H on

C/(U , u) is represented by H ×U pointed by e× u over x with its canonical pointed
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projection pru : H ×U → U . The sheaf H ×U is obviously locally constant, since

H is constant, so it lives in SLC(C), but then it has no nontrivial pointed (U , u)-

automorphisms (despite the fact that U may be disconnected) as any such must be

the identity on x∗, and x∗ is faithful for SLC(C) by Galois theory. Thus π1(H-Torsu)

vanishes at the basepoint given by the trivial H-torsor, so the sequence above always

reduces to an exact sequence

1→ π0(FU )→ π0(H-Torsx)→ π0(H-Torsu).

Lemma 3.4 With the definitions above there are bijections

lim
−→

(U ,u)∈Ex

π0(FU ) ∼= π0(H-Torsx) := H1
x (C,H),

natural in discrete groups H, whenever pointed H-torsors on (C, x) admit pointed trivi-

alizations by representable sheaf epis for all constant sheaves of discrete groups H.

Proof Taking the filtered colimit over Ex of the homotopy short exact sequences of

pointed sets above, one obtains a short exact sequence

1→ lim
−→

Ex

π0(FU )→ π0(H-Torsx)→ ∗

of pointed sets, since one has lim
−→Ex

π0(H-Torsu) ∼= ∗ as every pointed H-torsor on

any C/(U , u) pointed trivializes on a sufficiently fine choice of pointed sheaf epi

(V, v) ։ ∗ dominating (U , u). The middle map is therefore surjective by exact-

ness. The filtered colimit of the maps π1(H-Torsx) → π1(H-Torsu) for any choice of

basepoint of H-Torsx is surjective since all non-trivial torsors eventually pointed triv-

ialize and one knows that the trivial H-torsor on any (U , u) has no nontrivial pointed

automorphisms by the above discussion. Therefore the colimit map π0(lim
−→Ex

FU ) →
π0(H-Torsx) must be injective by Lemma 4.1. The middle map must therefore be

bijective, as was to be shown.

Given a category Ex of sheaf epis as above, one may define a “Čech variant”

πét
1 (C, x)Ex

of the usual πét
1 (C, x) by sending any object (U , u) ։ ∗ of Ex to

π1(ΠČ(U , u)). As Ex is cofiltered this gives a well-defined pro-group. The follow-

ing Theorem gives a characterization of G by this Čech version πét
1 (C, x)Ex

of πét
1 .

Theorem 3.5 Suppose (C, x) is a connected, pointed, small, Grothendieck site with fi-

nite limits and arbitrary small coproducts, where pointed H-torsors admit pointed triv-

ializations by representable sheaf epis for all constant sheaves of discrete groups H. Then

the pro-groupe fondamental élargi G associated with the full subtopos SLC(C) of Shv(C)

via Galois theory is (uniquely) pro-isomorphic to πét
1 (C, x)Ex

.

Proof The strategy is to demonstrate that πét
1 (C, x)Ex

pro-represents the functor

H1
x (C,−) so that it must be pro-isomorphic to G. By Lemmas 3.2 and 3.4 one has

https://doi.org/10.4153/CJM-2011-030-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-030-x


1400 M. D. Misamore

identifications

Homcts(π
ét
1 (C, x)Ex

,H) ∼= lim
−→

Ex

Hom(π1(ΠČ(U , u)),H) ∼= lim
−→

Ex

Hom(Č(U , u),BΓ∗H)

∼= lim
−→

Ex

π0(FU ) ∼= π0(H-Torsx) := H1
x (C,H),

natural in discrete groups H, so the result follows.

This theorem also establishes that πét
1 (C, x)Ex

does not depend (up to unique pro-

isomorphism) on the choice of the category Ex; from now on this pro-group will

therefore be denoted πét
1 (C, x)Č . Note also the lack of any assumptions about the

topology on C (despite the use of the word “étale” which is present here only for

historical reasons) and the lack of any explicit descent theory. The following com-

parison result shows that it often suffices to use sheaf-theoretic hypercovers to study

πét
1 (C, x):

Proposition 3.6 Suppose (C, x) is a pointed connected small Grothendieck site with

a subcanonical topology (i.e., representable presheaves are sheaves), finite limits, and

arbitrary small coproducts. Then there is a pro-isomorphism

πét
1 (C, x) ∼= πét

1 (C, x)rep,

where the left-hand side is the fundamental pro-group defined by means of pointed hy-

percovers, and the right-hand side is the classical fundamental pro-group defined by

means of pointed representable hypercovers.

