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Abstract
Metal additive manufacturing has enabled geometrically complex internal cooling channels for turbine and heat
exchanger applications, but the process gives rise to large-scale roughness whose size is comparable to the chan-
nel height (which is 500 μm). These super-rough channels pose previously unseen challenges for experimental
measurements, data interpretation and roughness modelling. First, it is not clear if measurements at a particular
streamwise and spanwise location still provide accurate representation of the mean (time- and plane-averaged) flow.
Second, we do not know if the logarithmic layer survives. Third, it is unknown how well previously developed
rough-wall models work for these large-scale roughnesses. To answer the above practical questions, we conduct
direct numerical simulations of flow in additively manufactured super-rough channels. Three rough surfaces are
considered, all of which are obtained from computed tomography scans of additively manufactured surfaces. The
roughness’ trough to peak sizes are 0.1h, 0.3h and 0.8h, respectively, where h is the intended half-channel height.
Each rough surface is placed opposite a smooth wall and the other two rough surfaces, leading to six rough-wall
channel configurations. Two Reynolds numbers are considered, namely Re𝜏 = 180 and Re𝜏 = 395. We show first
that measurements at one streamwise and spanwise location are insufficient due to strong mean flow inhomogeneity
across the entire channel, second that the logarithmic law of the wall survives despite the mean flow inhomogeneity
and third that the established roughness sheltering model remains accurate.

Impact Statement
Surface roughness, whose representative element size is comparable to the hydraulic diameter, incurs a signif-
icant drag penalty. This large-scale roughness is usually removed in conventional subtractive manufacturing,
making small-scale roughness that occupies a few per cent of the boundary layer the rule in fluid engineer-
ing. It is therefore not surprising that most rough-wall boundary-layer theories and models are developed for
small-scale roughness. The use of new engineering technologies leads to new flow problems, to which con-
ventional theories do not apply. Here, flow in additively manufactured super-rough channels is such a new
problem. This paper is the first direct numerical simulation (DNS) study of flows in additively manufactured
super-rough channels. We compare our DNS results with the existing theories/models and show where the
existing theories and models fail and succeed. In addition to providing benchmark data for a new engineering
problem, this work has real-world impacts: a fluid engineer would know from this study which theories and
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models they can/cannot trust when dealing with large-scale roughness. This work also impacts fundamen-
tal research: our findings, e.g. that the logarithmic law of the wall survives large-scale roughness, motivate
revisions of the conventional rough-wall boundary-layer theories.

1. Introduction

Surface roughness in conventional fluid engineering is usually small, occupying a few per cent of the
boundary layer (Flack & Schultz, 2010). Figure 1(a) shows a sketch of a typical rough-wall boundary
layer. The boundary layer consists of the roughness sublayer, the logarithmic layer and the wake layer
(Jiménez, 2004; Schlichting & Gersten, 2003). The roughness sublayer extends from the wall to approx-
imately 3k to 5k, where k is the roughness’ peak to trough height and represents the most important
length scale in the roughness sublayer. Fluid in the roughness sublayer directly interacts with the surface
roughness, leading to non-negligible mean flow inhomogeneity in the streamwise (x) and spanwise (z)
directions. Above the roughness sublayer is the logarithmic layer. Here, we define the logarithmic layer
to be the layer where the mean velocity follows the logarithmic law of the wall, and when we say the
logarithmic layer survives, we are saying the logarithmic law of the wall survives. The logarithmic layer
extends to approximately 0.15𝛿. The roughness affects the logarithmic layer by setting a momentum
flux, and the flow is statistically homogeneous in the streamwise and the spanwise directions. The mean
flow follows

U
u𝜏

=
1
𝜅

log
(
y − d

yo

)
≡

1
𝜅

log(( y − d)+) + B − ΔU+≈
1
𝜅

log
(

y
ks

)
+ 8.5 (1.1)

in the logarithmic layer, where U is the time-averaged streamwise velocity, 𝜅 ≈ 0.4 is the von Kármán
constant (Marusic, Monty, Hultmark, & Smits, 2013), d is the zero-plane displacement height (Thom,
1971), yo is the equivalent roughness height, ΔU+ is the roughness function, B ≈ 5.2 is a constant, ks is
the equivalent sandgrain roughness height and u𝜏 is the friction velocity. Above the logarithmic layer
is the wake layer, within which the boundary-layer height 𝛿 is an important length scale. The layered
structure in figure 1(a) applies equally to atmospheric boundary layers – although they are not the focus
of this work.

