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The direct derivation (DD) method is a technique for quantitative phase analysis (QPA). It can be
characterized by the use of the total sums of scattered/diffracted intensities from individual compo-
nents as the observed data. The crystal structure parameters are required when we calculate the inten-
sities of reflections or diffraction patterns. Intensity can, however, be calculated only with the
chemical composition data if it is not of individual reflections but of a total sum of diffracted/scattered
intensities for that material. Furthermore, it can be given in a form of the scattered intensity per unit
weight. Therefore, we can calculate the weight proportion of a component material by dividing the
total sum of observed scattered/diffracted intensities by the scattered intensity per unit weight. The
chemical composition data of samples under investigation are known in almost all cases at the
stage of QPA. Thus, a technical problem is how to separate the observed diffraction pattern of a mix-
ture into individual component patterns. Various pattern decomposition techniques currently available
can be used for separating the pattern of a mixture. In this report, the theoretical background of the DD
method and various techniques for pattern decompositions are reviewed along with the examples of
applications. © The Author(s), 2021. Published by Cambridge University Press on behalf of
International Centre for Diffraction Data. This is an Open Access article, distributed under the
terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited. [doi:10.1017/S0885715621000373]
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I. INTRODUCTION

Currently used methods for quantitative phase analysis
(QPA) can be classified into three categories according to
the form of observed X-ray intensity data used in deriving
the weight fractions of individual components in a mixture.
Methods in the first category use single peak intensities as
the observed data. The internal standard method (Alexander
and Klug, 1948), the method of standard addition (Lennox,
1957), the reference intensity ratio (RIR) method (Chung,
1974a, 1974b; Hubbard et al., 1976), etc. can be grouped
into this category. In the second category, the calculated/
observed powder patterns are used for modeling the diffrac-
tion patterns of individual components in whole-powder-
pattern fitting (WPPF). The Rietveld method for QPA
(Rietveld, 1969; Werner et al., 1979) and the full-pattern fit-
ting methods using single-phase observed diffraction patterns
(Smith et al., 1987; Chipera and Bish, 2002) can be included
into this category. The direct derivation (DD) method, which
uses the total sums of intensities for individual components
can be classified into the third category (Toraya, 2016;
Toraya and Omote, 2019). Readers of this article may be
familiar with methods for QPA in the former two categories.
The internal standard method, proposed more than 70 years

ago, is still widely used for the quantification of a target com-
ponent in a mixture. The Rietveld QPA, proposed 40 years
ago (Werner et al., 1979), has been used as an indispensable
tool for materials characterization. The method in the third cat-
egory, the DD method, is a new one, proposed just 4 years
ago, and many readers will have simple questions why and
how to use the total sums of intensities for QPA.

In applying the single-peak intensity methods, intensity
ratios to reference materials are required to be predetermined
experimentally as in the calibration curve method as well as
the RIR method or by calculation as in the direct comparison
method (Averbach and Cohen, 1948). In the Rietveld QPA,
the crystal structure parameters are required to calculate the
individual component patterns. The crystal structure parame-
ters are necessary when we calculate the intensity of a reflec-
tion or a diffraction pattern. If the intensity is not of individual
reflections but of a total sum of diffracted/scattered intensities
from the material, however, the intensity can be calculated
only with the chemical composition data: the chemical for-
mula weight and the numbers of electrons belonging to
atoms in the chemical formula unit. This is a reason why the
DD method uses the total sums of intensities as observed
data together with the chemical composition data to derive
the weight fractions of individual components. QPA cannot
be conducted by the RIR method or Rietveld QPA when
RIR values or crystal structure parameters are missing even
for just one component in the target mixture, while the
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chemical compositional information will in almost all cases be
available.

As will be described later, the DD method itself is based
on a simple principle. There are, however, various ways to
obtain the total sums of diffracted/scattered intensities from
the target mixture pattern, and they have been reported in sev-
eral papers (Toraya, 2016, 2017, 2018, 2019, 2020). In this
report, it is tried to review comprehensively the theoretical
background of the DD method and the techniques for the pat-
tern decomposition. Some examples of applications are also
given.

II. THEORY

A. Total sum of intensities

Theory of the DDmethod can be started from the intensity
formula for powder diffraction (James, 1967). For the jth
reflection from a thick slab of powdered specimen in the
Bragg–Brentano (BB) geometry, the integrated intensity, Ij,
can be calculated by

Ij = C
1
m

V

U2
mj|Fj|2G−1

j (1)

where C represents the proportional constant including the
wavelength of incident X-rays, the mass and charge of elec-
tron, the velocity of light in free space, the width of a receiving
slit, and the goniometer radius, μ is the linear absorption
coefficient, V is the irradiated volume of specimen, U is the
unit-cell volume, mj is the multiplicity of reflection, Fj is
the structure factor, and G−1

j represents the Lorentz-
polarization factor and the geometrical factor. In the present
case based on the BB geometry, G−1

j can be given by
G−1

j = (1+ cos22uj)/(2sinujsin2uj), when no monochroma-
tor on both incident- and diffracted-beam sides is assumed.
By multiplying both terms of Eq. (1) by Gj and summing up
them, we obtain

∑N
j=1

IjGj = C
1
m

V

U

1
U

∑N
j=1

mj|Fj|2
( )

(2)

where N is the number of reflections in a wide 2θ-range
defined by [2θL, 2θH]. In Eq. (2), U−1 ∑mj|Fj|2 is identical
with a peak height at the origin of the Patterson function, P
(0). We often approximate the integrated intensity of a reflec-
tion with its peak height. In the same manner but inversely in
this case, the peak height, P(0), can be approximated by the
integrated value of the peak, which can be given by Z

