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Abstract We show that for a given base b and a proper subset E ⊂ {0, . . . , b − 1}, #E < b − 1, the set
of numbers x ∈ [0, 1] that have no digits from E in their expansion to base b consists almost exclusively
of S∗-numbers of type at most min{2, log b/ log(b − #E)}. We also give upper bounds on the Hausdorff
dimension of some exceptional sets.
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1. Introduction

Let K ⊆ [0, 1] be a compact set and suppose that K supports a measure µ such that, for
constants δ ∈ (0, 1] and c1, c2 > 0,

c1r
δ � µ([c − r; c + r]) � c2r

δ (1.1)

for all c ∈ K and r > 0 small enough. It is easy to see that any non-atomic measure
supported on K satisfying hypothesis (1.1) must also satisfy

µ([c − εr; c + εr]) � c3ε
δµ([c − r; c + r]) (1.2)

for some c3 > 0, whenever r and ε are small and c ∈ R. This is the appropriate one-
dimensional specialization of the notion of an absolutely δ-decaying measure used in [4,9].
Note that in this case, the intervals considered are centred anywhere on the real axis. This
will be used in the proof, and can be easily deduced from the less general statement when
c ∈ K (see the remarks following the definition of an absolutely δ-decaying measure in
[9]). Here and subsequently we will assume that µ has been normalized so that µ(K) = 1.

Properties (1.1) and (1.2) are important because of the following theorem, which com-
bines specializations of a theorem by Hutchinson [3] and of Kleinbock, Lindenstrauss and
Weiss [4] with [2, Theorem 9.3].
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Theorem. Let {h1, . . . , ht} be a family of affine contractions of R, such that, for some
open set U ⊆ R,

hi(U) ⊆ U for all i = 1, . . . t, and i �= j ⇒ hi(U) ∩ hj(U) = ∅. (1.3)

Suppose further that no finite set {x1, . . . , xM} is invariant under the full family
{h1, . . . , ht}. There is then a unique non-empty compact set K such that

K =
t⋃

i=1

hi(K), (1.4)

which supports a non-atomic measure satisfying condition (1.1) (and consequently con-
dition (1.2)). Furthermore, δ is the positive real number satisfying

t∑
i=1

ρδ
i = 1,

where for each i ∈ {1, . . . , t}, ρi ∈ (0, 1) is the real number such that hi(x) = ±ρix + τi

for some τi ∈ R.

Condition (1.3) is known as the open set condition, and is sufficient to ensure the
existence of the set K. The additional restriction that no finite set is invariant under the
action of the family is to ensure that the limiting measure is non-atomic. The theorem
has a higher-dimensional generalization, but this is not relevant for the purposes of this
paper.

Let b ∈ N, b > 2, and let E ⊂ {0, . . . , b − 1}. Consider the set Cb,E ⊆ [0, 1] of numbers
whose expansion to base b does not contain any of the digits in E. This generalizes the
well-known ternary Cantor set, which is obtained when b = 3 and E = {1}. Of course,
if #E = b − 1, the set Cb,E consists of a single point and δ = 0. We will disregard this
degenerate case and assume that #E < b−1. It is straightforward to construct a family of
contractions having Cb,E as their limit set (see, for example, [3]). One can easily show that
this family satisfies the conditions of the above theorem. By that theorem, Cb,E supports
a measure satisfying (1.1). Consequently, in all results below, we may read Cb,E for K

to obtain statements about these sets. Also, we easily see that δ = log(b − #E)/ log b.
Let n ∈ N and let An denote the set of real algebraic numbers of degree less than or

equal to n. For an algebraic number α, we denote its height by H(α), i.e. the maximum
modulus of the coefficients of the minimal polynomial of α. We are concerned with the
approximation of elements of K by elements of An, where the quality of approximation
is measured in terms of the height of the approximating number. Let ψ : R�1 → R>0.
We define the set

K∗
n(ψ; K) = {x ∈ K : |x − α| < ψ(H(α)) for infinitely many α ∈ An}. (1.5)

The set K∗
n(ψ; [0, 1]) has been widely studied (see [1]). When n = 1, we are approximating

elements of K by rationals, and further results on the measure and dimension are known
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[4, 5, 9, 10]. In this paper we are interested in finding upper bounds for the measure
and Hausdorff dimension of the sets K∗

n(ψ; K), where K is subject to condition (1.1).
Particular examples of such sets are the Cb,E , with the only restriction that #E < b− 1.
This has some number-theoretic consequences.