Proof The essential fact here is that any hypercover U → ∗ of the terminal sheaf ∗
may be dominated by a representable hypercover V → ∗ (cf. [Jar94, Lemma 2.2]). A

careful reading of the argument there shows that the representable simplicial scheme

X at the base may be replaced by the terminal sheaf ∗ in the present context without

losing representability of the split hypercover, even when the terminal sheaf ∗ itself is

not representable (e.g., on certain fibred sites), as it is a constant simplicial object.

The argument of [Jar94] is inductive and begins with the observation that any

sheaf epi U ։ ∗ to the terminal sheaf may be dominated by a representable sheaf epi:

every presheaf (in particular every sheaf U ) is a colimit of representable presheaves Ui

(which are sheaves, since the topology is subcanonical) on some small index category

I. This colimit appears as the coequalizer
⊔

k : i→ j∈I

Ui ⇉
⊔
j∈I

U j ։ U ,

so, in particular, the indicated map is always an epi, and thus it determines a com-

mutative triangle

U

��
��⊔

j∈I

U j

>> >>}}}}}}}}}
// // ∗
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of epis whenever U → ∗ is a sheaf epi. In particular, the map

V :=
⊔
j∈I

U j ։ U

is an epi in this case so that x∗(V )→ x∗(U ) is also an epi by exactness, thus any point

ux ∈ x∗(U ) lifts to a point vx ∈ x∗(V ), and therefore any pointed sheaf epi may be

dominated by a pointed representable sheaf epi.

Thus any pointed hypercover is dominated by some pointed representable hyper-

cover. Now the category HR∗(C) of pointed hypercovers of the terminal sheaf of C

and pointed simplicial homotopy classes of maps between them has products and

equalizers, so the result follows by a cofinality argument.

One may also wonder what happens if πét
1 (SLC(C), x)Č is computed directly in-

stead of πét
1 (C, x)Č .

Proposition 3.7 Suppose (C, x) is a pointed, connected, small, Grothendieck site

having all finite limits, arbitrary coproducts, and a subcanonical topology. Then the

pro-group G associated with SLC(C, x) is (uniquely) pro-isomorphic to the pro-group

πét
1 (SLC(C), x)Č defined by means of pointed representable Čech hypercovers in SLC(C).

Proof Choosing a suitable category Ex of pointed representable sheaf epis for

SLC(C), one directly calculates

Homcts(π
ét
1 (SLC(C)Č , x),H) ∼= lim

−→
Ex

Hom(π1(ΠČ(U , u)),H)

∼= lim
−→

Ex

Hom(Č(U , u),BΓ∗H)

∼= lim
−→

(Y,y)∈Gal(SLC(C))

Hom(Č(Y, y),BΓ∗H)

∼= lim
−→

(GY , eGY
)

Hom(Č(GY ),BΓ∗H)

∼= lim
−→
GY

Hom(GY ,H) := Homloc.(G,H),

where the (U , u) ։ ∗ are pointed representable sheaf epis over x, the (Y, y) ∈
SLC(C) are pointed Galois objects for (SLC(C), x) that are cofinal among such sheaf

epis by Galois theory (cf. [Dub04, Prop. 3.1.1, Thm. 3.3.8]), the GY := Gal(Y )

are the associated Galois groups regarded as discrete localic groups, and Č(U , u) is

the Čech construction for any pointed sheaf epi (U , u) ։ ∗. As these bijections are

natural in H the result follows.

A variation of Proposition 3.7 was previously given by Artin-Mazur ([AM69, §9]),

who used a slightly different method.

The above results also apply to the version of πét
1 constructed from arbitrary

pointed representable hypercovers whenever the site C admits a “rigid diagram of
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pointed hypercovers”: a small diagram S of pointed representable hypercovers in C

will be called a rigid diagram of pointed hypercovers if

(i) S is cofiltered (i.e., without first passing to pointed simplicial homotopy classes

of maps between the objects); and

(ii) the functor S → HR∗(C) obtained by passing to pointed simplicial homotopy

classes of maps is cofinal such that for every object U of HR∗(C) there is an

object S of S and a pointed map S→ U that is surjective in degree 0.

The canonical example of such a diagram S is that of the pointed rigid hypercovers of

the small étale site of a connected locally noetherian scheme X (cf. [Fri82, Proof of

Prop. 4.5]).

