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Level Lowering Modulo Prime Powers and
Twisted Fermat Equations

Sander R. Dahmen and Soroosh Yazdani

Abstract. We discuss a clean level lowering theorem modulo prime powers for weight 2 cusp forms.

Furthermore, we illustrate how this can be used to completely solve certain twisted Fermat equations

axn + byn + czn = 0.

1 Introduction

Since the epoch making proof of Fermat’s Last Theorem (FLT) [14, 15], many Dio-

phantine problems have been resolved using the deep methods developed for FLT

and extensions thereof. Among the basic tools involved are so-called level lowering

results; see e.g., [8, 9]. These provide congruences between modular forms of dif-

ferent levels. Until now, all applications of the modular machinery to Diophantine

equations only involved level lowering modulo primes. Although a level lowering

result modulo prime powers has recently been established [4], the statements there

are not very fit for applications to Diophantine equations. The purposes of this pa-

per are twofold. First, we give a clean level lowering result modulo prime powers

that is suitable for applications to Diophantine equations. Second, we illustrate how

this result can be applied by completely solving certain twisted Fermat equations, i.e.,

Diophantine equations of the form

axn + byn + czn
= 0 x, y, z, n ∈ Z, xyz 6= 0, n > 1,

where a, b, c are nonzero integers. For the twisted Fermat equations we consider, the

genus one curve defined by ax3 +by3 +cz3
= 0 has infinitely many rational points, the

curve defined by ax9 + by9 + cz9
= 0 has points everywhere locally, and level lowering

modulo 3 also does not give enough information to deal with the exponent n = 9

case. The main application of our level lowering modulo prime powers theorem is

then to use level lowering modulo 9 to deal with the exponent n = 9 case.

The organization of this paper is as follows. In Section 2 the level lowering result

(Theorem 2.3) is stated and proved. In Section 3 we mainly deal with some issues

related to irreducibility of mod 3 representations. In Section 4 we solve some twisted

Fermat equations using level lowering modulo primes and level lowering modulo 9.

Finally, in Section 5 we quickly discuss other possible methods to attack the twisted

Fermat equation for exponent n = 9, and we prove that standard level lowering

modulo 3 methods can never work for our examples.
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2 Level Lowering Modulo Prime Powers

Let N be a positive integer and S2(Γ0(N)) denote the space of cuspidal modular forms

of weight 2 with respect to Γ0(N). For any Hecke eigenform f ∈ S2(Γ0(N)), denote

by K f the field of definition of the Fourier coefficients of f , and by O f its ring of inte-

gers. Note that the image of f under different embeddings of K f → C gives conjugate

Hecke eigenforms in S2(Γ0(N)). As such, treating K f as an abstract number field and

f as a modular form with Fourier coefficients in K f is akin to looking at f and all

its Galois conjugates at the same time. We say that f is a newform class of weight 2

and level N if f ∈ K[[q]] for a number field K, and the image of f under each (equiv.

under any) embedding of K → C is a normalized Hecke newform in S2(Γ0(N)). We

usually omit the weight of the modular forms in this paper, since we are only working

with weight 2 forms. The degree of the newform class f is the degree of the number

field K f . Denote by GQ the absolute Galois group of Q . Let f be a newform class

of level N. Given a prime λ ⊂ O f lying above l, we can construct (see, for example,

[13]) a Galois representation

ρ
f
λr : GQ → GL2(O f /λ

r)

for which

• ρ
f
λr is unramified away from Nl;

• trace(ρ
f
λr (Frobp)) ≡ ap( f ) (mod λr) and Norm(ρ

f
λr (Frobp)) ≡ p (mod λr) for

all primes p ∤Nl.

We remark that when ρ
f
λ is absolutely irreducible, ρ

f
λr is uniquely determined (up to

change of basis) for all positive integers r by the congruences above.

Let E/Q be an elliptic curve of conductor N and minimal discriminant ∆. Let

ρE
lr : GQ → GL2(Z/lrZ)

be the Galois representation coming from the natural Galois action of GQ on

E[lr](Q). Assume that N = N0M with N0,M ∈ Z>0 and that there is an odd prime l

such that the following hold:

• N0 and M are coprime;
• M is square free;
• for all primes p|M we have l|vp(∆);
• E[l] is irreducible (i.e., ρE

l is an irreducible Galois representation).

Then by Ribet’s level lowering ([8, 9]) there is a newform class of level N0 and prime

λ ⊂ O f lying above l such that ρE
l ≃ ρ

f
λ as Galois representations, or equivalently,

that ap(E) ≡ ap( f ) (mod λ) for all primes p ∤N0l.

Remark 2.1 Let ρ : GQ → GL2(R) be an irreducible Galois representation coming

from a modular form of weight 2 that is semistable at l, with R a Noetherian complete

local ring with the maximal ideal m and R/m of characteristic l. As usual, define

N(ρ) =

{

Nρ if ρ is flat at l,

Nρl if ρ is Selmer but not flat at l,
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where Nρ is the prime to l Artin conductor of ρ (see [15] for the definitions of Selmer

and flat). Then, Ribet’s level lowering states that if R is a finite field, then there is a

newform class of level N(ρ) and prime λ ⊂ O f such that ρE
l ≃ ρ

f
λ.

It is natural to ask what happens when lr|vp(∆) for all p|M (see [2]). The situ-

ation in this case is more complicated. We first need to assume that E[l] is strongly

irreducible to get around some technical issues with deformation theory.

Definition 2.2 We say a 2-dimensional Galois representation ρ of GQ is strongly

irreducible, if ρ|G
Q(

√
l∗)

is absolutely irreducible for l∗ = (−1)(l−1)/2l.

As noted in [4], using results of [10], when l ≥ 5 and E is semistable at l, then ρE
l

is strongly irreducible if it is irreducible. We will deal with the case l = 3 for elliptic

curves with full rational 2-torsion in Section 3.

We also need to assume that there is a unique newform class f and an unramified

prime ideal λ at level N0 to get the desired level lowering results.

Theorem 2.3 Let E/Q , N0, M, l be as above. Assume that

• there is a positive integer r such that for all primes p|M we have lr|vp(∆);
• for all primes p|N0 we have l ∤vp(∆);
• l2 ∤N;
• E[l] is strongly irreducible;
• there is a unique pair ( f , λ) with f a newform class of level N0 and λ ⊂ O f an

unramified prime lying above l such that ρE
l ≃ ρ

f
λ.

