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Abstract. The chiral symmetry breaking properties of the Tayler instability are discussed.
Effective amplitude equations are determined in one case. This model has three free parameters
that are determined numerically. Comparison with chiral symmetry breaking in biochemistry is
made.
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1. Introduction
An important ingredient to the solar dynamo is the α effect. Mathematically speaking

α is a pseudo scalar that can be constructed using gravity g (a polar vector) and angular
velocity Ω (an axial vector): g·Ω is thus a pseudo scalar and is proportional to cos θ, where
θ is the colatitude. This pseudo scalar changes sign across the equator. This explanation
for large-scale astrophysical dynamos works well and therefore one used to think that
the existence of the α effect in dynamo theory requires always the existence of a pseudo
scalar in the problem. This has indeed been general wisdom, although it has rarely been
emphasized in the literature. That this is actually not the case has only recently been
emphasized and demonstrated. One example is the magnetic buoyancy instability in the
absence of rotation, but with a horizontal magnetic field B and vertical gravity g being
perpendicular to each other, so the pseudo scalar g ·B vanishes (Chatterjee et al. 2011).
Another example is the Tayler instability of a purely toroidal field in a cylinder (Tayler
1973; Gellert et al. 2011). Thus, the magnetic field is again perpendicular to all possible
polar vectors that can be constructed, for example the gradient of the magnetic energy
density which points in the radial direction. In both cases, kinetic helicity and a finite α,
both of either sign, emerge in the nonlinear stage of the instability. In the first example
(Chatterjee et al. 2011), the α tensor has been computed using the test-field method.
In the second (Gellert et al. 2011), the components of the α tensor have been computed
using the imposed-field method (see Hubbard et al. 2009, for a discussion of possible
pitfalls in the nonlinear case).

The purpose of the present paper is to examine spontaneous chiral symmetry break-
ing in the Tayler instability and to estimate numerically the coefficients governing the
underlying amplitude equations. This allows us then to make contact with a system of
chemical reactions that can give rise to the same type of spontaneous symmetry breaking.

The connection with chemical systems is of interest because the question of sponta-
neous symmetry breaking has a long history ever since Pasteur (1853) discovered the
preferential handedness of certain organic molecules. The preferential handedness of
biomolecules is believed to be the result of a bifurcation event that took place at the
origin of life itself (Kondepudi & Nelson 1984; Sandars 2003; Brandenburg et al. 2005).
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Figure 1. The two lines show the evolution of the volume averaged magnetic helicity 〈A · B〉
for two initial conditions differing only in the parity of their initial perturbations. After the
exponential growth magnetic helicity levels off. The inset shows the same in a semi-logarithmic
representation. Here, to normalize magnetic helicity and time, we have used the sound speed cs ,
R ≡ sin and B0 , that is a normalization constant defining the initial magnetic field.

2. Numerical simulations
Our setup consists of an isothermal cylinder with a radial extent from sin to sout and

vertical size h. We use cylindrical coordinates s, ϕ, z and we solve the time dependent
ideal MHD equations with periodic boundary conditions in z, reflection in s and periodic
in ϕ and a resolution ranging from 643 to 1283 in the three directions.

The azimuthal field in the basic state is taken of the form

Bϕ = B0 (s/s0) exp[−(s − s0)2/σ2 ]

with B0 being a normalization constant; the axial field Bz is chosen to be zero. In the
basic state, the Lorentz force is balanced with a gradient of pressure, and we have checked
that our setup was numerically stable if no perturbation was introduced in the system.
For the actual calculations we have chosen h = 2, sin = 1, sout = 3, s0 = 2 and σ2 = 0.2.
For a Sun-like star with an average density ρ ≈ 1g/cm3 the Alfvén travel time is of the
order of a year for a 1 kG magnetic field. We therefore expect that everywhere below the
surface the sound speed is much greater than the Alfvén speed cA (Bonanno and Urpin
2011) and we then assume cs � cA , in order to have a sub-thermal magnetic field.