We briefly mention some related questions and results. Mahler [8] asked how closely an
element in the ternary Cantor set can be approximated by rationals (see also [7] and [6],
where it is conjectured that the sets Cb,E contain no algebraic irrationals). The partial
answer by Weiss [10] was ‘almost surely not better than expected’. The present paper
gives a similar answer for approximation by algebraic numbers of bounded degree.

2. Statement of results

We first find a criterion on the function ψ under which we are guaranteed that the set
K∗

n(ψ; K) is null with respect to µ. We obtain the following theorem.

Theorem 2.1. Let K ⊆ [0, 1] be a compact set supporting a measure µ satisfying
(1.2). Suppose that ψ : R�1 → R�0 satisfies either

∞∑
r=1

r2nδ−1ψ(r)δ < ∞ and ψ is non-increasing

or
∞∑

r=1

rnψ(r)δ < ∞.

Then
µ(K∗

n(ψ; K)) = 0.

When n = 1 and K = C3,{1}, this reduces to the theorem of [10]. Note that whenever
δ > (n + 1)/2n, the first convergence condition is stronger than the second. Note also
that the monotonicity assumption is only needed in the case when the first series is
convergent.

In Koksma’s classification of transcendental numbers, we encounter the quantities

w∗
n(x) = sup{w > 0 : |x − α| < H(α)−w−1 for infinitely many α ∈ An}

and

w∗(x) = lim sup
n→∞

w∗
n(x)
n

,

defined for any transcendental number x. If w∗(x) < ∞, then x is said to be an S∗-
number of type w∗(x). Note that we are using the definitions from [1] (see the discussion
in that book for alternative definitions of the quantities used). We have the following
corollary to Theorem 2.1.

Corollary 2.2. For µ-almost every x ∈ K, w∗
n(x) � min{2n − 1, (n + 1 − δ)/δ}.

Consequently, µ-almost every x ∈ K is an S∗-number of type at most min{2, 1/δ}.
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Note that we have lost some information by restricting to a Cantor set. Indeed, it is
well known that almost all real numbers are S∗-numbers of type = 1 (see, for example, [1,
Corollary 4.1]). At present, I do not know if the bound on the type can be improved for
general sets satisfying (1.1).

In analogy with Koksma’s classification, we have Mahler’s classification (which actually
predates Koksma’s). In this classification, we have quantities

wn(x) = sup{w > 0 : |P (x)| < H(P )−w for infinitely many P ∈ Z[X], deg(P ) � n}

and

w(x) = lim sup
n→∞

wn(x)
n

.

If 0 < w(x) < ∞, then x is said to be an S-number of type w(x). We now have a second
corollary to Theorem 2.1.

Corollary 2.3. For µ-almost every x ∈ K, wn(x) � min{3n−2, ((1+δ)n+1−2δ)/δ}.
Consequently, µ-almost every x ∈ K is an S-number of type at most min{3, (1 + δ)/δ}.

We now turn our attention to the Hausdorff dimension of the null sets arising from
Theorem 2.1. Denote by Hs(E) the s-dimensional Hausdorff measure of the set E and
by dimH(E) the Hausdorff dimension of E (see, for example, [2] for the definitions). If K

supports a measure satisfying (1.1), it follows directly that dimH(K) = δ. We now have
the following theorem.

Theorem 2.4. Let K ⊆ [0, 1] be a compact set supporting a non-atomic measure µ

satisfying (1.1). Let s ∈ [0, δ] and let ψ : R�1 → R>0 be such that either

∞∑
r=1

r2nδ−1ψ(r)s < ∞ and ψ is non-increasing

or
∞∑

r=1

rnψ(r)s < ∞.

Then
Hs(K∗

n(ψ; K)) = 0.

From Theorem 2.4, we may deduce an upper bound on the Hausdorff dimension of the
sets K∗

n(ψ; K). For a function ψ : R�1 → R>0, we define the lower order at infinity of
1/ψ to be

λψ = lim inf
r→∞

− log ψ(r)
log r

.