Proposition 3.8 With the assumptions of Theorem 3.5, assume that C admits a

rigid diagram S of pointed hypercovers. Then the pro-groupe fondamental élargi G is

(uniquely) pro-isomorphic to the étale fundamental pro-group πét
1 (C, x) constructed by

means of pointed representable hypercovers.

Proof As S is cofinal in HR∗(C), one may reindex πét
1 (C, x) by S. Then one has

identifications

Homcts(π
ét
1 (C, x),H) ∼= lim

−→
(U ,u)∈S

Hom(π1(Π(U , u)),H)

∼= lim
−→

(U ,u)∈S

Hom((U , u),BΓ∗H)

∼= lim
−→

(U ,u)∈S

Hom(Č(U0, u),BΓ∗H)

∼= lim
−→

(U ,u)∈S

π0(FU0
) ∼= π0(H-Torsx) := H1

x (C,H),

natural in discrete groups H, where the third bijection follows from the proof of

[Jar89, Prop. 1.1], and the identification of the colimit of π0(FU0
) with π0(H-Torsx)

follows by the same argument as Lemma 3.4 since S is cofiltered.

3.4 Application to Finite Étale Sites

As a consequence of [SGA03, V] and [Noo04, 4.2] one has pointed equivalences

Shv(Finét(X), x) ≃ Shv(πGal
1 (X, x)-Setd f ) ≃ BπGal

1 (X, x)

whenever (Finét(X), x) is the finite étale site of a connected locally noetherian scheme

or DM stack with geometric point x, where πGal
1 (X, x) denotes the profinite funda-

mental group of (Finét(X), x) determined by Grothendieck’s general theory of Galois

categories. Techniques similar to the proof of Proposition 3.7 establish that πGal
1 (X, x)

pro-represents the functor

H1
x (Finét(X),−) : FinGrp→ Set,
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where FinGrp is the category of finite groups and group homomorphisms between

them. Any finite group torsor on ét(X) automatically belongs to Finét(X), so

H1
x (ét(X),−) and H1

x (Finét(X),−) are isomorphic as functors on FinGrp. The fol-

lowing proposition establishes a relationship between the finite and nonfinite étale

sites.

Proposition 3.9 Suppose (ét(X), x) is the pointed (nonfinite) étale site of a con-

nected locally noetherian scheme. Then the profinite Grothendieck fundamental group

πGal
1 (X, x) associated with Finét(X) is (uniquely) pro-isomorphic to πét

1 (ét(X), x)̂, the

profinite completion of the classical étale homotopy pro-group πét
1 (ét(X), x) constructed

by means of pointed representable hypercovers.

Proof As above πGal
1 (X, x) pro-represents the functor

H1
x (ét(X),−) : FinGrp→ Set,

and on the other hand πét
1 (ét(X), x) is known to pro-represent

H1
x (ét(X),−) : Grp→ Set,

by Theorem 3.5 and Proposition 3.8. Therefore, πét
1 (ét(X), x)̂ also pro-represents

the former functor, so it must be pro-isomorphic to πGal
1 (X, x).

4 Homotopy Pullbacks of Groupoids and π0

The results below will require some basic facts about the path components functor π0

as it pertains to pullbacks of groupoids. The following Lemma exemplifies the utility

of representing a homotopy fibre sequence by a diagram that commutes on the nose.

Lemma 4.1 Suppose f : G → H is a map of groupoids inducing surjections

π1(G, x) ։ π1(H, f (x)) on all fundamental groups; y is an object of H, and Fy is

the homotopy fibre of f over y. Then the induced map π0( f ) : π0(Fy) → π0(G) is an

injection.

Proof Form the pullback square

G×H HI
f∗

//

d1∗

��

HI

d1

��
G

f

//

s

HH

H

and note the section s (thus weak equivalence) of d1∗ defined by sending any object

x of G to 1 : f (x) → f (x) in G ×H HI . Generally, an object of G ×H HI is an object
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x of G together with a morphism ω : f (x) → z of H, and a morphism is a pair of

morphisms (m, n) making the square

f (x)
ω

//

f (m)

��

z

n

��

f (x ′)
ω ′

// z ′

commute in H. Then π = d0 f∗ : G×H HI → H is a fibration (functorially) replacing

f and the pullback

Fy
//

��

G×H HI

π

��
∗

y
// H

defines a model Fy for the homotopy fibre over y. Since πs = f , the objects of Fy

look like ω : f (x)→ y, and the morphisms are triangles

f (x)
f (m)

//

ω
  A

AA
AA

AA
A

f (x ′)

