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Abstract

Line distributions of Stokes flow singularities are used to model the flow around a slender
body which is straddling a flat interface between two viscous fluids. Motion of the slender
body parallel to the interface and normal to the interface is considered where the axis of
symmetry of the slender body is always perpendicular to the undisturbed interface.
Asymptotic approximations to the force distributions on the slender body are evaluated
and the relative contributions of that part of the slender body in one fluid to the force
distribution in the other fluid and of the interface interaction to the force distribution are
examined. It is observed that a shielding region exists about the interface which is due to
the interaction with that part of the slender body in the other fluid. Finally, for parallel
motion, the first order interface deformation is calculated.

1. Introduction

The mechanics of a slowly moving particle in the vicinity of an interface between
two immiscible liquids of differing density and viscosity is of great interest in
sedimentation, bubble flotation processes and mucociliary transport. In this paper
we are concerned with the model problem of a slender body which penetrates the
interface between the two fluids and moves relative to the two fluids. Both fluids
are considered to be at rest a long distance from the body. We restrict our
consideration to a slender body whose axis of symmetry is always held perpendic-
ular to the undisturbed interface. It is shown that the interface is quasi-steady for
motion parallel to the undisturbed interface but for normal motion it is only
quasi-steady outside a drainage region about the contact point of the interface
and the surface of the slender body. The purpose of this study is to evaluate the
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force distribution acting on the slender body and to analyse the interface
deformation caused by the motion of the slender body. A preliminary analysis of
this problem has been reported in Blake [6] however, in this paper, we intend to
carefully examine the contributions to the force from the interface and from those
parts of the slender body on either side of the interface.

In muco-ciliary transport in the lung, long slender cilia propel mucus along the
bronchial tubes by beating back and forth in an asymmetric pattern. The
muco-ciliary environment may be thought of as a two layer system where the cilia
beat in a watery periciliary layer above which lies a more viscous non-Newtonian
mucous layer. Recently there has been some debate in the literature as to whether
it is necessary for the cilia to penetrate into the mucous layer during their
effective strokes in order to achieve the observed rates of mucous transport (see
Blake [5], Blake [6] and Sleigh [18]). Thus an important problem in muco-ciliary
transport would be to find the force acting on a single cilium (or slender body)
which penetrates the interface between the periciliary and mucous layers.

In chemical engineering the problem of analysing the general motion of an
arbitrary particle near an interface between two viscous fluids is of importance to
enhanced particle recovery. This may occur in the study of colloidal suspensions,
sedimentation and bubble flotation problems. To determine the influence of the
shape of a body and its orientation on the motion of the body solutions for the
various extremes such as a sphere, a disc and a slender body are of particular
value. Recently there has been considerable interest in the motion of a sphere in
the vicinity of an interface. Lee et. al. [10] and Lee and Leal [11] found the force
and torque acting on a sphere translating and rotating near a flat interface. These
results have been extended by Berdan and Leal [4] who examined the perturba-
tion of the interface and its effect on the drag and the torque acting on the
particle. Some numerical studies of this problem using the boundary elenment
method have been carried out (Lee and Leal [12], Leal and Lee [9]) where the
interface is allowed to deform. This is a time dependent problem and in the latter
paper the solution is advanced to the stage where the sphere is just about to
penetrate the interface.

Investigations of problems where a body is straddling the interface are few but
do include that of Schneider et al. [17] who found analytical solutions for the
rotational motion of a class of axisymmetric bodies whose surfaces are formed
from two intersecting spheres. Ranger [14] also considered the motion of a thin
disc which is straddling a flat interface and moving either parallel or normal to
the interface.