Corollary 2.5. Let ψ : R�1 → R>0 be non-increasing with λψ � min{2n, (n + 1)/δ}.
Then

dimH(K∗
n(ψ; K)) � min

{
2nδ

λψ
,
n + 1
λψ

}
.
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Of course, as K∗
n(ψ; K) ⊆ K∗

n(ψ; [0, 1]) and as dimH(K∗
n(ψ; [0, 1])) = (n + 1)/λψ under

the same assumptions as in Corollary 2.5 (see [1, Theorem 6.7]), we recognize the sec-
ond upper bound as the one of this theorem. The first estimate is stronger only if
δ � (n + 1)/2n. This is certainly satisfied for all n if δ � 1

2 . For higher δ, new infor-
mation is only gained for suitably small n.

The results obtained in the present paper are unlikely to be best possible. This is a
consequence of the methods used in the proofs, and we will make conjectures on the best
possible results in the final section. To prove stronger results of the type in this paper,
information on the distribution of all algebraic numbers of bounded degree near K is
needed. For the very general K studied here, we do not have sufficiently accurate infor-
mation to obtain the conjectured results. Instead, we make do with weak distributional
results which hold on all of R, and use measure-theoretic arguments to deduce distribu-
tional results for algebraic numbers near K. The difficulty in improving the results of the
present paper is that these weak distributional results on R are, in a sense, best possible,
as small gaps do occur between real algebraic numbers of bounded degree.

3. Proof of Theorem 2.1

We first prove that the convergence of the first series ensures that the measure is zero.
This is by far the most difficult part of the proof. We will use a consequence of [1,
Corollary A.2]. It is a consequence of this corollary that if α and β are distinct real
algebraic numbers of degree at most n, then

|α − β| � c4H(α)−nH(β)−n, (3.1)

where the constant c4 > 0 depends solely on n. If, for some k ∈ N, 2k � H(α),
H(β) < 2k+1, this implies that |α − β| > 1

2c42−2n(k+1). Consequently, for distinct real
algebraic numbers αi with 2k � H(αi) < 2k+1, the intervals

[αi − 1
4c42−2n(k+1); αi + 1

4c42−2n(k+1)]

are disjoint.
Let k ∈ N. We will show that as k → ∞,

max
2k�r<2k+1

ψ(r)
4−1c42−2n(k+1) = o(1). (3.2)

Indeed, suppose to the contrary that there is a c5 > 0 and a strictly increasing sequence
{ki}∞

i=1 ⊆ N such that for any i ∈ N

max
2ki�r<2ki+1

ψ(r)
4−1c42−2n(ki+1) > c5.

By the convergence assumption of the theorem together with Cauchy’s condensation
criterion,

∞∑
k=1

22n(k+1)δψ(2k)δ = 22nδ
∞∑

k=1

(22knψ(2k))δ < ∞.
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On the other hand, as ψ is non-increasing,

∞∑
k=1

(22n(k+1)ψ(2k))δ � 4−δcδ
4

∞∑
i=1

(
max

2ki�r<2ki+1

ψ(r)
4−1c42−2n(ki+1)

)δ

> 4−δcδ
4c

δ
5

∞∑
i=1

1 = ∞,

which is the desired contradiction.
Consider the sets

Ek =
⋃

α∈An

2k�H(α)<2k+1

[α − ψ(H(α));α + ψ(H(α))].

Clearly, for k large enough,

µ(Ek) �
∑

α∈An

2k�H(α)<2k+1

µ([α − ψ(H(α));α + ψ(H(α))])

� c3c
δ
44

−δ22n(k+1)δψ(2k)δ
∑

α∈An

2k�H(α)<2k+1

µ([α − 1
4c42−2n(k+1); α + 1

4c42−2n(k+1)]),

where we have used (1.2) and (3.2). The intervals in the final sum are disjoint. Hence,
the sum of their measure is bounded from above by the measure of K, which is equal
to 1. We have shown that for k � k0,

µ(Ek) � c3c
δ
44

−δ22n(k+1)δψ(2k)δ.