Then ρE
lr ≃ ρ

f
λr . In particular, if all of the above assumptions are satisfied, then

(i) for all primes p with p ∤ lN,

ap( f ) ≡ ap(E) (mod λr);

(ii) for all primes p with p ∤ N0l and p|N,

ap( f ) ≡ ap(E)(1 + p) ≡ ±(1 + p) (mod λr).

Remark 2.4 Let us explain the reason for the assumptions made in this theorem.

We need to assume l2 ∤ N, since the R = T results in this situation are not strong

enough for our applications. The assumption that λ is unramified is part of the

uniqueness, in the sense that if λ is ramified, then there are two Hecke eigenforms

f1 and f2 in the same conjugacy class that are congruent to each other. Finally, we

are assuming that l ∤ vp(∆) for p|N0. We make this assumption because we want to

guarantee that N(ρE
l ) = N0 and not something smaller. This way, we do not have to

deal with oldforms for our analysis.

Remark 2.5 A similar theorem using similar techniques is proved in [4], although

the statements of the main result there (specialized to our case) assume that M is

prime, N is square free, and l ∤ N. None of these assumptions is necessary for the

main proof, and in fact for applications to Diophantine equations these assumptions

are usually not fulfilled.
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We will present the proof of Theorem 2.3 for completeness. The proof uses stan-

dard Taylor–Wiles machinery ([14, 15], see also [3]) relating the deformation ring of

modular Galois representations to a particular Hecke algebra. Specifically, let f be a

newform class of level N0, and let λ ⊂ O f be a prime lying above l > 2. Recall that a

lifting of ρ
f
λ is a representation ρ : GQ → GL2(R), where R is a Noetherian complete

local ring with the maximal ideal m and the residue field R/m = O f /λ such that

ρ ≡ ρ
f
λ (mod m). A deformation of ρ

f
λ is an equivalence class of such lifts. We say

that ρ is a minimal deformation of ρ
f
λ, if the ramification types of ρ and ρ

f
λ are the

same at all primes p. In particular at l, if ρ
f
λ is flat (when l ∤ N0), then ρ is flat, and

if ρ
f
λ is Selmer but not flat (when l ‖N0), then ρ is Selmer but not flat. In either case,

we have N(ρ) = N(ρ
f
λ) = N0.

Assume that ρ
f
λ is strongly irreducible and semistable at l. Then we know that

there is a universal deformation ring Runiv and a universal deformation ρuniv : GQ →
GL2(Runiv) such that every minimal deformation ρ

f
λ is strictly equivalent to a unique

specialization of ρuniv under a unique homomorphism Runiv → R. Let T be the Hecke

algebra acting on S2(Γ0(N0)), completed at the maximal ideal corresponding to ρ
f
λ.

If we assume that N0 = N(ρ
f
λ), then we have a surjective map Φ : Runiv → T. We

have the following celebrated result.

Theorem 2.6 (Taylor–Wiles) Let l be an odd prime. Assume that ρ
f
λ is strongly irre-

ducible. Then Φ : Runiv → T is an isomorphism and Runiv is a complete intersection.

Proof For a proof when ρ
f
λ is assumed to be semistable, see [1, 14, 15]. To prove

the result stated here we also need Diamond’s strengthening [3]. We remark that

in all of the above theorems, the statement proved is presented as RQ = TQ, where

RQ is a universal deformation ring for certain non-minimal deformations and TQ is

the completed Hecke algebra acting on S2(ΓQ). The case that we are using is when

Q is the empty set. In this case R∅ = R, however the group Γ∅ in the loc. cit. lies

between Γ0(N) and Γ1(N). Fortunately this group is chosen in such a way that the

space on which the diamond operator is acting trivially modulo l, is precisely Γ0(N).

Therefore T∅ = T.

As pointed out in [4], R = T results are the key to proving level lowering state-

ments.

Proposition 2.7 Let g be a newform class of level Ng and degree 1. Assume that there

is a pair ( f , λ) with f a newform class of level N f and λ ⊂ O f an unramified prime

lying above l, and a positive integer r such that

• N(ρ
g
l ) = N(ρ

g
lr ) = N f ;

• ρ
f
λ ≃ ρ

g
l ;

• there is no other pair ( f ′, λ ′) with f ′ a newform class of level N f and λ ′ ⊂ O f ′ a

prime lying above l such that ρ
f ′

λ ′ ≃ ρ
g
l ;

• ρ
g
l is strongly irreducible.

Then ρ
g
lr ≃ ρ

f
λr .

Proof Let Runiv be the universal deformation ring for the minimal deformations of

ρ
f
λ. By results of [14] we get that Runiv

= T. Since we are assuming that g has
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rational integral coefficients and that ρ
f
λ ≃ ρ

g
l , we get that O f /λ = Z/l = Fl. Since

we are also assuming that there is a unique ( f , λ) and that λ is unramified, we get

T = O f ,λ = Zl. Furthermore, we have that N(ρ
g
lr ) = N f , therefore we get that ρ

g
lr is a

minimal deformation of ρ
f
λ, hence it corresponds to a map T → Z/lr. However, there

exists only one reduction map from Zl to Z/lr, therefore ρ
g
lr is isomorphic to ρ

f
λr .

Remark 2.8 In Proposition 2.7, we are assuming that g is of degree 1 to simplify

the notation and the proof and because it is the case we care most about in this paper.

However, the proof does extend to the general case with some care.

We now give the proof of Theorem 2.3.

Proof Let E/Q , N0, M, and l be as required. In particular, assume that E[l] is

strongly irreducible. Since we are assuming that lr|vp(∆) for all p|M (and l ∤ vp(∆)

for all l|N0), we get that N(ρE
lr ) = N0. By Ribet’s level lowering we get that there is a

newform class f of level N0 and a prime λ such that ρ
f
λ ≃ ρE

l . Therefore, we can apply

Proposition 2.7 to prove that ρE
lr ≃ ρ

f
λr . As is well known, the congruences (i) and (ii)

in the statement of the theorem follow by comparing the traces of Frobenius.

Remark 2.9 When f is not unique, all hope is not lost, and in favourable condi-

tions, we can in fact get some explicit level lowering results. As an example, con-

sider an elliptic curve E/Q of conductor 71M and minimal discriminant 71M27 for

some square free positive integer M coprime to 71. Furthermore, assume that E[3] is

strongly irreducible. Such an elliptic curve certainly exists; for example, when M = 2,

we have the elliptic curve 142e1 in the Cremona database

E : y2 + xy = x3 − x2 − 2626x + 52244.