∑
n2i ,

where Z is the number of chemical formula unit in the unit
cell, ni is the number of electrons belonging to the ith atom
in the chemical formula unit with the total number of atoms
NA, and the summation is taken over NA atoms. Then, we
obtain

∑N
j=1

IjGj � C
1
m

V

U
Z
∑NA

i=1

n2i

( )
(3)

V/U in Eq. (3) represents the number of unit cell in the
volume V, and it can equivalently be represented by W/ZM,
where W is the weight of a specimen with the volume V and

M is the chemical formula weight.
1

By replacing V/U with
the W/ZM, we obtain

∑N
j=1

IjGj � C
1
m

W

M

∑NA

i=1

n2i (4)

The V in Eq. (3) can also be represented by V = W(ZM/U)−1,
where ZM/U is the density of the material, and it derives the
same expression as Eq. (4). Equation (4) was first derived
by using the approximation as described above: the relation-
ship between the height and the integrated value of the
peak at the origin of the Patterson function (Toraya, 2016).
The expression, which is identical to that of Eq. (4), had
also been derived in a more rigorous form, starting from the
Debye equation, by integrating over the reciprocal space the
scattered intensity from an assemblage of atoms at arbitrary
positions [Eq. (15) in Toraya and Omote (2019)]. Theoretical
derivation by Toraya and Omote (2019) for the random assem-
blage of atoms can also be applied to the ordered arrangement
of atoms. Therefore, Eq. (4) is considered to be valid for both
crystalline and noncrystalline materials.

In Eq. (4),
∑

n2i represents the total scattered intensity
from atoms in the chemical formula unit. Thus,

∑
n2i /M rep-

resents the scattered intensity per unit weight. When the∑
n2i /M is multiplied by W, the product should give the

total intensity from the specimen. Since W/M represents the
number of chemical formula units in the specimen with the
weightW, Eq. (4) can alternatively be interpreted as represent-
ing (the number of chemical formula unit) × (the scattered
intensity from the chemical formula unit). Both interpretations
give the same quantity of the total scattered intensity from the
specimen, and they are consistent with the

∑
IjGj on the left-

hand side of Eq. (4).

B. The intensity–composition formula

Let us consider a K-component mixture and introduce two
parameters, Sk and a−1

k , where the subscript k represents the
kth component. The Sk and a−1

k are given by

Sk =
∑N
j=1

IkjGj (5)

a−1
k = 1

Mk

∑NA
k

i=1

n2ki (6)

Sk represents the total sum of intensities corrected for the
factor G−1

j , and it is an observable quantity. a−1
k represents the

scattered intensity per unit weight, and its magnitude can be cal-
culated only with the chemical composition data: the chemical
formula weight and the numbers of electrons. Equation (6) does
not include any crystallographic parameters like Z or U of com-
ponent materials, and the input data required for calculating a−1

k

1 The relation between the V/U andW/ZM can more precisely be expressed by
V/U = 0.602 × (W/ZM), where a factor 0.602 appears for keeping the consis-
tency in units of gram, cubic angstrom, etc. This expression can also be
applied to represent the density (d) by d = ZM/(0.602 ×U ).
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are purely chemical. Equation (4) can be expressed by

Wk = m

C

Sk
a−1
k

= m

C
akSk (7)

In QPA, what we would like to find are the relative weight
ratios of the individual components. Therefore, under the nor-
malization condition, the weight fraction for the kth compo-
nent, wk, can be calculated by

wk = Wk

W
= Wk

∑K
k′=1

Wk′

( )−1

(8)

As long as intensities of individual components in a mix-
ture, measured in a single scan, are compared, a single value of
the linear absorption coefficient μ is shared with all compo-
nents. Thus, μ and C in Eq. (7) are canceled out, when Eq.
(7) is substituted into Eq. (8). Then, the wk is given by

wk = akSk
∑K
k′=1

ak′Sk′

( )−1

(9)

Equation (9) is called “the intensity–composition (IC) for-
mula” as will be understood from two parameters Sk and ak
(Toraya, 2016).

C. Observed intensity datasets for individual

components

As described above, the total sums of intensities (Sk) for
individual components are used as observed data in the IC for-
mula. Various techniques of the powder pattern fitting can
selectively be used for deriving {Sk} for each sample.
Fitting functions used in these techniques are currently classi-
fied into four types, A, B, C, and C2, and they are summarized
in Table I (Toraya, 2019).

A powder diffraction pattern of a mixture, y(2θ), is the
superposition of individual component patterns, y(2θ)k, and
it can be represented by

y(2u) = y(2u)BG +
∑K
k=1

y(2u)k (10)

where y(2θ)BG is the background (BG) intensity, and some
analytical functions, such as polynomials, can be used for
modeling the BG. The type-A function is the fitting function
widely used in the Pawley or Le Bail method for
whole-powder-pattern decomposition (WPPD; Pawley,
1981; Le Bail et al., 1988). It can be expressed by
y(2u)k =

∑
j IkjP(2u)kj, where P(2θ)kj is the normalized profile

function and Ikj are adjustable. Individual profile fitting (IPF)
techniques (Taupin, 1973; Parrish et al., 1976) also belong to
this group, and they can be used when reflections are sparsely
distributed in a mixture pattern.

When strong parameter correlations of Ikj are inevitable
for heavily overlapping reflections, the type-B function can
effectively be used. The type-B function uses a predetermined
intensity parameter dataset {I ′kj}. It can be defined by
y(2u)k = Sck

∑
j I

′
kjP(2u)kj, where Sck is the scale parameter,

and the Sck is adjusted while {I ′kj} are fixed at their original
values in WPPF (Toraya and Tsusaka, 1995). The intensity
dataset {I ′kj} can be obtained by decomposing a single-phase
powder diffraction pattern of the kth component by using
the WPPDmethods or by calculation from the crystal structure
parameters. When the type-B function is used, Sk is given by
Sk = Sck

∑
I ′kjGj.