The study of the motion of a slender body in a fluid, while important in its own
right, is useful for determining the effect of the orientation of a particle on the
force on a particle and complements similar problems already developed for
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spheres. A very successful method that has been used to analyse the motion of a
slender body in Stokes flow is that of modelling the slender body by a distribu-
tion of Stokes flow singularities (i.e. stokeslets and higher order singularities)
along the centreline of the body. One particular advantage of this method is that
when boundaries are present one can employ image singularities which automati-
cally satisfy the boundary conditions. Another advantage is that this method
yields desirable quantities of physical significance such as force distribution on
the body which are obtained directly without having to first solve for the exterior
flow field. Previously, Tuck [19], Batchelor [3] and others have used this method
to obtain the force distribution acting on a slender body translating in an infinite
fluid. Their analysis was later extended by de Mestre and Russel [13] and Russel
et al. [16] to study the motion of a slender body near a rigid plane wall.

Fulford and Blake [8] considered the motion of a slender body near a flat
interface which separated two fluids of different viscosities. In this paper it was
assumed that the interface remained approximately flat to first order through the
action of a sufficiently large interfacial tension and density difference between the
two fluids. Two orientations of the slender body relative to the flat interface were
investigated—where the axis of symmetry is parallel to the interface and where
the axis is normal to the interface. The force distribution, drag and, in the case of
motion parallel to the interface, the induced torque of the body were evaluated
analytically as functions of the ratio of viscosity of the two fluids and the distance
of the body from the interface. Both the orientation and the direction of motion
influenced these results. This study also led to the discovery that there were two
different mechanisms responsible for the couple which was not apparent from a
similar study on a sphere. These results were later extended by Yang and Leal [20]
to include arbitrary orientation.

In this paper we consider a slender body which is straddling an interface and
moving either parallel to the interface (i.e. in a direction transverse to the axis of
symmetry of the body) or normal to the interface (i.e. axial motion of the slender
body). We assume that the axis of symmetry of the slender body is always held
perpendicular to the undisturbed interface by some implied external couple. In
principle, the model can be extended to arbitrary orientation but the algebraic
complexity will be immense although the simpler problem of a slender body of
arbitrary orientation entirely in one fluid has been dealt with by Yang and Leal
[20].

In Section 2 we present the equations of motion for the problem together with
the boundary conditions for a deformable interface. A linearisation procedure is
applied to the boundary conditions where the zeroth order terms are the boundary
conditions for a flat interface, assuming that the interfacial tension of the
interface or the density difference between the two fluids is large. For normal
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motion these boundary conditions are only valid outside a drainage region about
the interface-slender body contact point. In Section 3 we obtain expressions for
the force distribution on the body using slender body theory. Finally, in Section
4, we use the linearised equations of Section 2 and the results of Section 3 to
obtain a first order approximation for the interface shape.

2. Equations of motion

Consider a slender body of total length / + / of which a length / is immersed in
a fluid of viscosity ju and density p and a length / is immersed in a fluid of
viscosity ji, and density p (see Figure 1). The maximum cross-sectional radius of
the slender body is a0 which is small compared to both / and /. We will assume
that the two fluids are immiscible and separated by a sharp interface (denoted by
the function x3 = f(jcl5 x2, t)). The slender body is maintained at the same
orientation where the axis of symmetry is perpendicular to the xl — x2 plane.
Two different motions are considered:

i. motion in the xr diretion with velocity Ux (parallel to the xx — x2 plane) and
ii. motion in the x3 direction with velocity t/3 (normal to the xx — x2 plane).
For an incompressible fluid flow, where the Reynolds numbers are sufficiently

small, the equations of motion of the two fluids may be reduced to the Stokes
equations and the continuity equation.

Vp Xvu . . . u p p e r
V - a = ^ (2.D
VP = V u . . . , o w e r fluid)

V • u = 0
where u and p are the non-dimensional velocity and pressure fields in the upper
fluid, u and p are the non-dimensional velocity and pressure fields in lower fluid
and X = /i//x is the ratio of viscosities of the two fluids. The appropriate scales
used are U for velocity, / + / for the length scale and (/ + l)/U for the time scale.