By Ribet’s level lowering, we can find a newform class f of level 71 and a prime

λ ⊂ O f lying above 3 such that ρE
3 ≃ ρ

f
λ. There are two newform classes f1 and f2,

each of degree 3, whose complex embeddings span all of S2(Γ0(71)). For i = 1, 2,

we can check that 3O fi
= λi,1λi,2, where λi,1 is of inertia degree one, while λi,2 is

of inertia degree 2. The image of ρ
fi

λi,2
is not contained in GL2(F3), therefore ρ

fi

λi,2
6≃

ρE
3 . By computing some Fourier coefficients, we get that ρ

f1

λ1,1
≃ ρ

f2

λ2,1
. We conclude

that ρE
l is isomorphic to both of these representations. Therefore, all the conditions

of our level lowering result are fulfilled, except for the uniqueness of ( f , λ). This

prevents us from proving a level lowering result modulo 27. However, by studying

the deformation ring explicitly, we can still prove a level lowering result modulo 9 in

the following way. For i = 1, 2, we compute that O fi
is generated by a5( fi), explicitly

O f1
= Z[t]/〈t3 − 5t2 − 2t + 25〉,

O f2
= Z[t]/〈t3 + 3t2 − 2t − 7〉.

Furthermore, the full Hecke algebra acting on S2(Γ0(71)) has the representation

Z[t]/
〈

(t3 − 5t2 − 2t + 25)(t3 + 3t2 − 2t − 7)
〉

,
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where t = T5 is the fifth Hecke operator. Therefore, the universal deformation ring

of ρE
3 , which is the localization of the Hecke algebra at λi,1, is

T = Z3[t]/〈(t − α1)(t − α2)〉,

where α1 ≡ 20 (mod 27) and α2 ≡ 11 (mod 27). Notice that α1 ≡ α2 ≡ 2

(mod 9), which means ρ
f1

λ2
1,1
≃ ρ

f2

λ2
2,1

, a result that can also be read off from the Fourier

coefficients of f1 and f2. Since ρE
27 is unramified away from 3 and 71, and it is flat at

3, we have that ρE
27 is a minimal deformation of ρE

3 , hence it corresponds to a unique

map Runiv → Z/27Z. Note that this gives us two possible maps

ψi : T → Z3,

t 7→ αi

corresponding to the two modular forms with coefficients in Z3. Let ψ : T → Z/27Z

correspond to ρE
27. Note that ψ is uniquely defined by the image of t , and there are

three possible choices for this image: 2, 11, or 20. Reducing ψ modulo 9 we get that

ψ : T → Z/9Z is given by ψ(t) = 2. Furthermore, ψ corresponds to ρE
9 , so we get the

following commutative diagram.

T

ψi

//

ψ   B
B

B

B

B

B

B

B

Z3

��

Z/9Z

By universality, the map T
ψi−→ Z3 → Z/9Z corresponds to the reduction of the λi-

adic representation of fi modulo λ2
i , that is ρ

fi

λ2
i

. Since this is the same as ψ, which

corresponds to ρE
9 , we get that ρE

9 ≃ ρ
fi

λ2
i

for i = 1 and 2.

In case we take for E the elliptic curve 142e1, we can check explicitly that ρE
27 6≃

ρ
fi

λ3
i,1

for i = 1 or 2, since a5(E) = 2, while a5( fi) ≡ αi 6≡ 2 (mod λ3
i,1). The congru-

ence modulo 9 can be verified by computing some Fourier coefficients explicitly.

3 Irreducibility mod 3

In this section, we obtain a criterion for proving that ρE
3 is strongly irreducible when

E/Q has a full rational 2-torsion structure. We start with a simple lemma.

Lemma 3.1 Let E/Q be an elliptic curve. If ρE
3 is irreducible but not strongly ir-

reducible, then ρE
3 (GQ ) is contained in the normalizer of a split Cartan subgroup of

GL2(F3).

Proof A (short) proof can be found in [11, Proposition 6].

Next we have a lemma that restricts the possibility of the image of a mod-3 Galois

representation attached to an elliptic curve over Q with full rational 2-torsion.
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Lemma 3.2 Let E/Q be an elliptic curve with full rational 2-torsion. Then ρE
3 (GQ ) is

not contained in the normalizer of a split Cartan subgroup of GL2(F3).

Proof Consider the modular curves Xsplit(3),X(2),X(1) and denote by j2 and jsplit,3

the j-maps from X(2) to X(1) and Xsplit(3) to X(1) respectively. We have explicitly

j2(s) = 28 (s2 + s + 1)3

(s(s + 1))2
and jsplit,3(t) = 123

( 4t + 4

t2 − 4

) 3

.

This allows us to explicitly compute the fiber product Xsplit(3)×X(1) X(2) by equating

j2(s) = jsplit,3(t), and we let X to be the desingularization of this fiber product. We

compute that X has genus 1 and 6 cusps, all contained in X(Q). We turn X into an

elliptic curve over Q by taking one of the cusps as the origin. Now X is isomorphic

over Q to the elliptic curve determined by y2
= x3 − 15x + 22. This curve has rank 0

and torsion group of order 6. This shows that X(Q) is exactly the set of cusps, which

proves the proposition.

Corollary 3.3 Let E/Q be an elliptic curve with full rational 2-torsion. If ρE
3 is irre-

ducible, then ρE
3 is strongly irreducible.

Proof This follows immediately by combining Lemmas 3.1 and 3.2.

We still need a nice criterion for deciding if ρE
3 is irreducible.

Lemma 3.4 Let E/Fp be an elliptic curve over Fp and let a be the trace of Frobenius

of this curve. Then E has a 3-isogeny over Fp if and only if a ≡ ±(p + 1) (mod 3).

Proof Note thatE has a 3-isogeny over Fp, if and only if eitherE or its quadratic twist

E
′ has a 3-torsion point over Fp, i.e., 3|#E(Fp) = p + 1− a or 3|#E ′(Fp) = p + 1 + a.

This proves the lemma.

This brings us to the criterion we need for checking strong irreducibility.

Proposition 3.5 Let E/Q be an elliptic curve with full rational 2-torsion and p ≡ 1

(mod 3) a prime of good reduction for E. If 3|ap(E), then ρE
3 is strongly irreducible.