When the pattern decomposition nor the calculation from
the crystal structure parameters is difficult for obtaining {Ikj}
or {I ′kj} as in the case of clay minerals with staking disorder,
the type-C function can effectively be used. The type-C func-
tion uses a single-phase observed diffraction pattern after sub-
tracting the BG just as in the full-pattern fitting method by
Smith et al. (1987). The profile intensity for the single-phase
kth component material is represented by

y(2u)Sk = y(2u)′BG k + y(2u)′k (11)

where y(2u)′BG k is the BG intensity, y(2u)′k is the peak profile
intensity, and a superscript S is used to denote “single phase”.
The type-C function is given by y(2u)k = Scky(2u)′k, and the
scale parameter Sck is adjusted in WPPF. The total sum of
intensities can be obtained by

Yk = Sck

∫2uH
2uL

y(2u)
′
kG(2u) d(2u) (12)

where G(2θ) is the continuous form of Gj. Since the definition
of Yk by Eq. (12) is different from that of Sk by Eq. (5), differ-
ent symbols Sk and Yk are used. However, Sk and Yk can easily
be verified to be equivalent for a pattern in the same 2θ-range
[2θL, 2θH], and the Yk can equally be used in place of Sk in
Eq. (9) (Toraya, 2018).

When the BG subtraction is technically difficult as in the
case of a halo pattern from an amorphous material, the type-C2

function can be used. The type-C2 function uses y(2u)Sk
for modeling a component pattern without subtracting the
BG (Chipera and Bish, 2002), and it is simply defined by
y(2u)BPk = Scky(2u)Sk = Sck [y(2u)′BG k + y(2u)′k], where super-
script BP is used to mean BG + peak profile intensities. In this
case, Scky(2u)′BG k works as a part of the BG model. The

TABLE I. Fitting functions currently used for separating the observed pattern of a mixture into individual component patterns.

Function Methods Fitting functions Intensity parameters refined Output data

Type-A WPPD, IPF
∑

IjkP(2u)jk Ijk Sk
Type-B WPPD, Rietveld Sck

∑
I ′jkP(2u)jk Sck Sk

Type-C Full-pattern fitting Scky(2u)′k Sck Yk
Type-C2 Full-pattern fitting Scky(2u)Sk Sck YBP

k

References for individual methods will be found in Section II.C.
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integration of Scky(2u)SkG(2u) in the range [2θL, 2θH] is given
by

YBP
k = Sck

∫2uH
2uL

y(2u)′BG kG(2u) d(2u)

+ Sck

∫2uH
2uL

y(2u)′kG(2u) d(2u)

(13)

By denoting the first term on the right-hand side of Eq.
(13) by Bk, YBP

k can be expressed by YBP
k = Bk + Yk. Let us

define a ratio of Bk to Yk by Rk = Bk/Yk. Then, Yk can be
obtained from YBP

k by

Yk = YBP
k

1+ Rk
(14)

When the type-C2 function is assigned to modeling the kth
component pattern, the Scky(2u)Sk is fitted and Y

BP
k is output. If

we predetermine the magnitude of Rk, the Yk can be derived
from YBP

k with Eq. (14), and it can be used in Eq. (9) together
with other Sk and/or Yk. Two experimental techniques for
determining values of Rk are given in Toraya (2019).

When the type-C2 function is assigned to all components
in a mixture, the substitution of Eq. (14) into Eq. (9) gives

wk = akYBP
k

1+ Rk

∑K
k′=1

ak′Y
BP
k′

1+ Rk′

( )−1

(15)

When the following approximation does hold

R1 � R2 � R3 � · · · � RK (16)

Equation (15) becomes

wk � akY
BP
k

∑K
k′=1

ak′Y
BP
k′

( )−1

(17)

Equation (17) has the same form as that of Eq. (9). In this case,
the weight fractionwk can be derived by using the intensity data-
sets {YBP

k } of non-BG subtracted powder patterns, and the
parameter Rk is not required. For a mixture consisting of compo-
nent materials with similar chemical compositions, the relation
by Eq. (16) generally holds, and the type-C2 function gives
very accurate results of quantification as will be shown later.

Important thing to be noted here is that four types of fit-
ting functions given in Table I can arbitrarily be combined
and be fitted simultaneously in WPPF for a mixture pattern,
and an example will be shown later. The other thing is that
the type-A function has the greatest degree of freedom in
WPPF. The type-A function is the same as that used in
Pawley refinement, and individual integrated intensities as
well as unit-cell parameters, profile width, and shape parame-
ters can be refined. When single-phase observed powder dif-
fraction patterns are used as the type-C/C2 function, they
should be measured under the same instrumental setup as
that for measuring the target mixture patterns in order to
reduce the model bias. In this sense, the type-C and type-C2

functions are less flexible compared with the type-A and B
functions. They are, however, stable in the least-squares fitting

and suitable for modeling complicated diffraction patterns in
WPPF.

Regarding the effect of the preferred orientation on indi-
vidual intensities, the DD method, utilizing the total sums of
scattered/diffracted intensities is much less influenced than
the single-peak intensity methods. The intensity data are, how-
ever, not corrected for the preferred orientation at present. The
correction for the preferred orientation effect as well as micro-
absorption effect are issues to be studied in the future.