The boundary conditions on the interface x3 = f(xx, x2, t) are as follows.
u = u. (2.2)

un = r- f, (2.3)
|k - V?| 9 '

j , - o i , > , I (2.4)

where the unit normal to the interface n is given by

^ * (2.5)
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upper fluid
viscosity M
density p

t

lower fluid

viscosity M
density p

u,

inner drainage region

\L

Figure 1. Coordinate system used for (a) parallel motion and (b) normal motion. In (b) the inner
drainage region is indicated.
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The parameters a (the reciprocal of the capillary number) and f$ (the ratio of the
Bond number to the capillary number) are defined by

where y is the interfacial tension and p and p are the densities of the two fluids.
Equation (2.3) is the kinematic condition for a material surface. The dynamic
condition is expressed by equation (2.4) where aIJ and a • are the Newtonian stress
tensors for the lower and upper fluids respectively. This states that the tangential
stress is continuous across the interface while the normal stress is balanced by
interfacial tension and gravity. Note that (p - p) > 0 for a statically stable
interface. Equations (2.1-2.6) together with the no-slip condition on the slender
body and a requirement that the velocity fields u and u are bounded at infinity
are sufficient to determine the velocity and pressure fields in both fluids and the
shape of the interface J at any time.

For parallel motion of the slender body the interface will reach a steady state
where d£/dt = 0 hence equation (2.3) reduces to

u • n = 0. (2.7)

In normal motion, 9f/3/ will never be zero since the fluid near the interface-slender
body junction satisfies the no-slip condition on the surface of the slender body
(although Davis [7] discusses moving contact lines where the no-slip condition at
the interface-slender body junction does not appear to hold on a macroscopic
length scale but does in fact hold on a length scale comparable with the surface
undulations of the body). By considering the velocity disturbance from a slender
body moving in on infinite fluid we deduce that the flow field is divided into an
inner region where u - log d and a ~ \/d and an outer region where u ~ \/d
and atJ ~ 1/d2 (see Figure lb). An order of magnitude analysis of equation (2.3)
using equation (2.4) gives the ratio of the left hand side of (2.3) to the right hand
side of (2.3) as Sl/d in the outer region and Sl/(dlog(l/d)) in the inner region
where S is defined as

( I I ) (2.8)

and is a small parameter if either the interfacial tension or the density difference
between the two fluids is large. Clearly then we can neglect the 3f/9/ term in
equation (2.3) in the outer region only. We note however that the inner region will
be thin if 8 is small where the fluid drains from the surface of the body fairly
rapidly.
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Following the approach used by Lee et al. [10] we seek a perturbation
expansion of the interface shape f in terms of the composite parameter 8 for f and
u in the form

(2.9)

u = u<0) + 8u(1) + 52u(2> + • • • (2.10)

together with similar expansions for ii, otJ and atJ. The zeroth order terms of the
boundary conditions (2.2), (2.3) and (2.4) yield the following:

u(0) = &(0)

a = 1,2, (2.11)

which are to be satisfied on the 0(1) approximation to the interface shape,
x3 = 0. These conditions are precisely those of zero normal velocity and continu-
ous tangential stress for a perfectly flat interface.

For normal motion, equations (2.11) are valid in the outer region, however the
expansion breaks down in the inner region since the normal stresses become
unbounded and f no longer remains small. Alternatively, since a steady state
solution does not exist in the inner region, we perform a small time expansion of
equations (2.2-2.4) which leads to the following boundary conditions—

u(0) = ft(0) \

a(o) = (J/o)J ' = 1 ,2 ,3 , (2.12)

where the normal stress is continuous across the interface but the normal velocity
of the interface is not prescribed. We note that interfacial tension and gravity do
not appear in these boundary conditions. It is clear that the boundary conditions
(2.12) must be regarded as an initial value problem starting with f = 0 and using
equation (2.3) as an updating approach.