Proof Corollary 3.3 tells us that irreducibility and strong irreducibility in our situa-

tion are equivalent. If ρE
3 is reducible, then E/Q has a rational 3-isogeny, which im-

plies E/Fp has a 3-isogeny over Fp for all primes of good reduction p. By Lemma 3.4

this implies that if p ≡ 1 (mod 3), then we have ap(E) 6= 0 (mod 3), which is the

desired result.

4 Twisted Fermat Equations

Let a, b, c be pairwise coprime nonzero integers and let n > 1 be an odd integer

(the case n even is trivial, due to our sign choices). We are interested in solving the

Diophantine equation

(4.1) axn + byn + czn
= 0.
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For n > 3, we know that this equation defines a curve Cn of genus greater than one,

so by Faltings’ theorem we get that Cn(Q) is finite for any such n. In fact, in all the

cases we will consider in this paper, we prove that Cn(Q) is empty for all n > 3, except

for one trivial solution when n = 7 in one of our examples. For n > 3 a prime, we

will use the modular methods following [5, 6]. For n = 3, however, C3(Q) 6= ∅ and

the Jacobian of the curve C3, given by the equation

(4.2) Y 2
= X3 − 2433(abc)2,

is an elliptic curve of positive rank in all the cases we are considering. The only

remaining case is when n = 9, and we note that for our examples, C9 has local points

everywhere. We use our level lowering results modulo prime powers to show that

C9(Q) is also empty.

From a Diophantine point of view, the main result is the following theorem.

Theorem 4.1 Assume (a, b, c) is one of (52, 24, 234), (58, 24, 37), (57, 24, 597),

(7, 24, 477), and (11, 24, 52 · 172). Then for n ∈ Z≥2 with n 6= 3 the twisted Fermat

equation (4.1) has no solutions x, y, z in integers with xyz 6= 0.

Remark 4.2 Since we are choosing a, b, and c all positive, proving that there are no

solutions when n is even is trivial. Of course, by different choice of signs, one has to

work a little bit harder, and we leave those cases to the interested reader.

In a sense, we have a complete description of the solutions for all the exponents

n > 1, since we can find explicit generators for the Mordell-Weil group of the elliptic

curve associated with C3 over Q .

4.1 The Modular Method

We review how to use elliptic curves, modular forms, and Galois representations to

approach Diophantine equations of the form (4.1), mainly following [5]. We remark

that we deviate from loc. cit. by allowing n to be a prime power instead of just a prime.

Fix nonzero coprime integers a, b, c. Assume there is a solution in integers (x, y, z, n)

to (4.1), with xyz 6= 0 and n ≥ 3 odd. Without loss of generality we assume that

byn is even and that axn ≡ −1 (mod 4). We also assume that axn, byn, and czn are

pairwise coprime. Consider the Frey elliptic curve

Y 2
= X(X − axn)(X + byn).

This model is minimal at all odd primes. Furthermore, if b ≡ 0 (mod 16), then we

can find a global minimal model over Z

En,(x,y) : Y 2 + XY = X3 +
byn − axn − 1

4
X2 − abxn yn

16
X.

We often simply write En, or even E, when the indices are understood from the con-

text. We assume that the condition on b is satisfied, since these are the only cases that
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we will consider (for the general situation, the reader can refer to [5]). The minimal

discriminant and the conductor of En are given by

∆(En) =
(abcxn ynzn)2

28
, N(En) =

∏

p|∆(En)

p.

Consider the Galois representation ρEn
n : GQ → GL2(Z/nZ). Assume n = lr is a prime

power with l an odd prime and r a positive integer, and that ρEn

l is strongly irreducible.

By Ribet’s level lowering [8, 9] and the work of Wiles and Taylor–Wiles [14, 15], we

know that ρEn

l arises from a newform class f of (weight 2 and) level

N0 =
∏

p|abc
p>2

p.

This means that there exists a prime ideal λ ⊂ O f lying above l such that

(4.3) ρEn

l ≃ ρ
f
λ.

Remark 4.3 Note that since we are assuming that a, b, and c are pairwise coprime

to each other, if pn ∤ abc with p prime, then for showing that (4.1) has no nontrivial

solutions, we can assume without loss of generality that axn, byn, and czn are pairwise

coprime. This is the case for all of our examples when n > 7. In general, if for some

prime p, we have that p divides axn, byn, and czn, then it is possible that En has

additive reduction at p, however for odd primes p, a quadratic twist of En will have

a semistable reduction at p. We will replace En by its appropriate quadratic twist

(if necessary) for the rest of this paper. For all our practical calculations we do not

need to consider this situation separately as we will briefly explain now. First of all,

we only consider the traces of Frobenius of En up to sign. The only computational

difference left is that we might end up at a level N ′
0 dividing N0; however, if we use

the level N0, all arguments still go through. This is because (4.3) not only holds for

some newform class f of level N ′
0 , but also still holds for some newform class f of

level N0. (The situation at the prime 2 is a bit more subtle; however, we do not have

to deal with it when n ≥ 5 in our examples.) Note that if we use the smaller level, the

argument can be easier. For instance, in the example

57xn + 24 yn + 597zn
= 0,

when n = 7, we only need to consider newform classes of level 1 (of which there are

none). This gives us a considerably easier contradiction. However, for sake of uni-

formity, we actually deal with newform classes of level 295 to show that this equation

has no nontrivial solutions.

For every equation in Theorem 4.1, the level N0 we need to consider is given in

Table 4.1. By comparing traces of Frobenius, we obtain the congruences (i) and (ii)

with r = 1. If ( f , λ) is the unique pair of newform class f of level N0 and prime

λ ⊂ O f lying above l that satisfies (4.3), λ is unramified, and for all primes p|N0 we

have l ∤ vp(∆(En)), then we can apply Theorem 2.3 to ρEn
n . In this case we get that

ρEn
n ≃ ρ

f
λr and in particular that the congruences (i) and (ii) hold.
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4.1.1 l ≥ 5

Let l ≥ 5 be a prime number. Note that by the arguments of [12, Proposition 6] we

have that ρEl

l is irreducible, since E is semistable and has full rational 2-torsion (by

our earlier remarks, this tells us that ρEl

l is strongly irreducible). In order to prove

that there are no solutions to (4.1) for n = l, it suffices to find a contradiction (using

congruences) to (4.3) for all pairs ( f , λ) of newform classes f of level N0 and primes

λ ⊂ O f lying above l.