D. Introduction of the normalized fitting function

Since Eq. (6) has been derived by summing/integrating all
scattered/diffracted intensities in the reciprocal space, the def-
inition range of 2θ for the corresponding total sums of
observed intensities, defined by Eqs. (5) and (12), should
also be extended to the maximum high-angle limit. In QPA
using Eqs. (9) and (17), the relative intensity ratios of S1:
S2: S3: ⋅ ⋅ ⋅ :SK determine the weight fractions. When one com-
ponent in a mixture has relatively strong peaks in the high-
angle region, compared with the other components, the rela-
tive intensity ratios will be varied with whether these peaks
are included or not in the range [2θL, 2θH]. The termination
in summing/integrating observed intensities is, therefore,
one of the possible sources of error in the derived weight frac-
tions. In order to suppress the termination errors, the normal-
ized fitting functions have been introduced (Toraya, 2020). In
the case, for example, of type-C function, the normalized
type-C function, denoted by y(2u)Nk , can simply be defined
by y(2u)Nk = y(2u)′k/Y0k. Here, Y0k is equivalent to Yk defined
by Eq. (12). Then, the integration of y(2u)Nk always gives
unity, that is,

�2uH
2uL

y(2u)Nk G(2u)d(2u) = 1. In WPPF using
the normalized type-C function, ScNk y(2u)Nk is fitted, where
ScNk is the adjustable scale parameter for the normalized fitting
function. Then, Yk, defined by Eq. (12), but for the normalized
fitting function, is given by Yk = ScNk .

The advantages of introducing the normalized fitting
function are that the magnitude of refined scale parameter,
ScNk , is much less sensitive to the termination of the
2θ-range inWPPF. If we define the normalized fitting function
by extending the [2θL, 2θH] to the high-angle limit such as
100◦ or 120◦ (for CuKα radiation), the 2θ-range in WPPF
for target mixture patterns can be much shortened to, say,
60◦. Therefore, we can save the time spent for intensity data
collection without losing the accuracy in derived weight frac-
tions (Toraya, 2020).

E. Calculation and some properties of ak
We can easily calculate ak values from the chemical com-

position data using a periodic table and a pocket calculator.
Here, two examples are given. One is α-quartz with the chem-
ical formula of SiO2. In this case, Mk and

∑
n2i are given by

Mk = 28.086 + 2 × 15.999 = 60.084 g mol−1 and
∑

n2i =
142 + 2× 82 = 324, respectively. Thus, ak = Mk/

∑
n2i =

0.18544. The other example is a solid solution with the chem-
ical formula, for example, Mg1.6Fe0.4SiO4. Mk and

∑
n2i are

given by Mk = 1.6 × 24.312 + 0.4 × 55.847 + 28. 086 + 4 ×
15.999 = 153.320 g mol−1 and

∑
n2i = 1.6× 122 + 0.4×

262 + 142 + 4× 82 = 952.8. Thus, ak = 0.16092. For frac-
tional atoms like Mgx, the n2i should be counted as x × 122
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but not as (x × 12)2. In the average structure, one crystallo-
graphic site is shared like MgxFe1−x. In real space, however,
atoms at individual sites in a whole crystal scatter the n2i of
either 122 or 262 in an abundance ratio of x:1− x.

To understand some properties of ak may be useful when
the chemical composition data of target materials are more or
less indefinite. In the first, the ak has the relationship represented
by a−1

k ≈ Aav
k /D, where Aav

k is the average atomic weight of
atoms in the chemical formula unit ( Aav

k = Mk/NA
k ), D is a

ratio of atomic weight to atomic number, and D≈ 2 (D =
2.006 in the case of Si) (Toraya, 2017, 2018). Table II gives
the values of ak for two series of compounds (Toraya,
2017). In the case of hydrated magnesium silicate (HMS),
the standard deviation of the average ak value is just 0.02%.
These results mean that materials with similar chemical com-
positions give the ak’s of almost the same magnitude. In the
case of polymorph or polytypes, the ak’s are equivalent, and
we can derive individual weight fractions, wk, by the IC for-
mula without using the ak. When four compounds of HMS
in Table II are evenly weighed, mixed and quantified by
using the average ak of 0.19022 instead of individual ak val-
ues, associated error in wk is just 0.02 wt% (Toraya, 2017).

As well known, chemicals compositions of natural prod-
ucts are complicated due to various degrees of cation substitu-
tion like Si ↔ Al, Mg ↔ Fe, as well as inclusions of trace
elements, such as Li, Ti, Cr, Mn, Ni, Ca, Cs, and Ba. The
chemical composition data of rock-forming minerals are
reported from all over the world (Deer et al., 1971, 1976),
and we can calculate the average of ak value, denoted by
aavk , and its standard deviation, s(aavk ), for each rock-forming
mineral. As a practical example, a simulated QPA result is
given for weathered granite, consisting of α-quart (SiO2),
orthoclase (KSi3AlO8), albite (NaSi3AlO8), and biotite
[K(Fe,Mg)3Si3AlO10(OH)2] in weight ratios of 48:37:11:4.
Errors in wk, represented by Δwk, from assumed weight frac-
tions were generated by varying ak by aavk + s(aavk ). The aver-
age values of |Δwk| were 0.33, 0.51, 0.10, and 0.16 wt% for
respective minerals (a grand average of 0.27 wt%). These
errors can also be estimated with the error estimation formula
[Eq. (11) in Toraya (2017)], and the magnitudes of estimated
errors were 0.37, 0.48, 0.11, and 0.15 wt% (0.28 wt%), being
in a good agreement with those in simulated QPA. These
results mean that errors associated with possible variations
in ak value will be in the order of <0.5 wt%, and they may
be less for minerals from local mines with accumulated chem-
ical analysis data.