ω ′
}}||
||
||
||

y

that commute on the nose. Suppose ω : f (x)→ y, ω ′ : f (x ′)→ y are two objects of

Fy in the same path component of G×H HI . Then there is a commutative square

f (x)
ω

//

f (m)

��

y

n

��
f (x ′)

ω ′

// y

in H, but the map π : G×H HI → H is surjective on π1, so n has a lift

f (x)
ω

//

f (p)

��

y

n

��
f (x)

ω
// y

,

https://doi.org/10.4153/CJM-2011-030-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-030-x


Nonabelian H1 and the Étale Van Kampen Theorem 1405

where p is an automorphism of x in G. But then there is a commutative triangle

f (x)
f (mp−1)

//

ω
  A

AA
AA

AA
A

f (x ′)

ω ′
}}||
||
||
||

y

,

so ω and ω ′ are in the same path component of Fy .

To apply the above lemma to pullbacks of groupoids, it is helpful to know the

following slightly unusual characterization of pullback diagrams in sets.

Lemma 4.2 A square diagram of sets

A
g∗

//

f∗

��

B

f

��
C

g
// D

is a pullback if and only if for each c ∈ C, the fibre Ac of f∗ over c is isomorphic to the

fibre Bgc of f over gc ∈ D via the induced map ic : Ac → Bgc.

Proof Assume the induced map ic : Ac ′ → Bgc ′ is an isomorphism for each c ′ ∈ C

and suppose (c, d, b) ∈ C ×D B. Then g(c) = d = f (b), so b ∈ Bgc and there is a

unique element ab ∈ Ac such that ic(ab) = b. To see that (c, d, b) 7→ ab := i−1
c (b) is

the desired assignment, observe that f∗(ab) = c, since ab ∈ Ac and g∗(ab) = ic(ab) =

b. The collection of such assignments determines a unique map C ×D B→ A, so A is

a pullback of the diagram. The converse is trivial.

Proposition 4.3 Suppose f : G → H is a map of groupoids inducing surjections

π1(G, x) ։ π1(H, f (x)) on all fundamental groups. Then any homotopy pullback P

along a map g : N → H of groupoids induces a pullback

π0(P) //

��

π0(G)

��

π0(N) // π0(H)

of path component sets.

https://doi.org/10.4153/CJM-2011-030-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-030-x


1406 M. D. Misamore

Proof Replace f by a fibration. For any object y of N, consider the diagram

Fy

y∗
//

��

P
g∗

//

f∗

��

G

f

��
∗

y

// N
g

// H

of pullbacks and the induced comparison

π0(Fy)
y∗

//

∼=

��

π0(P)
f∗

//

g∗

��

π0(N)

g

��

π0(Fg y)
(g y)∗

// π0(G)
f

// π0(H)

of long exact sequences of fibrations in degree 0. By Lemma 4.1 the map (g y)∗ is

monic, so y∗ is monic as well. Thus π0(Fy) (resp. π0(Fg y)) is the set-theoretic fibre of

the map π0( f∗) (resp. π0( f )) for any such choice of y. Apply the previous lemma.

5 Short Exact Sequences Associated with Torsor Trivializations

The purpose of this section is to illustrate how Grothendieck’s short exact sequences

1→ πGal
1 (XY )→ πGal

1 (X)→ GY → 1

associated with Galois objects Y → X of (ét(X), x) arise (at least in part) from analo-

gous sequences in (pointed) nonabelian H1, and to explain exactly how using pointed

nonabelian H1
x gives different results than unpointed nonabelian H1 in this context.

Grothendieck’s proof of these sequences made use of his theory of base change for

fundamental functors in Galois categories (C, F) ([SGA03, §6, V]); the methods pre-

sented here give a different interpretation directly in terms of torsors that may be of

independent interest.

Suppose C is a small Grothendieck site; H is any sheaf of groups on C, and U ։ ∗
is any representable sheaf epi of C. Consider the sequence of groupoids

H-Tors(C)U →֒ H-Tors(C)
?|U
−→ H-Tors(C/U ),

where H-Tors(C)U is the full subgroupoid of ordinary H-torsors on C trivializing

upon restriction ?|U to U .