Equation (1.1) has several convenient features. First, it requires no plane average (since the flow in
the logarithmic layer is statistically homogeneous in the streamwise and the spanwise directions), and
measurements at any streamwise and spanwise location would give the same yo and d. This is why
researchers and engineers can rely on one-dimensional hot-wire measurements in rough-wall boundary-
layer experiments (Hultmark, Vallikivi, Bailey, & Smits, 2012; Hutchins, Nickels, Marusic, & Chong,
2009; Örlü et al., 2017; Wang & Zheng, 2016). Furthermore, according to (1.1), the effects of surface
roughness can be parameterized by d and ΔU+. It follows that roughness modelling is, practically,
the modelling of d and ΔU+, and when d is negligible, roughness modelling is the modelling of
ΔU+. This simplifies an otherwise complex problem, and (1.1) is the starting point of practically
all existing roughness models (Coceal & Belcher, 2004; Flack & Schultz, 2010; Forooghi, Stroh,
Magagnato, Jakirlić, & Frohnapfel, 2017; Jouybari, Yuan, Brereton, & Murillo, 2021; Yang, Sadique,
Mittal, & Meneveau, 2016).

The above is the conventional view of rough-wall boundary-layer flows. The use of new engineering
technologies in fluid engineering applications often gives rise to novel flow problems. In the context
of this paper, the new technology is additive manufacturing, the fluid application is internal cooling
in turbomachinery and the new flow problem is flow in additively manufactured super-rough cool-
ing channels – channels with surface roughness comparable to their hydrodynamic diameters. In the
following, we briefly explain the engineering problem. In more traditional subtractive manufacturing,
whatever process is used to machine the channel can be used to finish the surface and remove large-scale
roughness. This, however, is often not possible for additively manufactured cooling channels because
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Figure 1. (a) The layered structure of a rough-wall boundary layer. Here, k is the roughness height, 𝛿
is the boundary-layer height. (We reserve the symbol h for half-channel height.) (b) A spanwise–wall-
normal cross-section of an additively manufactured channel (Bons, Taylor, McClain, & Rivir, 2001;
McClain et al., 2021). The red and blue lines are the surface roughness; yb and yt are the intended bot-
tom- and top-wall locations (when manufacturing the channel); yb− and yt− are the trough locations of
the bottom and top surface roughness; yb+ and yt+ are the peak locations of the bottom and top surface
roughness. (c) A sketch of slender roughness. Here, w is the width of the roughness element.

of the complex geometric designs and the nature of the finishing process. The additive manufacturing
process like the one in Stimpson, Snyder, Thole, and Mongillo (2016) gives rise to roughness whose
size is approximately 100 μm. Since the size of the cooling channel is only approximately 500 μm,
these additively manufactured roughnesses result in a large drag penalty. This drag penalty must be
accounted for in engineering design – giving rise to a new flow problem. Figure 1(b) shows a cross-
section of an additively manufactured cooling channel with large-scale roughness on both walls. Here,
the cooling channel spans from yb = 0 to yt = 2h, the trough to peak height of the top-wall roughness
is |yt+ − yt−| = 0.8h (i.e. −0.4h < y − yt < 0.4h) and the trough to peak height of the bottom-wall
roughness is |yb+ − yb−| = 0.34h (i.e. −0.17h < y − yb < 0.17h). Here, h is the intended half-channel
height (when manufacturing the channel), yb and yt are the y coordinates of the intended bottom and top
surfaces of the channel and the subscripts ‘+’ and ‘−’ denote the peak and trough locations of the surface
roughness. The top-wall roughness is larger than the bottom-wall roughness due to the orientation of
the surfaces during the manufacturing process (McClain et al., 2021). We have employed the intended
half-channel height h as the reference length scale. The reader is directed to Stafford, McClain, Hanson,
Kunz, and Thole (2021) for the real dimensions (in millimetres) of the cooling channels and the surface
roughness.