3. The force distribution

In this section we evaluate the force distribution acting on a slender body that
is penetrating a flat interface and moving with constant velocity in the directions

i. parallel to the interface (zero normal velocity boundary conditions)
ii. perpendicular to the interface (zero normal velocity boundary conditions and

continuous normal stress boundary conditions).
This problem is modelled by employing a line distribution of Stokes flow
singularities (plus appropriate images) along the axis of symmetry of the slender
body. We note that this formulation may be formally derived from a surface
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integral solution of the Stokes flow equations by carrying out a Taylor series
expansion about the centreline of the slender body (see Russel and Acrivos [15]
for a detailed description of this procedure). This approach leads to the following
integral representation for the velocity of the fluid in each region:
for the lower region (JC3 < 0)

«,(x) = ft G^x, s)FJ(s) ds + jf? G^x, , ) F » ds (3.1)

and for the upper region (x3 > 0)

fif(x) = / ° G3 (x, s)FJ(s) ds + jf' G,4,(x, , ) / ; ( , ) ds (3.2)

where F and F are the force distributions on the slender body in the lower and
upper regions respectively. The four Green's functions which satisfy the zero
normal velocity boundary conditions (2.11) are obtained from Aderogba and
Blake [2] and are conveniently defined as follows.

j = tf,(x, s; X) = [ ^ + ^ V I - I V *

< R}

2X , „ „ . „ x 3 (-sR, 5,3 /? , /?3

fj = g,3>, , ; X) = g,2y(x,5; X"1), (3.3)

with r = (*!, x2, x3 — J ) and R = (JCX, x2, x3 + 5). These Green's functions con-
sist of a stokeslet, an image stokeslet and higher order singularities. Additionally,
the Green's functions which satisfy the continuous normal stress boundary
conditions (obtained from Aderogba [1]) are defined as

(3.4)

8TTMG,37 = g3 (x, s; X) = gfj{x, s; X"1),

,47 = gfj(x, s; X) = ^ ( x , s; X"1).
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The force distributions are obtained by satisfying the no-slip boundary condi-
tion on the surface of the slender body yielding coupled integral equations for F
and F. In the following we will illustrate a procedure for solving these integral
equations for the case of transverse motion of the slender body (in the Xj-direc-
tion).

Consider the slender body moving in the xrdirection with velocity Uv We
introduce the cylindrical polar coordinates, r0 and <J>, to describe the surface of the
body so that

r = (r0cos</>, rosin4>, x3 - s),

R = (r0cos</>, Rosin4>,x3 + s),

and define the maximum cross sectional radius as a0 = m&x[ro(x3)]. It is conveni-
ent to define the quantities

(3.5)

/ = and / = (3-6)

Thus by satisfying the no-slip condition on the surface of the body in equations
(3.1) and (3.2) and rearranging the terms so that the dominant contributions from
the Green's function (i.e. when x3 = s) have been subtracted out we obtain the
pair of equations.

(3.7)
?u(x3,s)ds,

l=fOf(s)g3
n(x3,s)ds+f(x3)f'gtl(x3,s)ds

J-l J0

+ flf(s)-f(x3)]gtlds.

The other components of the force distribution vectors are negligible compared to
those in the direction of motion. This, of course, will not be true for an arbitrary
orientation of the slender body where an additional distribution of stokeslets and
images corresponding to the x3-direction must be included. We have also aver-
aged equation (3.7) around the circular perimeter to remove the <j> variation: to
O(a0/l) this is formally equivalent to including additional distributions of
potential source dipoles. By carrying out elementary integrations we can write

4 + J>i(*3). (3.8)
o fc

where Ax and Dx are defined below. For a slender body (r0 <§: /, /), e and e
defined as

- l

e- log-r £ = (3.9)
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will be small parameters. This suggests the following asymptotic expansion:

f=efV+fV\ f=ifil)+fi2\ (3.10)
where/(2) is o(e) and/( 2 ) is o(e). Substitution of (3.10) into (3.7) determines the
appropriate dependence of /(2) and /<2) on e and e and leads to the following
asymptotic approximations to the force distributions Fx and Fx:

+ O(E\ ee),

= o(e2, ee).
(3.11)

The 0(e) term of the force distribution in the lower fluid is independent of the
influence of the interface and the upper fluid whereas with the higher order terms
the function Ax is identified as that component of the force consisting of the
interaction of the slender body with the lower fluid and the interface while Bx is
the contribution to the force distribution in the lower fluid from the slender body
in the upper bluid. These functions are defined as