When unknown material was found as one of the compo-
nents in a mixture, its chemical composition can be estimated,
as the first approximation, by the batch chemical composition

of the sample. More accurate procedure for estimating ak and
wk of the unknown material using the iterative procedure is
described in Toraya (2017).

III. EXPERIMENTAL AND DATA ANALYSIS

Intensity data collections can be conducted with an ordi-
nary type powder diffractometer based on the Bragg–
Brentano geometry. The Gj in Eq. (5) or G(2θ) in Eq. (12)
are needed to be modified accordingly, when the monochro-
mator was used on the incident- or diffracted-beam sides,
the other types of diffractometer were used, or the different
scan-mode such as the asymmetric diffraction was employed.
As was described above, the constant optical setting should be
kept in measuring powder diffraction patterns of both target
mixtures and single-phase components to be used as the
type-C and/or the type-C2 functions. When the type-C/C2

functions were used, the shift of a whole pattern, y(2u)′k or
y(2u)Sk , along the 2θ-axis, associated primarily with the shift
in the height of a specimen surface, can be corrected by adjust-
ing the parameter, Δ2θk (Toraya, 2018) [δ2θk is a different
symbol (Toraya, 2019, 2020)]. Regarding the 2θ-range for
scanning, [2θL, 2θH], the 2θL should include the reflection at
the lowest angle. The 2θH should be extended to 100◦ or
120◦ (for the CuKα radiation), depending on the accuracy
required. When the normalized fitting functions are used, the
2θH for target mixtures can be lowered to 60◦ or 70◦.

A computer program,WPPF4.0 (version 4.00), written in
Fortran 90 for the WPPD method (Toraya, 1986) has been
used for data analysis, conducted by the author himself.
Some software suites are commercially available. Although
terms of type-A, B, C, and C2 functions were not used before,
these four types of the fitting functions have already been
equipped and used as they are classified in Table I.
Therefore, existing computer programs for WPPD, Rietveld
refinement, full-pattern fitting, etc. can also be used with a
small modification or by adding a subprogram for calculating
Sk [Eq. (5)], Yk [Eq. (12)], and YBP

k [Eq. (13)] together with ak
values. The details of experimental and data analysis condi-
tions for analyzed results given below will be found in respec-
tive references cited.

IV. RESULTS AND DISCUSSION

In the followings, five examples of applications of the DD
method are presented.

A. Combined use of type-A, B, and C functions

A first example is the QPA of an artificial ternary mixture
consisting of α-quartz (SiO2), albite (NaAlSi3O8), and kaolin-
ite (Al2Si2O5(OH)4) in weight ratios of 5:4:1, which simulate
weathered granites used as raw materials in the ceramics
industry. Mixtures in weight ratios of 1:1:1 were also quanti-
fied (Toraya, 2018). α-quartz with a relatively small unit cell
belongs to the trigonal symmetry, and it gives well-resolved
peaks sparsely distributed in its diffraction pattern. On the
other hand, albite belongs to the triclinic system, and it
gives a lot of reflections heavily overlapping in a whole
2θ-range. As well known, kaolinite is a clay mineral, and it
exhibits diffuse scattering caused by the stacking disorder.

TABLE II. A comparison of ak values for series of magnesium silicate
hydrates and hydrocarbons with similar chemical compositions (Toraya,
2017).

Chemical formula ak Chemical formula ak

Mg3(SiO4) (OH)2 0.19028 C10H8 0.3483
Mg5(SiO4)2(OH)2 0.19023 C14H10 0.3468
Mg7(SiO4)3(OH)2 0.19020 C18H12 0.3459
Mg9(SiO4)4(OH)2 0.19019 C22H14 0.3454
Average 0.19022(4) Average 0.3466(11)

Values at the bottom line represent the averages of individual ak values and
their standard deviations in parentheses.
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When these materials exist as a mixture, a straightforward
application of the Pawley-based WPPD method is hard to
decompose the mixture pattern into individual Bragg compo-
nents with sufficient accuracy.

For separating the mixture pattern into individual compo-
nent patterns, a strategy taken for this mixture sample was to
assign the type-A, B, and C functions to α-quartz, albite,
and kaolinite, respectively. Before applying these functions
to the mixture pattern in WPPF, a single-phase diffraction pat-
tern of albite was first decomposed to obtain an intensity data-
set {I ′kj}. In the case that the single-phase sample is not
available, an alternative way may be to derive the {I ′kj} by cal-
culation using crystal structure parameters. Secondly, the BG
of a single-phase diffraction pattern of kaolinite was sub-
tracted to obtain y(2u)′k. In WPPF for the mixture pattern, Ijk
parameters of α-quartz were refined independently together
with the scale parameters, Sck, for albite and kaolinite patterns.
The unit-cell parameters of α-quartz and albite were also
refined together with the other parameters such as profile
width and peak-shift correction.

For testing the reproducibility in this example, intensity
measurements of the two mixture samples, as well as the

three component materials, were repeated three times for each
sample, repacked into a specimen holder prior to each scan.
Before preparing the second mixture (1:1:1), a powder of kaolin-
ite was additionally ground in an agate mortar in order to exam-
ine the influence of the degree of preferred orientation.

Table III gives the results of QPA. The root-mean-square
error (RMSE) of Δwk was in the range 0.5–0.6 wt% for the
5:4:1 mixture, while it was in the range 1.6–1.9 wt% for the
1:1:1 mixture. The increase of the RMSE by ∼1.2 wt% was
ascribed to the different degrees of the preferred orientation
of kaolinite particles between the two mixtures: kaolinite pow-
der was additionally ground in preparing the second mixture,
while the diffraction pattern of a kaolinite before additional
grinding was used as the type-C function in the QPA of
both mixtures. These results give a simple lesson that the dif-
fraction pattern used for the type-C function should be close to
that in the target mixture pattern.