Proposition 5.1 For any sheaf of groups H and representable sheaf epi U ։ ∗ on a

small Grothendieck site C, there is an exact sequence of pointed sets

1→ π0(H-Tors(C)U ) →֒ H1(C,H)
π0(?|U )

−−−−→ H1(C/U ,H),

where the indicated map is injective.
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Proof An inclusion of a full subgroupoid is always injective on path components,

so the indicated map is injective. Suppose [t] ∈ π0(H-Tors(C)) and π0(?|U )([t]) =

[∗C/U ] so that [t] ∈ ker(π0(?|U )). Then ?|U (t) = t|U is in the path component of

∗C/U , so there is an isomorphism t|U ∼= ∗C/U that says exactly that t trivializes upon

restriction. Therefore, t is an object of H-Tors(C)U , and so is any other object x ∈ [t],

since by definition there is then an isomorphism x ∼= t that induces an isomorphism

upon restriction. Conversely, if t trivializes upon restriction then by definition there

will be an H-equivariant isomorphism t|U ∼= ∗|U so that [t] ∈ kerπ0(?|U ). Therefore

kerπ0(?|U ) = π0(H-Tors(C)U ), so the sequence is exact as was to be shown.

In particular (C, x) may be the pointed finite étale site Finét(X) for some con-

nected locally noetherian scheme or DM stack X and U = Y ։ ∗ a Galois object of

C. The following justifies a certain notational identification:

Lemma 5.2 For any connected Galois object Y ։ ∗ of a Galois category (C, F) that is

also a connected site, there are bijections of pointed sets

π0(H-Tors(C)Y ) ∼= H1(GY ,H),

natural in constant sheaves of discrete groups H := Γ
∗H, where the latter pointed set

is the nonabelian H1 of Serre (cf. [Ser94]) for the trivial action of the group GY on H.

There are also bijections

H1(GY ,H) ∼= [BGY ,BH],

natural in discrete groups H, where the right-hand side is pointed by the class of the

trivial homomorphism.

Proof By [Jar09a, Proposition 1] there is a bijection

π0BH(∗,BH)Y
∼= π0BH-Tors(C)Y ,

where H(∗,BH)Y is the union of all path components of the cocycle category

H(∗,BH) containing cocycles of the form ∗
≃
←− Č(Y ) → BH. The latter set is bi-

jective to π(Č(Y ),BΓ∗H) by ([Jar09a, Lemma 4]). As H = Γ
∗H is a constant sheaf

of groups there are bijections

π(Č(Y ),BΓ∗H) ∼= π(ΠČ(Y ),BH) ∼= π(BGY ,BH) ∼= H1(GY ,H),

where ΠČ(Y ) ∼= BGY because Y ×Y ∼= ⊔GY
Y , since Y is connected Galois. The latter

assertion follows from the bijection π(BGY ,BH) ∼= [BGY ,BH], which exists because

BH is fibrant and all simplicial sets are cofibrant.

Proposition 5.3 Suppose (C, F) is a Galois category that is also a connected Grothen-

dieck site; Y ։ ∗ is a connected Galois object of C with group GY , and H is a constant

sheaf of discrete groups on ét(X). Then there is an exact sequence of pointed sets

1→ H1(GY ,H) →֒ H1(X,H)→ H1(Y,H),

natural in H.
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Proof Proposition 5.1 applies. Combine the resulting short exact sequence with the

identification π0(H-Tors(C)Y ) ∼= H1(GY ,H) of the previous lemma.

This may be considered to be the unpointed torsor theoretic analogue of Gro-

thendieck’s short exact sequence for Galois descent. Analogous arguments work for

pointed torsors. Let FU denote the homotopy fibre of the restriction map

H-Torsx

?|U
−→ H-Torsu

for any pointed representable sheaf epi (U , u) ։ ∗ of a pointed, connected, small,

Grothendieck site (C, x) and constant sheaf of discrete groups H := Γ
∗H as in Sub-

section 3.3. Then there is a bijection π0(FU ) ∼= Hom(Č(U , u),BH) by Lemma 3.2

and the long exact sequence in homotopy groups associated with ?|U degenerates to

the exact sequence of pointed sets

1→ Hom(Č(U , u),BH)→ π0(H-Torsx)→ π0(H-Torsu).

Proposition 5.4 Suppose (C, x) is a pointed, connected, small, Grothendieck site;

(U , u) ։ ∗ is a pointed representable sheaf epi of (C, x), and H := Γ
∗H is a constant

sheaf of discrete groups on C. Then there are exact sequences of pointed sets

1→ Hom(Č(U , u),BH) →֒ H1
x (C,H)→ H1

u(C/(U , u),H),

natural in discrete groups H, where the indicated map is injective if (U , u) is connected.