(3.12)

where

L 1 5 = -21og + log
Rx\ (Ro- x3

l + log 3 + 2 Ro'

= log

~ X2

Uu = log

and

R
Ro - x3

1 x.
2\Rr R,

i__
^0

l-x,

Rl
- 1 , 2

Ro - x3

Rr

1.2[ 1

~ X3

^l2 = (*3 + 0 2 + '•0
2>

/ ? 2 = ( x 3 - / ) 2 + r0
2,

R] = ( x , - / ) 2 + ro\

(3.13)

https://doi.org/10.1017/S033427000000494X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000494X


[ i i] Slender body straddling an interface 305

The terms Lls, Lll and LlH are the contributions from the stokeslets, image
stokeslets and higher order singularities in the lower fluid respectively while Uu

and U1H are the contributions from the image stokeslets and the higher order
singularities in the upper fluid to the force distribution in the lower fluid. The
functions Cl and Dx for the force distribution in the upper fluid are defined by

Dl(x3;l,\) = Al(-x3,l,\-
1),

C1(x,;l,X) = Bl{-x3,l,X-1).

A careful analysis of the terms in Au Bu C, and Dl shows that as x3 approaches
to within O(a0) of the interface (x3 = 0) some of these terms become 0( l /e , l /e).
The expansion is not strictly valid here which may be interpreted as an end effect
if we think of the one slender body as two bodies joined at the interface.

For normal motion (zero normal velocity boundary conditions) the force
distributions are as follows.

F3(x3) = 2irnU3e\l - \eA3(x3) ~ 7^3(^3) + o{t\ ee),
(3-15)

F3(x3) = 2^t/3e[l - \eC3(x3) - ~W3J(x3)j + o(e2, ee),

where Ro, Ru R2 and R3 are defined in (3.13) and

A3(x3,l, X) = L3S- L3/

with

/ — x, + Ri \ ( x3 I - x3

We also include the expressions for the force distributions for normal motion with
the continuous normal stress boundary conditions (obtained from the Green's
function in equation (3.4)). The form of the force distribution is identical to (3.15)

https://doi.org/10.1017/S033427000000494X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000494X


306 G. R. Fulford and J. R. Blake [ 12 ]

wi th

where

^ 0 ~ X3

The force distributions for parallel and normal motion with the zero normal
velocity boundary conditions simplify considerably when / = / where the forces
become directly proportional to the viscosity of the fluid in which that part of the
body is immersed and independent of the viscosity of the other fluid—the force
distributions take on the functional form

fix,), Fx{x3) = 4niLVxF{x,),
F3(x3) = ivMFfixJ, F3(x3) = 27riiU3F3*(-x3)

where the functions F-j* and F3* are independent of X. This result does not arise
for the continuous normal stress boundary conditions. For a body which is
translating in a single infinite fluid (in Stokes flow) dimensional analysis shows
that the velocity field is independent of the viscosity of the surrounding fluid
whereas the pressure field and force on the body are proportional to viscosity. If
the x1 — x2 plane is a plane of symmetry of the body then the velocity field above
this plane is simply a reflection of the field below the plane (if the body is moving
normal to the plane we must also employ reversibility of the Stokes equations for
this to be true). The zero normal velocity boundary conditions (2.11) are indepen-
dent of viscosity and are automatically satisfied on the plane of symmetry. Also
by symmetry the tangential rate of shear is zero. Thus without loss of generality
we may consider the two regions to be fluids of different viscosities and so the
force on the body in each fluid will be proportional to the viscosity of that fluid.
On the other hand, the continuous normal stress boundary conditions (2.12) are
not independent of viscosity (since the continuity of normal stress involves
pressure) so the image velocity fields will not satisfy these boundary conditions
automatically for general X. Thus the velocity field and the force on the body in
one fluid will be dependent on the viscosity of the other fluid. One may also argue
this result using the reciprocal theorem.