B. QPA using type-C2 function

1. QPA of a- Al2O3 + g-Al2O3 binary mixtures
The second example is the use of the type-C2 function,

applied to binary mixtures of α- and γ-Al2O3 in five different
weight ratios (Table IV; Toraya, 2019). α-Al2O3 is chemically
and thermally stable, and it is often used as a standard refer-
ence material, giving well-resolved peaks in a full 2θ-range.
On the other hand, γ-Al2O3 has the structure of a defect
cubic spinel type, and it gives broadened profiles and diffuse

TABLE III. Results of the QPA of two mixtures in weight ratios of 5:4:1 and
1:1:1.

Component Scan α-quartz Albite Kaolinite RMSE

wweigh 50.00 39.97 10.03
5:4:1 1st −0.54 −0.02 0.57 0.46

2nd 0.78 −0.78 0.00 0.63
3rd 0.34 −0.81 0.47 0.57

wweigh 33.33 33.33 34.34
1:1:1 1st 0.036 −2.11 1.76 1.60

2nd −0.41 −1.85 2.25 1.70
3rd 0.32 −2.48 2.16 1.91

Numbers for each scan represent Dwk = wk − wweigh
k (wt%), where wweigh

k

represents the weighed value of each component in sample preparation. The
root-mean-square errors (RMSE) of Δwk for three components are given on
the right-hand column (Toraya, 2018).

TABLE IV. wweigh
k and Δwk (in wt%) for α- and γ-Al2O3 mixtures with five

different weight ratios.

wt. ratio 95:5 75:25 50:50 25:75 5:95 |Δwk|av

wweigh
k

5.01 25.05 50.04 75.00 95.01

Δwk −0.04 −0.10 −0.00 −0.05 −0.06 0.05

Data are given only for γ-Al2O3 since those for α-Al2O3 can be obtained by

1− wweigh
k and −Δwk.

Figure 1. WPPF result for the diffraction pattern of α- and γ-Al2O3 mixture with a weight ratio of 5:95 (Toraya, 2019). The observed and calculated intensities are
represented by plus symbols and solid lines, respectively. The plot at the bottom of the diagram represents the differences between the two intensities on the same
scale.
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scattering as will be shown in Figure 1. Neither structure mod-
eling from crystal structure parameters nor the pattern decom-
position into Bragg components was difficult. Moreover, the
diffuse scattering spread over the full 2θ-range made difficult
to determine the accurate BG height. The type-C2 function is
best suited for such a sample.

Both α- and γ-Al2O3 have the same chemical composi-
tion, and the relation Rα≅ Rγ [Eq. (16)] was considered to
hold. Then, single-phase powder diffraction patterns of α-
and γ-Al2O3 were used as the type-C2 function. In WPPF to
the mixture patterns, Sck and δ2θk for both components were
refined together with the parameters in the BG function.

Figure 1 shows a WPPF result for the mixture in weight
ratio of 5:95. Table IV gives QPA results. An average value
of Δwk for five mixtures was just 0.05 wt%. In the case of mix-
ture in weight ratio of 95:5, it was hard to see a presence of
γ-Al2O3 in the observed pattern. Nevertheless, γ-Al2O3 was
accurately quantified. Simple adjustments of two single-phase
diffraction patterns realize the accurate quantification of mix-
tures with complicated diffraction patterns.

2. QPA of amorphous component
QPA procedure used in the second example can directly

be applied to mixture patterns containing an amorphous com-
ponent. The third example is binary mixtures of α-quartz

Figure 2. WPPF result for the diffraction pattern of α-quartz (SiO2) and glass-SiO2 mixture in a weight ratio of 2:8 (Toraya, 2019). Data are plotted as in Figure 1.

TABLE V. wweigh
k and Δwk (in wt%) for α-quartz (SiO2) and glass-SiO2

mixtures with four different weight ratios.

wt. ratio 80:20 60:40 40:60 20:80 |Δwk|av

wweigh
k

19.68 40.35 60.01 80.17

Δwk 0.6 0.2 0.3 −0.5 0.4
0.4 −0.2 −0.4 −0.7 0.4

Data are given only for glass components. |Δwk|av represents the average of
four |Δwk| (Toraya, 2019). Δwk values on the first line were obtained
without the correction by the BG function and those on the second line by
adjusting 8 BG parameters.

TABLE VI. wweigh
k and Δwk (in wt%) for corn starch in corn–potato starch

mixtures.

wt. ratio 95:05 70:30 50:50 30:70 5:95 |Δwk|av

wweigh
k

94.9 70.0 50.0 30.0 5.0

Δwk −0.4 −1.9 −2.2 0.8 0.5 1.2

Data are given only for corn starch. |Δwk|av represents the average of five |
Δwk|.

Figure 3. Powder diffraction patterns of potato
starch, corn starch, and their mixtures in weight
ratios indicated in the diagram.
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(SiO2) and glass-SiO2 in four different weight ratios
(Table V). As in the previous example, the diffraction pattern
of single-phase α-quartz and the halo pattern of glass-SiO2

were separately measured, and both patterns were used as
the type-C2 function without subtracting their BG. Figure 2
shows a WPPF result for a mixture in weight ratio of 2:8.
When the type-C function, instead of the type-C2, was
assigned to the glass-SiO2 in WPPF for the same mixtures,

the scale parameter for the glass halo pattern was interacted
with the parameters in the BG function, and errors were
increased with decreasing the content of glass-SiO2 (Toraya
and Omote, 2019). The type-C2 function can avoid this param-
eter interaction, and it contributed to obtain accurate QPA
results as indicated in Table V. Δwk values on the two lines
in Table V were obtained with and without using the BG
function for modeling the BG. These results indicate that the
sum of the BG intensities from both component patterns, rep-
resented by Scky(2u)′BG a-quartz + Scky(2u)′BG glass-SiO2

, works
for modeling the BG of the observed mixture patterns.

