
M.V.Copetti[†], H.A.Dottori, E.L.Bica[†], M.G.Pastoriza Departamento de Astronomia, Instituto de Física, UFRGS and CNPq, BRAZIL [†]CNPq Fellows

ABSTRACT

HII region models were constructed which take into account: 1?) A burst for the formation of the ionizing association; 2?) Different Salpeter's initial mass function $(1 \le x \le 3)$ and upper stellar mass limit $(30 \le M_u/M_{\odot} \le 120)$; 3?) Models of stellar evolution with and without mass loss (Maeder, 1980, Hellings et al. 1981).

From these models the temporal evolution of the H_β emission line equivalent width (W_{H_β}), the ratio of the forbidden lines 4959, 5007 [OIII] to H_β, and of^βthe He⁺,H⁺ zones volume ratio (R) was obtained. It was found that W_{H_β}, [OIII]/H_β and R decrease as a function of the time and consequently they are good age indicators. Some of the models appropriate for the LMC are shown in figures 1.

Figures 1: Evolution of $W_{\rm H_{\beta}}$, [OIII]/H_{\beta} and R as a function of the time. 383

S. van den Bergh and K. S. de Boer (eds.), Structure and Evolution of the Magellanic Clouds, 383-384. \odot 1984 by the IAU.

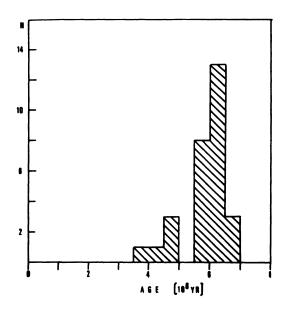


Figure 2: Histogram of formation of HII regions in the LMC.

Measurements of $W_{\mbox{H}\,\mbox{\beta}}$ for 29 regions of the LMC (Dottori and Bica, 1981) were analized using the models. Models with x = 3can be disregarded because they are incompatible with W_{H_R} higher than 90 Å, which are common in the LMC. For x = 2.5the maximum W_{H_R} is around 200 Å and is not consistent with the values found in 30 Dor. and NGC 2032. Values of $1 \leq x \leq 2$ appear to be compatible with data from all regions and the choice of X within the interval does not significantly affect the scale of ages. For $W_{H_{\beta}} \leq 200 \text{ \AA}$ (26 of the regions) the M₁₁ also do not influence the age determination. In figure 2 we plot the histogram of ages for x = 1.5 and $M_1 = 60 M_0$, which indicates a burst of starformation with highest activity about 6.0 to 6.5×10⁶ years ago, and with a duration of 1.5 to 2.0 \times 10⁶ years, measured at half maximum.

Ratios [OIII]/H_β and R were obtained for 11 HII regions of the LMC from data of Dufour (1975). The mean age obtained through these two parameters are very similar (The limits are 2.2 and 4.0×10^6 years assuming M_u = 30 M_o and 60 M_o respectively). These ages are smaller than those obtained from W_{Hβ}, which may be related to the fact that the two samples have a few objects in common.

For the SMC, data on $[0III]/H_{\beta}$ for 12 regions (Dufour and Harlow, 1977), lead to a mean limit of ages of 1.4 and 3.0×10^6 years for $M_u = 40 M_{\phi}$ and 100 M_{ϕ} respectively. We emphasize that the dispersion around these ages is very small, suggesting that all the regions were formed simultaneously.

REFERENCES Dottori, H.A.; Bica, E.L.D., 1981, Astron. Astrophys. 102, 245. Dufour, R.J., 1975, Astrophys. J. 195, 315. Dufour, R.J.; Harlow, W.V., 1977, Astrophys. J. 216, 706. Hellings, P.; Vanbeveren, D., 1981, Astron. Astrophys. 95, 14. Maeder, A., 1980, Astron. Astrophys. 92, 101.