To complete the proof of this case, we note that K∗
n(ψ; K) is the set of points falling

in infinitely many of the Ek. But
∞∑

k=k0

µ(Ek) � c3c
δ
44

−δ
∞∑

k=k0

22n(k+1)δψ(2k)δ = c3c
δ
44

−δ22nδ
∞∑

k=k0

22nkδψ(2k)δ.

Using Cauchy’s condensation criterion and the convergence assumption of the theorem,
the latter series converges. Hence, the Borel–Cantelli lemma implies the theorem.

To show that the convergence of the second series is sufficient to ensure zero measure,
we note that

#{α ∈ An : α ∈ [0, 1], H(α) = H} � n(n + 1)(2H + 1)n. (3.3)

By (1.1), for any such α, we have µ([α − ψ(H); α + ψ(H)]) � c6ψ(H)δ for some c6 > 0.
Elements of K∗

n(ψ; K) fall in infinitely many of these intervals, and as

∞∑
H=1

∑
α∈An

α∈[0,1]
H(α)=H

µ([α − ψ(H); α + ψ(H)]) � n(n + 1)c6

∞∑
H=1

(2H + 1)nψ(H)δ,
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which converges by assumption, the measure of K∗
n(ψ; K) is zero by the Borel–Cantelli

lemma. �

Proof of Corollary 2.2. Let n ∈ N be fixed and let x ∈ K. Then, for any m ∈ N,
x ∈ K∗

n(r 
→ r−w∗
n(x)−1+1/m; K).

Let m ∈ N be fixed but arbitrary and consider the set

En(m) = {x ∈ K : w∗
n(x) > min{2n − 1, (n + 1 − δ)/δ} + 2/m}. (3.4)

By the above argument,

En(m) ⊆ K(r 
→ r−2n−1/m; K) ∪ K(r 
→ r−(n+1)/δ−1/m; K). (3.5)

But since
∞∑

r=1

r2nδ−1r(−2n−1/m)δ =
∞∑

r=1

r−1−δ/m < ∞

and
∞∑

r=1

rnr(−(n+1)/δ−1/m)δ =
∞∑

r=1

r−1−δ/m < ∞,

the set on the left-hand side of (3.5) has measure zero by Theorem 2.1, so µ(En(m)) = 0.
Now consider the set

E =
∞⋃

n=1

∞⋃
m=1

En(m).

Since E is a countable union of null sets, it is itself a null set. Consequently, almost every
x ∈ K is in the complement of E , i.e. they satisfy, for any n, m ∈ N,

w∗
n(x) � min{2n − 1, (n + 1 − δ)/δ} + 2/m,

so that on letting m tend to infinity, for any n ∈ N,

w∗
n(x) � min{2n − 1, (n + 1 − δ)/δ},

for µ-almost every x ∈ K. This proves the first part of the corollary. To complete the
proof, note that, for such x,

w∗(x) = lim sup
n→∞

w∗
n(x)
n

� lim sup
n→∞

min{(2n − 1)/n, (n + 1 − δ)/nδ} = min{2, 1/δ}.

�

Proof of Corollary 2.3. From [1, Theorem 3.4] we know that

wn(x) � w∗
n(x) + n − 1.

Inserting the bounds of Corollary 2.2 into this inequality yields the first statement. The
second statement is derived as in the proof of Corollary 2.2. Alternatively, it can be
deduced directly from this corollary together with [1, Theorem 3.6]. �
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4. Proof of Theorem 2.4

For each k0 ∈ N, we will define a cover of K∗
n(ψ; K) with intervals. Each of these will

give an upper bound on the Hausdorff s-measure of K∗
n(ψ; K), which will tend to zero as

k0 tends to infinity. This will imply the theorem.
Suppose initially that the first series converges. We define

Dk = {α ∈ An : 2k � H(α) < 2k+1, [α − ψ(2k); α + ψ(2k)] ∩ K �= ∅}.

With c4 defined by (3.1), we see that by disjointness and by (1.1),

#Dkc14−δcδ
42

−2n(k+1)δ � µ

( ⋃
α∈Dk

[α − 1
4c42−2n(k+1); α + 1

4c42−2n(k+1)]
)

� µ(K) = 1.