At the beginning of the simulation we perturb the magnetic field. We add a perturba-
tion of amplitude 10−7 of the background field. The perturbing field has a given helicity
that is either positive or negative. During the development of the instability we observe a
net increase of the helicity, as shown in Fig. 1 where we plot time series of the normalized
magnetic helicity, which exhibits an initial exponential growth, reaches a peak and then
levels off.
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3. Amplitude equations
The linear stability analysis of this instability shows that there exist helical growing

modes. But the left and right handed modes have exactly the same growth rate indepen-
dently of their helicity. Hence the growth of helical perturbations cannot be described
by a linear theory. However a weakly nonlinear theory is able to describe it as we show
below. Let us begin by considering two helical modes of right and left handed varieties,
respectively, each of which satisfy the Beltrami relation ∇×R = ΛR and ∇×L = −ΛL,
where Λ is a coefficient. We can deal with the Fourier transform of these modes,

L(x) =
∫

L̂(q)ddq and R(x) =
∫

R̂(q)ddq (3.1)

For the left helical mode, total helicity and energy are given by

EL =
1
2

∫
L2(x)ddx =

1
2

∫
L̂ · L̂∗ddq and HL =

∫
L · ∇ × Lddx = −2ΛEL, (3.2)

where ∗ denotes complex conjugation. We then have E = EL +ER being the total energy
and H = HL + HR the total helicity. An analogous relation holds also for ER and HR .

In the weakly nonlinear regime the evolution of these modes can be described by
general equations of the form:

∂L̂

∂t
=

δL
δL̂

and
∂R̂

∂t
=

δL
δR̂

, (3.3)

where the form of the Lagrangian L can be written down from symmetry considerations.
In the present case one has to consider the fact that under parity transformation L and R
can interchange into each other. With this additional symmetry the simplest Lagrangian
takes the following form (Fauve et al. 1991)

L[L̂, R̂] =
∫ [

γ
(
|L̂|2 + |R̂|2

)
− µ

(
|L̂|4 + |R̂|4 − µ∗|L̂|2 |R̂|2

)]
ddq, (3.4)

The coefficients γ, µ and µ∗ cannot be found from symmetry considerations. Note that
in order to show the simplest form, in writing down the Lagrangian we have ignored
dissipation. This gives rise to the following set of amplitude equations,

∂L̂

∂t
= γL̂ −

(
µ|L̂|2 + µ∗|R̂|2

)
L̂,

∂R̂

∂t
= γR̂ −

(
µ|R̂|2 + µ∗|L̂|2

)
R̂. (3.5)

For certain range of parameters these coupled equations allow the growth of one mode
at the expense of the other (Fauve et al. 1991), a phenomenon known to biologists by
the name “mutual antagonism” (Frank 1953).

Using Eqs. (3.2) and (3.5) and defining H = H/2Λ we obtain equations for E and H,

dE

dt
= 2γE − 2(µ + µ∗)E2 − 2(µ − µ∗)H2 , (3.6)

dH

dt
= 2γH − 4µEH. (3.7)

Hence, by calculating the total energy and helicity from direct numerical simulations
(DNS) we can determine the unknown coefficients γ, µ and µ∗.

To determine the coefficients γ, µ, and µ∗, we define the instantaneous logarithmic
time derivatives of E and H, γE = 1

2 d lnE/dt and γH = 1
2 d ln H/dt, so we have

γ = γH +2µE, µ = (γ − γH )/2E, µ∗ = [(γ − γE )E −µ(E2 +H2)]/(E2 −H2). (3.8)
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Figure 2. Time dependence of γ, µ, and µ∗, normalized in terms of inner radius and sound speed.
The horizontal (red in the online version) lines give the fit results γR/cs ≈ 14, µR/c3

s ≈ 10, and
µ∗R/c3

s ≈ 7.

The result is shown in Fig. 2, where we can identify first the value of γR/cs ≈ 14 during
the initial linear growth phase of the instability, and then the values µR/c3

s ≈ 10 and
µ∗R/c3

s ≈ 7 during the nonlinear stage. Here R is the inner radius of the cylinder.

4. Conclusions
The present work has demonstrated that the Tayler instability can produce parity-

breaking and that it is possible to empirically determine fit parameters that reproduce
the nonlinear evolution of energy and helicity. So far, no rigorous derivation of the am-
plitude equations exists, so this would be an important next step. However, it should be
emphasized that chiral symmetry breaking instabilities in biochemistry is described by
equations that are identical to those used here; see Bonanno et al. (2012) for details.
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Discussion

Gustavo Guerrero: Is this instability also happening in the solar radiative zone?

Fabio Del Sordo: There are no direct observations of the appearance of this instability
in the radiative zone of the Sun. Nevertheless, a toroidal field is likely present in that
zone and the Tayler instability, in this case, would play an important role.
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