Proof By definition H1
x (C,H) = π0(H-Torsx) and H1

u(C/(U , u),H) = π0(H-Torsu).

The indicated map is injective if (U , u) is connected, since the site C/(U , u) is con-

nected so that H-Torsu has no nontrivial automorphisms at any of its basepoints by

Galois theory Now apply lemma 4.1.

Corollary 5.5 With the hypotheses of Proposition 5.4, if C is furthermore a Galois

category for the fibre functor Fx, then there are exact sequences

1→ Hom(GY ,H) →֒ H1
x (C,H)→ H1

y(C/(Y, y),H),

natural in discrete groups H, associated with any connected Galois object (Y, y) ։ ∗
of C.

Proof By observation, ΠČ(Y, y) ∼= BGY .

As the functors Hom(GY ,−), H1
x (C,−), and H1

y(C/(Y, y),−) restricted to FinGrp

are pro-representable by GY , πGal
1 (C, x), and πGal

1 (C/(Y, y), y), respectively, there are

induced exact sequences of profinite groups

πGal
1 (C/(Y, y), y)→ πGal

1 (C, x) ։ GY → 1,

where the indicated map is an epimorphism. The injectivity of the first map may

then be established by the classical observation that πGal
1 (C/(Y, y), y) corresponds to

the subgroup of Aut(Fx) of automorphisms of Fx fixing (Y, y) ([SGA03, 6.13, V]).
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6 Étale Van Kampen Theorems

Étale van Kampen theorems have previously been developed with the goal of express-

ing the pro-groupe fondamental élargi G of any pointed, connected, small, Grothen-

dieck site (C, x) in terms of the corresponding pro-groups of hopefully “simpler”

spaces. Past approaches include [Sti06], [SGA03, §5, IX] upon which the arguments

of [Sti06] are based, and [Zoo02]. The first two works listed here are based on rather

intricate constructions coming from descent theory and only treat the case of profi-

nite πGal
1 , whereas the third addresses the pro-groupoid fondamental élargi ([Zoo02,

4.8]) but only with respect to covers by Zariski open substacks.

The approach described here makes use of homotopy theory to simultaneously

hide the descent theoretic aspects of the former two constructions while generalizing

the results of [Zoo02] to deal with certain non-Zariski coverings. The resulting van

Kampen theorem here is simpler to state than [Sti06, 5.3, 5.4], does not require the

covering to consist exclusively of monomorphisms, and does not depend on specific

properties of the étale topology. On the other hand it is a statement about pro-groups

rather than pro-groupoids, so in the latter case one must still defer to the methods of

[Zoo02] that effectively assume that the covering is given by monomorphisms.

Given any sheaf of groups H on a small Grothendieck site C, the restrictions H|U of

H to the sites C/U for objects U of C have associated cocycle categories H(∗,BH|U ),

and these determine a simplicial presheaf BH(∗,BH) defined in sections U by

BH(∗,BH)(U ) := BH(∗,BH|U ).

This simplicial presheaf satisfies descent in the sense that it is sectionwise equivalent

to a globally fibrant model (i.e., a fibrant object for the injective closed model struc-

ture) and admits a local weak equivalence BH
≃
−→ BH(∗,BH), and so is a model for

the classifying stack of H ([Jar06, Corollary 2.4]). There is a sectionwise weak equiv-

alence BH(∗,BH) ≃ B(H|?-Tors), where the latter is the simplicial presheaf of nerves

of groupoids of H|U -torsors for restrictions of H to the various sites C/U (by remarks

above), so the latter also satisfies descent.

Suppose now that (C, x) is a pointed small Grothendieck site with a subcanonical

topology and finite products and that (U , u) and (V, v) are pointed objects of C such

that the pullback square S

U ×V //

��

U

��
V // ∗

is a pushout of pointed sheaves on C, where U ×V is pointed by u× v. By Quillen’s

axiom SM7 (see [GJ99, 11.5, I] for a definition and [Jar87, 3.1] for a proof), this
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pushout determines a homotopy cartesian square HS

H-Tors(C) //

��

H-Tors(U )

��

H-Tors(V ) // H-Tors(U ×V )

of groupoids of H-torsors naturally in H for any sheaf of groups H on C whenever

U → ∗ or V → ∗ is monic (i.e., a cofibration for the injective closed model structure),

or more generally whenever S is homotopy cocartesian for the injective closed model

structure.