For parallel motion, when fi = fi (X = 1), we can consider the slender body to
be moving in an infinite fluid since symmetry implies that the zero normal
velocity boundary conditions are satisfied automatically. Since Fx* is independent
of X this determines Fl for all values of X. Substitution of the appropriate values
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into (3.12) does in fact yield the infinite fluid force distribution, correct to
O(a0/l). This is illustrated in Figure 2 for a slender prolate ellipsoid where the
force distribution is constant. However, for normal motion (zero normal velocity
boundary conditions) the X = 1 case does not reduce to the corresponding infinite
fluid result because there is an implied distribution of normal stress which is
acting on the fluid to maintain the boundary condition of zero normal velocity. In
Figure 2 the force distribution for / = / is plotted. The distributions become
unbounded near the interface, for normal motion (with zero normal velocity
boundary conditions on the interface), which is due to the inconsistency of the
no-slip boundary condition and the zero normal velocity condition near the
slender body-interface junction. We have also plotted the continuous normal
stress force distributions for normal motion in Figure 2. We expect the continu-
ous normal stress expressions to be a more accurate representation near the
slender body-interface junction but further away the zero normal velocity solu-
tions will be more valid since they are constant with quasi-steady motion.

35 -i

3 0 -

I -25
•c

8 2 0 -

•15-
- 1 0

lower fluid

- 6

upper fluid

normal motion

normal motion

- 2
l

1-0

Figure 2. Force distribution on a slender prolate ellipsoid (a0 = 0.01) with 1 = 1=1. The solid lines
correspond to the zero normal velocity boundary conditions (normal and parallel motion for all values
of X) and the broken lines correspond to normal motion with the continuous normal stress boundary
conditions with X = 100, \ = 1 and X = 0.01.
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upper
fluid

-1-6 -12

Figure 3. Force distribution on a slender prolate ellipsoid (a0 = 0.01) moving parallel to the interface
with / = 1.6 and / = 0.4 for various values of X indicated on the diagram. The shielding region is
indicated between the dashed lines.

When / ¥= / it is useful to analyse the force distribution in the lower fluid in
terms of the separate contributions from the interface and from that part of the
slender body in the upper fluid. For parallel motion the results of Fulford and
Blake [8] show that for large values of X the presence of the interface causes the
force distribution to be an increasing function of x3 while for small values of X it
is a decreasing function of x3. Near a more viscous boundary the stresses will be
large hence the resistance to motion will be greater. This effect is realised in the
image stokeslet distribution which is multiplied by the factor (1 — X)/(l + X).
The dominance of the image stokeslet distribution also implies that the interface
contribution will be positive for large values of X and negative for small values of
X. The contribution to the force distribution from the body in the upper fluid (the
term Bx) is multiplied by the factor -2X/(1 + X); thus for large values of X the
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•35-,

•30-

so
•a 25-

CO

•20-

lower fluid

•15
- 1 6 -12 - 8

{upper
{fluid

X= ioo

>= 01

- 4 0

Figure 4. Force distribution on a slender prolate ellipsoid (a0 — 0.01) moving normal to the interface
with / = 1.6 and / = 0.4. The solid lines correspond to the zero normal velocity boundary conditions
(where X is indicated on the diagram) and the broken lines correspond to normal motion with the
continuous normal stress boundary conditions with X = 100, X = l and

X = 0.01.

contribution will be negative and will tend to zero for small values of X. We can
identify the terms Lu and Uu as the dominant terms in Al and Bx respectively.
When / » / we find that Lxl and Uu are of the same order near the interface but
further away LXI is larger than Uu by almost an order of magnitude. Obviously
the contribution from Bx is only significant near the interface. This is clearly
illustrated in Figure 3 where away from x3 = 0 the force is increasing for X = 100
and decreasing for X = 0.01, however close to the interface the force is decreasing
for all values of X. This suggests that the interface has a shielding effect on the
two fluids where the influence of the body in the upper fluid on the lower fluid is
confined to some region near the interface. We also note that for the slender body
depicted in Figure 3 the contribution from the long part of the body in the lower
fluid will have a greater influence on the force on the short part of the body in the
upper fluid.