3. QPA of starch
The fourth example is the QPA of binary mixtures consist-

ing of potato starch [(C6H10O5)n] and corn starch (C27H48O20)
artificially mixed in five different weight ratios (Table VI).
Figure 3 shows the powder diffraction patterns of the mixtures
together with those of single-phase potato and corn starches.
Although the two single-phase diffraction patterns indicate
clear differences at some strong peaks while they are very sim-
ilar to each other in other angular regions, and the mixture

Figure 4. Observed powder diffraction patterns
(parts) of (a) mixtures SA and (b) GS. Individual
patterns are vertically shifted from each other at
equal intervals of 2000 counts. Indices in the
diagrams represent reflections from (a) α-Al2O3 and
(b) α-SiO2 (Toraya, 2020).

TABLE VII. wweigh
k and |Δwk|av (in wt%) for two series of mixtures SA and

GS.

Mixture SA030 SA020 SA010 SA005 SA003

wweigh
k

0.324 0.214 0.107 0.054 0.031

|Δwk|av 0.002(1) 0.014(1) 0.009(1) 0.014(1) 0.016(3)
Mixture GS030 GS020 GS010 GS005 GS002

wweigh
k

0.323 0.211 0.100 0.052 0.021

|Δwk|av 0.059(2) 0.029(1) 0.026(1) 0.024(1) 0.017(3)

Data are given only for minor phases, A and S. Numbers in parentheses for |
Δwk|av represent the standard deviations for respective averages (Toraya,
2020).
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patterns gradually change between the two ends. The QPA of
such materials has been very difficult because the RIR values
are not available for these materials in the database.
Structure-based Rietveld QPA could also be infeasible. In the
present case, the single-phase diffraction patterns of potato
and corn starches were used as the type-C2 functions, and they
were fitted in WPPF to the mixture patterns. The results of
QPA are given in Table VI, giving errors of just 1.2 wt% in
their average.

4. QPA of crystalline phase present in a very small
amount in a mixture

The QPA of crystalline phases present in a very small
amount, say <0.5 wt%, in mixtures is a very important issue
in quality control of industrial products as well as in the
research and development. The last example is the QPA of
mixtures of (a) α-SiO2 + α-Al2O3 (SA) and (b) glass-SiO2 +
α-SiO2 (GS) in five different weight ratios (Table VII),
where the second components represent minor phases
(Toraya, 2020). As shown in Figure 4, the presence of crystal-
line phases as minor components can be discerned as tiny
peaks in both mixtures.

In WPPF, the normalized type-C2 function was assigned
to all component in SA and GS mixtures. In Table VII, |
Δwk|av represents the average of five |Δwk|, individual values
of which were results of WPPF in the range of 2uH = 60°,
70°, 80°, 90°, and 100° (2uL = 15◦). As clearly be shown in
the very small standard deviations of 0.001–0.003 wt% for
the |Δwk|av, the scale parameters (ScNk ) were almost unvaried
against the change of 2θ-range in WPPF. In this case, QPA
could be conducted in the accuracy of 0.01–0.03 wt% for
the mixtures containing component materials in wt% of
0.02–0.4.

V. SUMMARY

Theoretical background of the DD method and examples
of applications have been described in this report. Some
descriptions with many equations would give an impression
that the DD method is a complicated technique. The DD
method itself is, however, very simple, and it can simply be
expressed by the IC formula [Eq. (9)]. It is based on a principle
that the weight proportion for a component material can be
given by dividing the total sum of scattered/diffracted intensi-
ties by the scattered intensity per unit weight represented by
the symbol, a−1

k . Moreover, the magnitude of the a−1
k can be

calculated only with the chemical composition data of that
component material. Therefore, as indicated with several
examples of applications given in this report, the DD method
can be applied to the variety of materials from highly crystal-
line state to noncrystalline state just with the IC formula.
Only a technical problem is how to separate the powder dif-
fraction pattern of a target mixture into individual component
patterns.

Various existing techniques can be used for tackling the
problem. In the present report, four types of the fitting func-
tions for WPPF are described. What we need as final outputs
as the observed data in powder data analysis are Sk, Yk,
and/or YBP

k . For this purpose, for example, even intensity
datasets in d-I data in the PDF or instead the corresponding

observed peak intensities can be used for calculating Sk by
Eq. (5). The relative weight ratios can be output immediately
after the phase identification if a rough estimate of relative
weight ratios suffices. As another way, currently used com-
puter programs can also be used with small modification.
For example, if we add the type-C and the type-C2 functions
for modeling the amorphous components to a computer pro-
gram for Rietveld refinement, the weight fractions can directly
be output not only for crystalline phases but also for noncrys-
talline phase without doping the standard reference material
nor conducting preliminary experiment. Individual techniques
for separating the mixture patterns look sometimes compli-
cated. In other words, however, there are various ways to
solve a simple problem of just obtaining Sk, Yk, and/or YBP

k .

ACKNOWLEDGEMENTS

The author thanks Yukiko Namatame of Application
Laboratory, Rigaku Corporation (RC). All intensity datasets
used in a series of studies on the DD method were collected
by her. QPA results for mixtures of starches were also pro-
vided by her.

Alexander, L. E. and Klug, H. P. (1948). “Basic aspects of X-ray absorption in
quantitative diffraction analysis of powder mixtures,” Anal. Chem. 20,
886–889.