Lemma 6.1 Suppose a commutative square

X //

��

W

��
Y // Z

is homotopy cartesian over an object B in some right proper closed model category, and

suppose the structure maps from the objects of this square to B are fibrations. Let c : A→
B be a weak equivalence. Then the pullback of this square along c is also homotopy

cartesian.

Proof Factor the map W → Z as a trivial cofibration q : W → Q followed by a

fibration g : Q → Z, and let qc (resp. gc) denote the base change of q (resp. g) along

c. Then the composite Q → Z → B is a fibration, since Z → B is a fibration and

W → B is also a fibration and so qc is a weak equivalence by right properness, and

one sees directly that gc is a fibration. Pulling back gcqc along the base change along c

of Y → Z determines a fibration (Q ×Z Y ) ×B A → Y ×B A, and it suffices to show

that the induced map X ×B A → (Q ×Z Y ) ×B A is a weak equivalence. This map is

the base change along c of the induced map X → Q×Z Y that is a weak equivalence,

since the original square was homotopy cartesian. The composite Q×Z Y → Y → B

is a fibration, since Y → B is a fibration, and X → B is also a fibration, so the result

follows by right properness.

Proposition 6.2 For any constant sheaf of groups H := Γ
∗H on a pointed small

Grothendieck site (C, x) with a subcanonical topology and finite products and any square

S of pointed maps as above such that either one of the sheaf maps U → ∗ or V → ∗
is monic or S itself is homotopy cocartesian for the injective closed model structure on

sShv(C), there is a homotopy cartesian diagram of groupoids of pointed torsors

H-Torsx(C) //

��

H-Torsu(U )

��

H-Torsv(V ) // H-Torsu×v(U ×V )
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natural in H.

Proof There is a diagram

x∗(H)-Tors(Set)
?|U

//

?|V

��

u∗(H)-Tors(Set)

?|U×V

��

v∗(H)-Tors(Set)
?|U×V

// (u× v)∗(H)-Tors(Set)

under HS induced by S which commutes, since the maps of S are pointed. In fact,

H = x∗(H) = u∗(H|U ) and similarly for the other points, so that all of the groupoids

in this diagram are identical to the groupoid H-Tors(Set), and all of the restriction

maps are equalities. One may therefore unambiguously take the homotopy fibre of

HS over the trivial torsor H of the groupoid H-Tors(Set), and this of course results

in the desired commutative square H∗ of groupoids of pointed H-torsors over x by

[Jar09b, Lemma 1].

It remains to be shown that H∗ is also homotopy cartesian. Let

h : ∗ → H-Tors(Set)

denote the unique map picking out the trivial H-torsor in Set and factor it as a trivial

cofibration c : ∗ → C followed by a fibration f : C → H-Tors(Set) (this may be

understood in terms of the nerves of the groupoids and the closed model structure on

simplicial sets). A direct calculation shows that pulling back along fibrations sends

homotopy cartesian squares to homotopy cartesian squares, so it suffices to show

that pulling back along c preserves homotopy cartesian squares. Suppose one has a

homotopy cartesian square HC over C , and functorially replace all the maps to C by

fibrations; the resulting objects of the new commutative square H ′
C are weakly (even

homotopy) equivalent to the old ones, and nerves of groupoids are Kan complexes

so that H ′
C is also homotopy cartesian. Now apply Lemma 6.1.

Lemma 6.3 Suppose that D : J → SetC is a finite loop-free diagram of pro-

representable functors on a category C with all finite limits and colimits. Then lim
←− J

D is

a functor that is pro-representable by the colimit on Jop of the representing pro-objects.

Proof The Jop-diagram of representing pro-objects is also loop-free, so by the uni-

form approximation theorem of [AM69, 3.3, appendix] it may be replaced by a cofil-

tered levelwise diagram of the same shape that is pro-isomorphic to the original.

The finite colimits computed levelwise represent the colimit of the representing pro-

objects by [AM69, 4.1, appendix]. Moreover, at each object i of the new index cate-

gory I the functor represented by corresponding levelwise colimit represents the limit

over J of the corresponding diagram of representable functors at i. Therefore, the col-

imits determine a levelwise pro-representation of the limit of the J-diagram D.