Let f be a newform class of level N0 such that (4.3) holds for some λ. For any

prime p, define

Ap =

{

{a ∈ Z : a ≡ p + 1 (mod 4) and |a| ≤ 2
√

p} if p is odd,

{−1, 1} if p = 2.

We claim that for all primes p where E has good reduction, we have ap(E) ∈ Ap. This

is because E has full rational 2-torsion, and for an odd prime p of good reduction,

E[2] injects into the reduction of E modulo p. If E has good reduction at p = 2,

then one checks that the reduction of E modulo p still has a rational 2-torsion point.

Together with the Weil bound, the claim follows. Next, define for all primes p the set

Tp = Ap ∪ {±(p + 1)}.

The congruences (i),(ii) with r = 1 now give us that for a prime p ∤ N0 we have

l | L f ,p := p
∏

a∈Tp

Norm(a − ap( f )).

(If the degree of f is equal to 1, then the prime p before the product is not necessary,

but in all our examples this does not lead to any new information.) It is of course

possible that L f ,p = 0, in which case l|L f ,p does not give any information. However,

all our examples are chosen such that either f is not rational or it is rational and

the elliptic curve of conductor N0 associated with it by the Eichler–Shimura relation

is not isogenous to an elliptic curve with full rational 2-torsion. In what follows,

assume that f satisfies these conditions. This implies that for infinitely many (in fact,

a positive proportion of) primes p we have ap( f ) 6∈ Ap (and hence ap( f ) 6∈ Tp, since

by the Weil bounds ap( f ) 6= ±(p + 1)). It is easy to get an upper bound in terms of

N0 (or a, b, c) for the smallest prime p ∤ N0 for which ap( f ) 6∈ Ap. In practice, for

several primes pmax, we compute

gcd
{

L f ,p : primes p ≤ pmax with p ∤ N0

}

and the set of odd primes dividing this quantity, denoted L f ,pmax
. We do this until we

find a prime pmax for which L f ,pmax
is not empty and appears to be the same as L f ,p ′

max

for any prime p ′
max ≥ pmax. This yields the information that for all primes l > 3 such

that l 6∈ L f ,pmax
we have a contradiction to (4.3) for all primes λ ⊂ O f lying above l.
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For the given level N0, let us finally define for a prime pmax the set

Lpmax
=

⋃

f

L f ,pmax
,

where the union is over all newform classes f of level N0. By taking pmax to be the

maximum of the pmax’s for the newform classes f , we arrive at a finite set of odd

primes Lpmax
that contains 3 and, in practice, just a few other odd primes. For every

equation in Theorem 4.1, a value of pmax together with Lpmax
− {3} is given in Table

4.1. The significance for the original Diophantine problem is that for every odd prime

l 6∈ Lpmax
we have that (4.1) has no integer solutions with xyz 6= 0.

In our examples, for the finitely many primes l ≥ 5 contained in Lpmax
, we show

that Cl(Q) = ∅ (except for the one trivial exception) either by finding a prime p

for which Cn(Qp) = ∅ or, if no such prime p exists, by using Kraus’ method of

reduction, see [7] or [5, Section 1.2.], which we briefly describe now.

Fix a prime power exponent n = lr (in loc. cit. n is assumed to be a prime). The

possibilities for ap(En) (and trace(ρEn

l (Frobp))) with p ≡ 1 (mod l) can sometimes

be shown to be strictly smaller than Ap, (and Tp respectively) by using the additional

information that (4.1) has to be satisfied modulo p. Let p ∤ lN0 be a prime. For an

element q ∈ Q whose denominator is not divisible by p, we denote by q the reduction

of q modulo p in Fp. If (4.1) has an integer solution (x, y, z) with p|xyz other than

(0, 0, 0), then necessarily one of

(4.4) a/b, b/c, or c/a is in F
∗
p

n.

In this case we get from ρ
En,(x,y)

l ≃ ρ
f
l that ap( f ) ≡ ±(p + 1) (mod λ). If the (hypo-

thetical) integer solution (x, y, z) to (4.1) satisfies p ∤ xyz, then (x, y) belongs to

Sn,p = {(α, β) ∈ F
∗
p × F

∗
p : aαn + bβn + cγn

= 0 for some γ ∈ F∗
p}.

For any P = (α, β) ∈ Sn,p, define an elliptic curve over Fp by

En,p,P : y2
= x(x − aαn)(x + bβn).

Then ap(En,(x,y)) belongs to

An,p = {ap(En,p,P) : P ∈ Sn,p}.

Also consider the set (of possibilities for trace(ρEn

l (Frobp)))

Tn,p =

{

An,p ∪ {±(p + 1)} if (4.4) holds,

An,p otherwise.

Hence, in order to prove that for a (hypothetical) solution (x, y, z, n) to (4.1) and a

certain newform class f of level N0 we cannot have ρ
En,(x,y)

l ≃ ρ
f
λ for any prime λ ⊂ O f

lying above l, it suffices to find a prime p ∤ N0l such that

l ∤
∏

a∈Tn,p

Norm(a − ap( f )).
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If for all newform classes f of level N0 we can find such a prime p, then we conclude

that (4.1) has no integer solutions with xyz 6= 0. In practice, since we already com-

puted L f ,pmax
for some “large” prime pmax, it only remains to find such a prime p for

the newform classes f of level N0 for which l ∈ L f ,pmax
.

Remark 4.4 From a computational point of view, it is worthwhile to consider En,p,P

only up to quadratic twist in order to determine An,p (and hence Tn,p). To be specific,

let

S ′
n,p = {α ∈ F

∗
p : a/cαn + b/c ∈ F

∗
p

n}.
Then we get

An,p = {±ap(En,p,(α,1)) : α ∈ S ′
k,p}.

For every equation in Theorem 4.1, an entry (l, p) under “local (l, p)” of Table 4.1

indicates that Cl(Qp) = ∅. Furthermore, for every prime l ≥ 5 and newform class f

of level N0 for which l ∈ L f ,pmax
(which implies l ∈ Lpmax

) and Cl is locally solvable

everywhere, there is an entry (l, p) in Table 4.1 under “Kraus (l, p)” indicating that

l ∤
∏

a∈Tl,p
Norm(a − ap( f )). This completes the data that proves Theorem 4.1 for

primes l ≥ 5.