The interface contribution to the force distribution in normal motion (zero
normal velocity boundary conditions) is also dominated by the image stokeslet
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distribution, however the coefficient of this term is -1 (since the zero normal
velocity boundary condition requires a stokeslet of equal and opposite strength to
balance the infinite flux of the original stokeslet). This means that the X
dependence of the interface contribution is contained only in the higher order
terms and so the contribution to the force will always be positive. Furthermore
the contribution from the body in the upper fluid also depends only on higher
order terms and will not be very significant. The weak X dependence of the force
distribution for normal motion (zero normal velocity) is evident in Figure 4. We
also note the singular nature of the force distributions near x3 = 0 due to the
inconsistency of the zero normal velocity condition on the interface and the
no-slip condition on the slender body.

In Figure 4 we have graphed the force distributions for normal motion
(continuous normal stress boundary conditions). Since the singularity structure of
the Green's function is similar to that for parallel motion it is not surprising that
the behaviour of the force distribution is also qualitatively the same as in Figure
3. We anticipate that these force distributions might be a reasonable approxima-
tion to the force distributions in the inner drainage region where the interface
which is attached to the surface of the slender body is continually being deformed
due to the movement of the slender body.

We have observed a shielding effect in each of the parallel motion (zero normal
velocity), normal motion (continuous normal stress) and normal motion (zero
normal velocity) cases where the presence of the interface lessens the influence of
the motion of the body in one fluid on the force acting on the body in the other
fluid. Calculations indicate that the shielding effect is stronger for normal motion
(zero normal velocity) than the other cases and consequently the shielding zone is
of narrower width. We can attribute this to the fact that the zero normal velocity
boundary condition on the interface only allows the tangential components of any
velocity disturbance to be transported across the interface.

4. Interface shape

In this section we use the normal component of the stress boundary condition
(2.7) to calculate the 0(8) approximation to the interface shape when the slender
body is moving parallel to the xl — x2 plane. Thus the equation for f(1) (in
dimensional form) is

=[*33-033L,-o, (4-1)

where y is the interfacial tension and Sp is the density difference p — p.
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Using the force distribution (3.11) and equations (3.1) and (3.2) the normal
stress difference (to O(e, e)) evaluated on the plane x3 = 0 is given by

[<>33 - "asU-o = \LdJxl
2{H(o, I) - AH(a, 7))cos*. (4.2)

where

with a2 = x2 + x\ and tan</> = x2/xv The parameter A is the ratio of moments
in each fluid about xz = 0 and is defined by

A = x g . (4.3)

A critical role is played by A in determining whether the interface is pushed up or
depressed immediately in front of the moving slender body. Substitution of
equation (4.2) into equation (4.1) yields an inhomogeneous modified Bessel's
equation where the bounded solution is given in integral form as

f(1) = K*[H*(o, 1) - AH*(a, /)]cos<>, (4.4)

where

4> I2 + Apg/y

and AT* = y.eUxl
2/y.

In the limiting case of zero density difference between the two fluids (Ap = 0)
H * reduces to the closed form

1 f (_2 , /2\V2 2 1

H*(a, /) = £ [l - ( I ] + Tl sinh-'(//a)J. (4.6)

In Figure 5 we have graphed a three dimensional representation of the first order
interface deformation, f(1), obtained from equations (4.4) and (4.6) when / = /.
The A = 0 example corresponds to a free surface and in this case the free surface
is pushed up in front of the slender body. By performing a simple desktop
experiment, where a needle is dragged through a glass of honey, we can qualita-
tively confirm the above approximation. In the A = 100 example the interface is
drawn down in front of the body. An intermediate case is considered in the final
example of Figure 5 where only the tip of the slender body penetrates the
interface and A = 0.1. Away from the slender body the interface behaves like the
free surface example (A = 0) and is pushed up in front of the slender body
however, close to the body, the tip of the body dominates the normal stress
difference and the interface is depressed in front of the slender body.
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Figure 5. Three dimensional representation of the steady state first order interface deformation
f(1)(*i, x2). In (a) / = /, A = 0 and K* = 1, in (b) / = /, A = 100 and K* = 0.01 and in (c) / = 1.6,
/"= 0.4. A = 0.1 andK* = 1.
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The solution for the other limiting case (y = 0) is directly proportional to the
normal stress difference given by equation (4.2) and is singular as a -» 0. This is
because there is a region of high curvature near the interface-slender body
junction where the interfacial tension cannot be neglected.