Finally, the main theorem may be proven.
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Theorem 6.4 Suppose that (C, x) is a pointed, connected, small, Grothendieck site

with a subcanonical topology, finite limits, and arbitrary small coproducts, and that

(U , u) and (V, v) are pointed connected objects of C such that U × V is also connected

and the pullback square S

U ×V //

��

U

��
V // ∗

is a pushout of pointed sheaves on C, where U × V is pointed by u × v. Furthermore,

suppose that either one of the sheaf maps U → ∗ or V → ∗ is monic or that S itself is

homotopy cocartesian for the injective closed model structure on sShv(C). Then there is

a pushout diagram

πét
1 (C/U ×V, u× v)Č

//

��

πét
1 (C/U , u)Č

��

πét
1 (C/V, v)Č

// πét
1 (C)Č

of “étale” homotopy pro-groups, each defined in the usual way by means of pointed rep-

resentable Čech hypercovers on its respective site.

Proof The homotopy cartesian squares of Proposition 6.2 are clearly natural in H by

construction. As U , V , and U ×V are connected, the sites C/U , C/V , and C/U ×V

are also connected so that the respective groupoids of pointed torsors for any constant

sheaf of groups H have trivial fundamental groups. Then Proposition 4.3 implies that

these homotopy cartesian squares together determine a pullback diagram

H1
x (C,−) //

��

H1
u(C/U ,−)

��

H1
v (C/V,−) // H1

u×v(C/U ×V,−)

in the functor category SetGrp. Each of these functors is pro-representable in Grp by

Theorem 3.5, since all pointed H-torsors admit pointed trivializations, so Lemma 6.3

applies to give the desired pushout square.

The word “étale” is in quotes in the statement of the theorem because one need not

assume that the topology on C is the étale topology: the statement still makes sense

in any pointed connected site (C, x), since the pro-groups πét
1 (−) (and πét

1 (−)Č ) are

defined by means of pointed connected hypercovers, and the definition of hypercov-

ers is independent of any particular Grothendieck topology. This theorem requires

no assumptions regarding effective descent associated with the cover by U and V
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(cf. [Sti06]) nor is it restricted exclusively to covers by monomorphisms (as in the

case of covers by open substacks; cf. [Zoo02]). Theorem 3.5 immediately applies to

give the same statement in terms of the pro-groups coming from Galois theory, thus

recovering and generalizing the pro-group variant of the results of [Zoo02].

Of course, in the case where one is actually working in an étale site where the

“points” are defined by geometric points, one may conclude with a more geometric

statement. Here is an example.

Corollary 6.5 Suppose that X is a connected locally noetherian scheme or DM stack;

ét(X) is the étale site of X as defined in [Zoo02]; x : Ω → X is a geometric point of X,

(U , u), and (V, v) pointed (over x) and connected objects of ét(X) such that U ×X V is

also pointed (by u× v) and connected, and suppose that the pullback square S

U ×V //

��

U

��
V // ∗

is a pushout of sheaves on ét(X). Then, if either one of the sheaf maps U → ∗ or V → ∗
is monic or S itself is homotopy cocartesian for the injective closed model structure on

sShv(ét(X)), and a rigid diagram of pointed hypercovers exists (this is true at least in

the scheme case), then there is a pushout diagram

πét
1 (U ×V, u× v) //

��

πét
1 (U , u)

��

πét
1 (V, v) // πét

1 (X, x)

of étale homotopy pro-groups, each defined in the usual way by means of pointed repre-

sentable hypercovers on its respective subsite.

Proof The only condition to check is that pointed H-torsors admit representable

pointed trivializations for all discrete groups H, but this follows from Lemma 3.3.

Apply Theorem 6.4 and Proposition 3.8 to finish.

The corresponding statement about the usual profinite Grothendieck fundamen-

tal groups immediately follows:

Corollary 6.6 With the hypotheses and notation of Corollary 6.5, there is a pushout

square

πGal
1 (U ×V, u× v) //

��

πGal
1 (U , u)

��

πGal
1 (V, v) // πGal

1 (X, x)

of profinite Grothendieck fundamental groups.
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Proof The profinite completion functor̂ is a left adjoint to the inclusion functor

i : pro-FinGrp →֒ pro-Grp

so, in particular, it preserves pushouts. Therefore, by Corollary 6.5 one gets a pushout

square of the profinite completions of étale fundamental groups, but these are iden-

tified with the respective Grothendieck fundamental groups by Proposition 3.9.

Importantly, this result is valid even when the pointed covering square S is con-

structed in ét(X) rather than Finét(X).
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e-mail: m.misamore@gmail.com

https://doi.org/10.4153/CJM-2011-030-x Published online by Cambridge University Press

http://dx.doi.org/10.2977/prims/1166642159
http://arxiv.org/abs/math/0111071v1
https://doi.org/10.4153/CJM-2011-030-x