(a, b, c) level pmax Lpmax
− {3} local (l, p) Kraus (l, p)

(52, 24, 234) 115 3 {5} (5, 11) –

(58, 24, 37) 185 3 {5, 19} (19, 19) (5, 31)

(57, 24, 597) 295 3 {5, 7} (5, 5) (7, 43)

(7, 24, 477) 329 23 {5} – (5, 11) and (5, 41)

(11, 24, 52 · 172) 935 71 {5, 7} (5, 5) (7, 29)

Table 4.1: Data for primes l ≥ 5.

4.1.2 n = 9

To prove that C9(Q) = ∅ for our curves, we first note that C9 has points everywhere

locally; this is a straightforward computation. We can also quickly find a rational

point on C3 and find that the corresponding elliptic curve has positive rank over Q ;

see Table 4.2. Next, we start applying a mod-3 modular approach. Before we can

apply level lowering, we need to show that ρE9

3 is irreducible (which implies that it is

absolutely irreducible). Later on, we shall need the stronger result that ρE9

3 is strongly

irreducible. Using Proposition 3.5 we obtain an explicit criterion for checking this.

Proposition 4.5 Suppose p is a prime such that

• p ∤ abc;
• p ≡ 1 (mod 9);
• condition (4.4) does not hold;
• for all P ∈ S9,p we have 3|ap(E9,p,P).
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Then ρE9

3 is strongly irreducible.

Proof Since we are assuming that p ∤ abc and that condition (4.4) does not hold,

we get that E9 must have good reduction at p. Now for some P ∈ S9,p we have

ap(E9) = ap(E9,p,P). So the fourth assumption gives us that 3|ap(E9). Together with

the assumption p ≡ 1 (mod 9), the required result follows by Proposition 3.5.

Notice that, as in Remark 4.4, by considering quadratic twists, the last condition

in the proposition above can be replaced by: for all α ∈ S ′
9,p, we have 3|ap(E9,p,(α,1)).

In all our examples, we find a prime p = pirr satisfying all the conditions in the

proposition above, the (smallest) value is recorded in Table 4.2.

Although we would like to apply Theorem 2.3 with r = 2 and l = 3, for most of

the levels N0 we are considering there actually exist distinct pairs ( f1, λ1), ( f2, λ2) of

newform classes f1, f2 of level N0 and prime ideals λi ⊂ O fi
(i = 1, 2) lying above 3

for which ρλ1

f1
≃ ρλ2

f2
holds. So we start with applying “ordinary” level lowering mod-

3. For every newform class f of level N0 with 3 ∈ L f ,pmax
we compute for various

primes p ∤ abc with p ≡ 1 (mod 3) the set T9,p and check if

(4.5) 3 ∤
∏

a∈T9,p

Norm(a − ap( f )).

Denote by Np0
the set of newform classes f of level N0 such that for all primes p ≤

p0, (4.5) does not hold. The prime p0 we used, together with a description of Np0
,

is given in Table 4.2. Now if ρE9

3 ≃ ρ
f
λ for some newform class f of level N0 and

prime ideal λ ⊂ O f lying above 3, then necessarily f ∈ Np0
. For all the cases we

consider, taking into account that the image of the representation has to be contained

in GL2(F3), we find that λ has to be of inertia degree 1. Furthermore, we find a p0

such that Np0
is small enough so that the uniqueness condition in Theorem 2.3 now

holds. As for the ramification condition, in all our cases, except when N0 = 935,

we find that 3 is unramified in K f for all f ∈ Np0
. For the case where N0 = 935,

we actually find that the pair ( f , λ) we cannot deal with modulo 3 has λ ramified in

K f , and we deal with this case by studying the deformation ring directly. In all other

cases, we apply Theorem 2.3 (with r = 2 and l = 3) to all newform classes in Np0
.

This time, for all f ∈ Np0
, we simply try to find a prime p ∤ 3N0 such that for all

a ∈ Tp we have

9 ∤ Norm(a − ap( f )) and Q(ap( f )) = K f .

In all cases we readily find such a prime p; for the value, see Table 4.2. This means

that we also obtain a contradiction from ρE9

9 ≃ ρ
f

λ2 for all f ∈ Np0
and all relevant λ.

It follows that C9(Q) = ∅.

Remark 4.6 In other cases, using Tp might not give enough information. Using

T9,p instead might lead to the desired conclusion. Furthermore, computing ap( f )

(mod λ) may yield more information than Norm(a − ap( f )) (mod l). For exam-

ple, if (a, b, c) = (7, 24, 477), computing Norm(a − ap( f )) (mod 3) did not give us

enough information to rule out the newform classes of level 329 with degrees 5 and
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level Q-rank of C3 pirr p0 Np0
description p

115 2 73 – d = 1 2

185 1 73 73 d = 1∗ 2

295 2 37 37 d = 6 13

329 2 109 13 d = 5, d = 6 5,5

935 2 37 37 d = 11∗ –

Table 4.2: Data for n = 3 and n = 9; d denotes the degree of the newform class. In case of a

∗, the degree alone does not determine the class uniquely, in which case we impose the extra

condition trace(a2( f )) = 0, which does determine the class uniquely.

6. However, the newform class f of degree 6 can be ruled out using ap( f ) (mod λ).

Specifically, there is a unique prime λ above 3 of inertia degree 1 in K f . For any

other prime λ ′ above 3, the image of the Galois representation ρ
f
λ ′ is not contained

in GL2(F3), hence not isomorphic to ρE9

3 . To rule out the prime λ in this case, we just

note that f mod λ is an Eisenstein series, which means ρ
f
λ is reducible, hence not

isomorphic to ρE9

3 , since we proved this is irreducible.

In fact, using these observations, in all our cases we find that there is exactly one

pair of ( f , λ) for which we are unable to obtain a contradiction using just level lower-

ing modulo 3. In Section 5 we will prove that level lowering modulo 3 is not sufficient

for this pair.

4.1.3 Level 935

We now consider the example

11x9 + 24 y9 + 52 · 172z9
= 0.

Using the data in Table 4.2, we conclude that if there is a nontrivial solution to this

equation, then we have ρE9

3 6≃ ρ
f11

λ , where f11 is the newform class of level 935 with

degree 11 and trace(a2( f11)) = 0, and λ ⊂ O f11
is a prime lying above 3 of inertia

degree 1. There are exactly two primes λ1, λ2 ⊂ O f11
lying above 3 of inertia degree 1.

One is unramified, say λ1, but the other, say λ2, is ramified. As for the representations

ρ
f11

λi
for i = 1, 2, we quickly find that they are not isomorphic.