Averbach, B. L. and Cohen, M. (1948). “X-ray determination of retained aus-
tenite by integrated intensities,” Trans. AIME 176, 401–415.

Chipera, S. J. and Bish, D. L. (2002). “FULLPAT: a full-pattern quantitative
analysis program for X-ray diffraction using measured and calculated pat-
terns,” J. Appl. Crystallogr. 35, 744–749.

Chung, F. H. (1974a). “Quantitative interpretation of X-ray diffraction pat-
terns of mixtures: I. Matrix-flushing method for quantitative multicompo-
nent analysis,” J. Appl. Crystallogr. 7, 519–525.

Chung, F. H. (1974b). “Quantitative interpretation of X-ray diffraction pat-
terns of mixtures: II. Adiabatic principle of X-ray diffraction analysis of
mixtures,” J. Appl. Crystallogr. 7, 526–531.

Deer, W. A., Howie, R. A., and Zussman, J. (1971). Rock-Forming Minerals,
Vol. 4. (Longman, London).

Deer, W. A., Howie, R. A., and Zussman, J. (1976). Rock-Forming Minerals,
Vol. 3. (Longman, London).

Hubbard, C. R., Evans, E. H., and Smith, D. K. (1976). “The reference inten-
sity ratio, I/Ic, for computer simulated powder patterns,” J. Appl.
Crystallogr. 9, 169–174.

James, R. W. (1967). The Optical Principles of the Diffraction of X-Rays (Bell
and Sons, London).

Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab initio structure deter-
mination of LiSbWO6 by X-ray powder diffraction,”Mater. Res. Bull. 23,
447–452.

Lennox, D. H. (1957). “Monochromatic diffraction-absorption technique for
direct quantitative X-ray analysis,” Anal. Chem. 29, 766–770.

Parrish, W., Huang, T. C., and Ayer, G. L. (1976). “Profile fitting: a powerful
method of computer X-ray instrumentation and analysis,” Trans. Am.
Cryst. Assoc. 12, 55–73.

Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J.
Appl. Crystallogr. 14, 357–361.

Rietveld, H. M. (1969). “A profile refinement method for nuclear and mag-
netic structures,” J. Appl. Crystallogr. 2, 65–71.

Smith, D. K., Johnson Jr., G. G., Scheible, A., Wims, A. M., Johnson, J. L.,
and Ullmann, G. (1987). “Quantitative X-ray powder diffraction method
using the full diffraction pattern,” Powder Diffr. 2, 73–77.

Taupin, D. (1973). “Automatic peak determination in X-ray powder patterns,”
J. Appl. Crystallogr. 6, 266–273.

Toraya, H. (1986). “Whole-powder-pattern fitting without reference to a struc-
tural model: application to X-ray powder diffractometer data,” J. Appl.
Crystallogr. 19, 440–447.

167 Powder Diffr., Vol. 36, No. 3, September 2021 Review of the direct derivation method 167

https://doi.org/10.1017/S0885715621000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0885715621000373


Toraya, H. (2016). “A new method for quantitative phase analysis using X-ray
powder diffraction: direct derivation of weight fractions from observed
integrated intensities and chemical compositions of individual phases,”
J. Appl. Crystallogr. 49, 1508–1516.

Toraya, H. (2017). “Quantitative phase analysis using observed integrated
intensities and chemical composition data of individual crystalline phases:
quantification of materials with indefinite chemical compositions,” J.
Appl. Crystallogr. 50, 820–829.

Toraya, H. (2018). “Direct derivation (DD) of weight fractions of individual
crystalline phases from observed intensities and chemical composition
data: incorporation of the DD method into the whole-powder-pattern
fitting procedure,” J. Appl. Crystallogr. 51, 446–455.

Toraya, H. (2019). “A practical approach to the direct-derivation method for
QPA: use of observed powder patterns of individual components without

background subtraction in whole-powder-pattern fitting,” J. Appl.
Crystallogr 51, 520–531.

Toraya, H. (2020). “Accurate and time-saving quantification of a component
present in a very small amount in a mixture by the direct derivation
method,” J. Appl. Crystallogr. 53, 1225–1235.

Toraya, H. and Omote, K. (2019). “Quantitative phase analysis of amorphous
components in mixtures by using the direct-derivation method,” J. Appl.
Crystallogr. 52, 13–22.

Toraya, H. and Tsusaka, S. (1995). “Quantitative phase analysis using the
whole-powder-pattern decomposition method. I. Solution from knowl-
edge of chemical compositions,” J. Appl. Crystallogr. 28, 392–399.

Werner, P.-E., Salomé, S., and Malmros, G. (1979). “Quantitative analysis of
multicomponent powders by full-profile refinement of Guinier-Hägg
X-ray film data,” J. Appl. Crystallogr. 12, 107–109.

168 Powder Diffr., Vol. 36, No. 3, September 2021 Toraya 168

https://doi.org/10.1017/S0885715621000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0885715621000373

	Review of the direct derivation method: quantitative phase analysis with observed intensities and chemical composition data
	INTRODUCTION
	THEORY
	Total sum of intensities
	The intensity--composition formula
	Observed intensity datasets for individual components
	Introduction of the normalized fitting function
	Calculation and some properties of ak

	EXPERIMENTAL AND DATA ANALYSIS
	RESULTS AND DISCUSSION
	Combined use of type-A, B, and C functions
	QPA using type-C2 function
	QPA of ${\rm \alpha }$- Al2O3&thinsp;&plus;&thinsp;${\rm \gamma }$-Al2O3 binary mixtures
	QPA of amorphous component
	QPA of starch
	QPA of crystalline phase present in a very small amount in a mixture


	SUMMARY
	ACKNOWLEDGEMENTS