5. Conclusions

In summary, we have obtained asymptotic approximations to the force distri-
butions acting on a slender body which is straddling a flat interface between two
viscous fluids and moving either parallel or normal to the interface. When an
equal length of the body is immersed in either fluid and the interface is stationary
the force distributions are proportional to the viscosity of the respective fluid and
for parallel motion in particular the non-dimensional force distribution reduces to
the corresponding force distribution for a slender body translating in an infinite
fluid. In the more general case when the lengths are not equal we observed a
shielding region about the interface where outside of this region the influence on
the force due to that part of the slender body in the other fluid is minimal.
Finally, we calculated the steady state first order interface deformation for
parallel motion. We noted that whether the interface is pushed up or drawn down
in front of the moving body is governed by a parameter which is the ratio of
moments acting on the slender body in the two fluids taken about the interface.

For normal motion the steady state flat interface approximation is only valid
outside a drainage region where the velocity decays like the reciprocal of the
distance from the body. Inside this region the bulk of the fluid moves at nearly
the same velocity as the slender body due to the no slip condition on the surface
of the body. Consequently we would expect that the force distribution derived for
a zero normal velocity flat interface will be close to the force distribution for the
deformable interface provided the drainage region is very thin. We are intending
to develop a numerical solution (using the boundary element method) of the time
dependent, axisymmetric problem where a slender body is being pulled through a
deformable interface, so as to verify some of these conjectures.

Some of the results in this paper have important ramifications to research in
muco-ciliary transport. It is thought (Sleigh [18]) that the tips of cilia penetrate
the mucous layer during their effective stroke. The force on this tip will be
dominated by the interaction with the rest of the cilium in the periciliary layer
resulting in a lower force than that predicted by looking at a slender body in an
infinite fluid (see Figure 3). We conclude from this that penetration of the cilia
into the mucous layer may not lead to as great an increase in mucous transport
rates as was previously thought. A lower force on the tip of the cilia is also
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desirable since it leads to a smaller bending moment on the cilia. The results of
Section 4 on the other hand suggest that cilia penetration may have an important
consequence with regard to coordination of the cilia beat into a metachronal
wave. For instance, with a cilia penetration depth of 10% of the length of the cilia
and a viscosity of the upper mucous layer of 1000 times the viscosity of the lower
layer, A = 40 and the interface is drawn down immediately in front of the cilium
and hence forcing the cilium located there to lie relatively flat. This idea is
consistent with an antiplectic metachronism (the wave of cilia activity moves in
the opposite direction to the effective stroke of the cilia) where we note that a
metachronism with an antiplectic bias has been observed in the lung (Sleigh [18]).
If the cilia do not penetrate the interface then the interface is pushed up in front
of the cilium which would interfere with an antiplectic metachronal wave. Clearly
there will be an optimum penetration depth since if the cilium penetrates too far
the interface will be drawn down and will obstruct the recovery stroke of the
cilium. The interface deformation may also be related to some optimal spacing of
the cilia where the drawing down of the cilia in front of a cilium does not
interfere with the pushing up of the interface behind an adjacent cilium. We
should finally note however that very little is known about the physical structure
of the periciliary layer-mucous layer interface. Certainly, more experimental data
is required together with further theoretical investigations of the mechanics of the
penetration of a slender body into an interface and the study of non-Newtonian
effects on the force on a slender body before a complete understanding of the
complex cilia-mucus interaction in muco-ciliary transport is obtained.
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