The case ρE9

3 ≃ ρ
f11

λ1
actually leads to a contradiction fairly easily by computing

T9,31 = {±8,±32} and a31( f11) ≡ 0 (mod λ1).

The situation for ( f11, λ2) is a bit more delicate, specially since we can not apply

our level lowering theorem in this situation. However we can still rule this case out by

using the deformation ring directly. Assume that ρE9

3 ≃ ρ
f11

λ2
. Then ρE9

9 is a minimal

deformation of ρ
f11

λ2
. Therefore, this representation should correspond to a unique

map Runiv → Z/9Z. However, we can explicitly compute Runiv
= T, as we did in

Remark 2.9. Since ( f11, λ2) is not congruent to any other newform class of level 935,

we get that T =
(

O f11

)

λ2
. Using SAGE or MAGMA we get that Z[a3( f11)] ⊂ O f11

with an index coprime to 3. Therefore,

O f11
⊗ Z3 = Z3[T]/〈P(T)〉,
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where

P(T) = T
11
−T

10
−25T

9
+26T

8
+222T

7
−225T

6
−827T

5
+705T

4
+1212T

3
−449T

2
−770T−168

is the minimal polynomial for a3( f11). Factoring P(T) over Z3, we can conclude that

T =
(

O f11

)

λ2
= Z3[T]/〈T2 − aT + b〉

where a ≡ 4 (mod 9) and b ≡ 7 (mod 9). Looking at the above equation modulo

9, we get T2 − aT + b ≡ (x − 2)2 + 3 (mod 9), which implies that there are no maps

T → Z/9Z. This gives us a contradiction to our assumption that ρE9

9 is a minimal

deformation of ρ
f11

λ2
, which rules this modular form out as well and proves our result.

5 Necessity of Level Lowering Modulo 9

One can ask if we really needed level lowering modulo 9 for solving (4.1). A priori

it could be possible that by using level lowering modulo 3 we can already obtain the

desired contradictions. However, we will show that for our choice of Frey curve and

triples (a, b, c), level lowering modulo 3 does not yield enough information.

Remark 5.1 We note that there are Frey curves attached to the Diophantine equa-

tions

axn + byn + cz3
= 0, ax3 + by3 + czn

= 0,

and we can specialize these curves to the case n = 9. The Frey curve attached to

the first equation has a rational 3-isogeny by construction, so it is not suitable for

level lowering. As for the Frey curves attached to the second equation, along similar

lines as in Section 3, one can show that E[3] is strongly irreducible. However, we end

up having to deal with modular forms of higher level, for example when (a, b, c) =

(11, 24, 52 · 172), we have to deal with modular forms of level (at least) 92565, which

is computationally very difficult.

We also note that other possible non-modular approaches to proving C9(Q) = ∅
include descent methods and Mordell–Weil sieving. This is a promising approach,

almost completely orthogonal to the modular method presented here, and can be an

interesting topic for further investigation.

Let Tn,p ⊂ F3 be the image of Tn,p under the reduction map modulo 3. In this

section we will show that for our examples, the unique pair of newform class f of

level N0 and prime λ ⊂ O f lying above 3 mentioned at the end of Remark 4.6 satisfies

ap( f ) mod λ ∈ T9,p

for all primes p ∤ 3N0. This means that level lowering modulo 9 (along with the

argument in Section 4.1.3) is necessary to prove Theorem 4.1.

We will start by showing that T3,p 6= F3 infinitely often, by showing 0 6∈ T3,p for

infinitely many p ≡ 1 (mod 3).
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Lemma 5.2 Let j : Cn → X(2) → X(1) be the j-invariant of the Frey elliptic curve

corresponding to a point on Cn, let p ≡ 1 (mod n) be a prime with p ∤ N0n, and let

π : X0(3) → X(1) be the natural forgetful map between the modular curves. Then

(i) 0 6∈ Tn,p if and only if j(Cn(Fp)) ⊂ π(X0(3)(Fp)) if and only if

(

Cn ×X(1) X0(3)
)

(Fp) → Cn(Fp)

is surjective;

(ii) ±1 ∈ Tn,p, if and only if there is a z ∈ Cn(Fp) such that j(z) ∈ π(X0(3)(Fp)) if

and only if
(

Cn ×X(1) X0(3)
)

(Fp) is not empty.

Proof If 0 6∈ Tn,p, then by Lemma 3.4 we get that for all z ∈ j(Cn(Fp)) such

that z 6= ∞ we have that the corresponding elliptic curve En/Fp has a 3-isogeny,

i.e., z ∈ π(X0(3)(Fp)). We also know that ∞ ∈ π(X0(3)(Fp)), therefore we get

j(Cn(Fp)) ⊂ π(X0(3)(Fp)). Now assume that j(Cn(Fp)) ⊂ π(X0(3)(Fp)). Let

z ∈ j(Cn(Fp)). Notice that if z = ∞, then the trace of Frobenius of the corresponding

generalized elliptic curve is ±(p + 1) 6≡ 0 (mod 3). If z 6= ∞, then by our assump-

tion z corresponds to an elliptic curve En/Fp with a rational three isogeny, which by

Lemma 3.4 will have trace of Frobenius equivalent to ±1 modulo 3. In either case we

get 0 6∈ Tn,p. This proves the first equivalence. By the definition of fiber products we

see that j(Cn(Fp)) ⊂ π(X0(3)(Fp)) if and only if
(

Cn ×X(1) X0(3)
)

(Fp) → Cn(Fp) is

surjective, which finishes the first part of the lemma.

The second part of the lemma is proved in a similar fashion.

Therefore, to find primes p such that 0 6∈ T3,p, we are reduced to finding p such

that (C3 ×X(1) X0(3))(Fp) → C3(Fp) is not surjective. For brevity, we will drop the

X(1) from the fiber product. Let ˜C3 × X0(3) be the desingularization of the fiber

product. The following lemma describes the map ˜C3 × X0(3) → C3.

Lemma 5.3 The curve C3×X0(3) is a genus one curve. Furthermore, the natural map

˜C3 × X0(3) → C3 induces the multiplication by 2 map on their Jacobians. In particular,

the Jacobian of C3 is isomorphic to the Jacobian of ˜C3 × X0(3).

Proof A quick calculation shows that for every point P of X(1), the ramification

indices of X0(3) → X(1) above P all divide the ramification indices of C3 → X(1)

above P, which implies that

˜C3 × X0(3) −→ C3

is unramified. Therefore, by Riemann–Hurwitz’s theorem we get that ˜C3 × X0(3) →
X(1) is a genus one curve.