Consequently,
#Dk � c−1

1 4δc−δ
4 22n(k+1)δ. (4.1)

For any k0 ∈ N, the family
∞⋃

k=k0

⋃
α∈Dk

[α − ψ(2k); α + ψ(2k)]

covers K∗
n(ψ; K). Hence, for s ∈ [0, δ],

Hs(K∗
n(ψ; K)) �

∞∑
k=k0

∑
α∈Dk

2sψ(2k)s � 2sc−1
1 4δc−δ

4 22nδ
∞∑

k=k0

22knδψ(2k)s.

Using Cauchy’s condensation criterion, we see that the latter tends to zero as k0 tends
to infinity, by assumption.

Suppose now that the second series converges. In this case, the family
∞⋃

H=H0

⋃
α∈An

α∈[0,1]
H(α)=H

[α − ψ(H); α + ψ(H)],

covers K∗
n(ψ; K) for any H0 ∈ N. Using (3.3),

Hs(K∗
n(ψ; K)) �

∞∑
H=H0

∑
α∈An

α∈[0,1]
H(α)=H

2sψ(H)s � 2sn(n + 1)
∞∑

H=H0

(2H + 1)nψ(H)s,

which tends to zero as H0 tends to infinity, by assumption. �

Proof of Corollary 2.5. Let η > 0 be fixed and let s = 2nδ/λψ + η. Choose ε <

2nδη(2nδ/λψ + η)−1 and let r0 be sufficiently large that for r � r0, log ψ(r)/ log r �
−λψ + ε. Then

∞∑
r=r0

r2nδ−1ψ(r)s �
∞∑

r=r0

r2nδ−1−2nδ−2nδη+ε(2nδ/λψ+η) =
∞∑

r=r0

r−1−ε′
,
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where ε′ = 2nδη − ε(2nδ/λψ + η) > 0. Hence, the series converges and

dimH(K∗
n(ψ; K)) � 2nδ

λψ
+ η.

As η > 0 was arbitrary, the first upper bound of the corollary follows. The second upper
bound follows as K∗

n(ψ; K) ⊆ K∗
n(ψ; [0, 1]), so that

dimH(K∗
n(ψ; K)) � dimH(K∗

n(ψ; [0, 1])) = (n + 1)/λψ

by [1, Theorem 6.7]. Of course, this could also be shown to follow from the convergence
of the second series of Theorem 2.4. �

5. Concluding remarks

The results of this paper are unlikely to be the best possible, except possibly when
n = 1 where approximation by rationals is considered. The reason for this is the use
of inequality (3.1). When n = 1, this is sharp, since for p/q, p′/q′ ∈ Q with 2k � q,
q′ < 2k+1, |p/q − p′/q′| � 1/(qq′) > 2−2(k+1). Under the assumption, this is the best
possible, since, if (q, q′) = 1, we may choose p, p′ such that qp′ − q′p = 1. However, while
gaps between real algebraic numbers as small as those postulated in inequality (3.1) do
occur, it is not in general best possible, as such numbers are not as regularly distributed
as rationals. Indeed, if it was best possible, we would have of the order of 22kn algebraic
numbers of degree less than or equal to n and height H ∈ [2k; 2k+1) in the unit interval,
but by (3.3), there are only of the order of 2k(n+1) such numbers. Hence, there must be
larger gaps between at least some of these numbers. Identifying these gaps is a difficult
problem, and at present we have no way of ensuring that the large gaps do not all fall
far away from a given set K. Hence, our result is not as strong as could be desired.

In the light of [1, Theorem 6.7], the sharpest upper bound is likely to be obtained
when the exponent 2nδ − 1 of r in the first series of Theorems 2.1 and 2.4 is replaced by
(n + 1)δ − 1. If such an upper bound could be shown to hold, it would imply that, given
a set K ⊆ [0, 1] supporting a measure µ satisfying condition (1.1), µ-almost all numbers
in K would be S∗-numbers of type at most 1. It would also remove the restrictions on δ

under which Corollary 2.5 improves upon what is known from [1, Theorem 6.7]. Better
knowledge of the distribution of algebraic numbers than is used here is clearly needed in
order to prove this. It will be the subject of further study.
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