To show that this map is the multiplication by 2 map on the Jacobians, note that

this a geometric statement, and it suffices to prove it for a particular twist of C3.

Specifically, we show that ˜C × X0(3) → C over Q induces the multiplication by 2

map on the Jacobians, where C : x3 + y3 + z3
= 0. The induced map on the Jacobians

Jac(C) −→ Jac
( ˜C × X0(3)

)
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is an isogeny of degree 4, and is defined over Q . Notice that Jac(C) is the elliptic curve

given by Y 2
= X3 − 24 · 33. This elliptic curve has no rational 2 isogeny, therefore the

only possibility is for the above map to be multiplication by 2, which is the desired

result.

The following proposition tells us that for most problems, 0 6∈ T3,p for infinitely

many primes p.

Proposition 5.4 Let J be the Jacobian of C3/Q and let p ≡ 1 (mod 3) be a prime.

Assume that J has good reduction at p. Then 2|ap( J) if and only if 0 ∈ T3,p. Specifically,

if 4abc is not a perfect cube, then 0 6∈ T3,p infinitely often.

Proof By Lemma 5.2, we need to show that 2|ap( J) if and only if

(

C3 × X0(3)
)

(Fp) → C3(Fp)

is not surjective. Notice that we can replace C3 ×X0(3) by its desingularization with-

out loss of generality.

By Lemma 5.3, we know that ˜C3 × X0(3) is a genus one curve. Using the Weil

bound we get that genus one curves always have an Fp point, and hence they are

isomorphic to their Jacobians. Let P ∈ ( ˜C3 × X0(3))(Fp), and let Q be the image of

this point in C3(Fp). Using P and Q as the origins, we get an explicit isomorphism

between C3 ≃ J ≃ ˜C3 × X0(3). Using this identification, the map ˜C3 × X0(3) → C3

is the multiplication by 2 map.

Now if we assume that ap( J) is odd, then J(Fp) is an Abelian group with an odd

order, therefore the multiplication by 2 map is an isomorphism. In particular,

( ˜C3 × X0(3)
)

(Fp) → C3(Fp)

is surjective. Similarly, if ap( J) is even, then J(Fp) is an Abelian group with even

order, and therefore the multiplication by 2 map is not surjective on the Fp points.

Note that, when 4abc is not a perfect cube, the Jacobian J, given by (4.2), has no

nontrivial rational 2-torsion point. In this situation, ap( J) is odd infinitely often,

and we get that for infinitely many p’s, 0 6∈ T3,p. This completes the proof of the

proposition.

In all our cases, it is easy to find an integer solution (x, y, z) to (4.1) with n = 3

such that ρ
E3,(x,y)

3 ≃ ρ
f
λ. This shows that ap( f ) mod λ ∈ T3,p for all primes p ∤ 3N0.

However, since

T9,p ⊂ T3,p,

a priori it is possible that Kraus’ argument can succeed for some prime p beyond our

search space. This is in fact not the case, and we show that for p large enough, this

containment is in fact equality, and hence we cannot get a contradiction (it is easy to

see that for p ≡ 2 (mod 3) we have T9,p = T3,p = F3).

Proposition 5.5 (i) If p > 2162 is a prime congruent to 1 (mod 3), then ±1 ∈
T3,p if and only if ±1 ∈ T9,p.
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(ii) If p > 1062 is a prime congruent to 1 (mod 3), then 0 ∈ T3,p, if and only if

0 ∈ T9,p.

Proof To prove the first part of the claim, by Lemma 5.2, we need to show C9×X0(3)

has an Fp rational point, however this follows from the Weil bound

∣

∣

( ˜C9 × X0(3)
)

(Fp)
∣

∣ > p + 1 − 2g
√

p,

where g is the genus of C9×X0(3). To calculate this genus, note that ˜C9 × X0(3) → C9

is unramified of degree 4, and we know that the genus of C9 is (9−1)(9−2)/2 = 28.

Therefore, using the Riemann–Hurwitz theorem we get that g = 109. Therefore,

∣

∣

( ˜C9 × X0(3)
)

(Fp)
∣

∣ > p + 1 − 218
√

p,

which means for p > 2182, the curve ˜C9 × X0(3) will have an Fp point. This finishes

the proof of the first part of the proposition.

To prove the second part, assume that 0 ∈ T3,p. Then, by Lemma 5.2 the map

( ˜C3 × X0(3))(Fp) → C3(Fp) is not surjective. Assume that ( ˜C9 × X0(3))(Fp) →
C9(Fp) is surjective. We want to show that p < 1062. Let P ∈ C9(Fp). Then we can

find a point Q ∈ ( ˜C9 × X0(3))(Fp) which maps to P. This implies that φ(P) is in the

image of ( ˜C3 × X0(3))(Fp) → C3(Fp). However, since this map is just multiplication

by 2, and since it is not surjective, there are either 2 or 4 points that map to φ(P).

This implies that there are either 2 or 4 points in ( ˜C9 × X0(3))(Fp) that map to P.

Therefore,
∣

∣

( ˜C9 × X0(3)
)

(Fp)
∣

∣ ≥ 2|C9(Fp)|.

However, the Weil bound tell us that

|C9(Fp)| ≥ p + 1 − 2 · 28
√

p,

∣

∣

( ˜C9 × X0(3)
)

(Fp)
∣

∣ ≤ p + 1 + 2 · 109
√

p.

Using these estimates we get that p < 1062, as desired.

Remark 5.6 For the proof of Proposition 5.5, we used the most basic bounds for

simplicity of the exposition. However, since the curves we are using are fairly special,

much better bounds are known.

We can now readily find all primes p such that T9,p 6= T3,p. Table 5.1 collects this

data: the column labeled p0 is the set of primes such that 0 ∈ T3,p but 0 6∈ T9,p, and

the column labeled p1 is the set of primes such that ±1 6∈ T9,p. For all such primes,

we can check that ap( f ) ∈ T9,p, which proves that we cannot rule out f using mod 3

level lowering.
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(a, b, c) p0 p1

(52, 24, 234) {73, 163} ∅
(58, 24, 37) {73, 307, 541} {37}
(57, 24, 597) {37, 73, 163, 181, 199, 541} ∅
(7, 24, 477) ∅ {109}

(11, 24, 52 · 172) {37, 73, 307, 541} ∅

Table 5.1: Primes p where T3,p 6= T9,p.
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