Conventional theories like the ones in figure 1(a) do not necessarily apply to new flow problems
like the one in figure 1(b). Below, we explain why not. We know that the height of the roughness
sublayer is 3k to 5k. Let us be conservative and assume that the height of the roughness sublayer is 3k.
It follows that the top-wall roughness sublayer extends from yt− to yt− − 2.4h (the y coordinate points
from the bottom wall to the top wall) and the bottom-wall roughness sublayer from yb− to yb− + 1.02h.
These two roughness sublayers overlap, and the flow is nowhere homogeneous in the streamwise and
the spanwise directions. If one follows the conventional rough-wall boundary-layer theory to its logical
conclusion, one must conclude that the logarithmic layer does not survive, and (1.1) is no longer valid.
This poses practical challenges. First, if U ≠ 〈U〉, then measurements at one streamwise and spanwise
location are not necessarily a good approximation of the mean (double-averaged) velocity. Here, 〈·〉
denotes plane average. This casts doubts on the conclusions in Stafford et al. (2021) and McClain et al.
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(2021), where the authors invoked the conventional wisdom and assumed U = 〈U〉 when studying flow
in an additively manufactured super-rough cooling channel. An objective of this work is to re-evaluate
the claims in Stafford et al. (2021) and McClain et al. (2021). We also ask the following practical
question: How much averaging is needed in the x and z directions before we can claim Ũ ≈ 〈U〉? Here,
·̃ denotes spatial filtration in the x or z direction. Second, it is not clear if 〈U〉 still follows a logarithmic
scaling. In other words, does the logarithmic layer survive large-scale roughness and the resulting mean
flow inhomogeneity? Third, it is unknown how the available roughness models like the ones in Flack
and Schultz (2010) and Yang et al. (2016) work for the large-scale roughness. The objective of this work
is to answer or shed some light on these questions. We resort to DNS, which, in spite of its high cost
(Choi & Moin, 2012; Yang & Griffin, 2021), is the most accurate computational fluid dynamics tool.
DNS also gives us access to the flow in the roughness layer, which is usually unavailable in a laboratory
experiment.

Before we proceed further, we distinguish the roughness in figure 1(b), i.e. the focus of this work,
from the tall slender roughness in figure 1(c) and the ‘obstacle’-type roughness mentioned in Jiménez
(2004). Although the roughness in figure 1(c) occupies most of the domain, the boundary layer ‘feels’
only the top part of the roughness. Because of that, the roughness sublayer is thin, and the flow becomes
statistically homogeneous in the x and z directions just slightly above the roughness (Castro, 2007;
MacDonald, Ooi, García-Mayoral, Hutchins, & Chung, 2018; Sharma & García-Mayoral, 2020). The
same is true for a wide range of roughness elements. In Chan, MacDonald, Chung, Hutchins, and Ooi
(2018), the sinusoidal roughness’ trough to peak height is approximately 0.3R0, and the height of the
roughness sublayer is approximately 0.5R0, i.e. less than 2k, where R0 is the pipe radius. In Xu, Altland,
Yang, and Kunz (2021), the cubical roughness’ height is 0.25h, and the roughness sublayer is approxi-
mately 0.33h, i.e. less than 1.5k, where h is the half-channel height. For these rough surfaces, (1.1) and
mean flow universality survive, and the sketch in figure 1(a) is still valid. The roughness considered
in this work is also different from obstacle-type roughness. In Jiménez (2004), the term ‘flows over
obstacles’ refers to flows with 𝛿/k � 50. Jiménez (2004) argued that there would be little left of the
original wall-flow dynamics in these flows. The discussion in Jiménez (2004) concerns the roughness
function, but ‘the original wall-flow dynamics’ should, to a bare minimum, encompass the logarithmic
layer (and the related dynamics) and the outer layer similarity (and the related dynamics). Both the
logarithmic layer and the outer layer similarity have received much attention since Jimenez’s seminal
annual review paper. These later studies, however, gave a different picture to the one in Jiménez (2004):
the original wall-flow dynamics proves to be applicable to flows with much larger roughness (than
𝛿/k � 50) (Amir & Castro, 2011; Castro, 2007; Chan, MacDonald, Chung, Hutchins, & Ooi, 2015; Xu
et al., 2021), and ‘flows over obstacles’ lack a unanimous definition. In the most recent annual review,
Chung, Hutchins, Schultz, and Flack (2021) suggested that the ‘flows over obstacles’ may be defined as
flows in which the log-law parameters are not very apparent. We will see in § 3 that log-law parameters
are clearly apparent in the additively manufactured super-rough channels, so we prefer not to call these
flows ‘flows over obstacles’.

The rest of the paper is organized as follows. We show the detailed numerical settings in § 2. The
results are presented in § 3, followed by concluding remarks in § 4.

2. Computational details

2.1. Flow configuration

The simulated geometries are rough-wall channels. Three increasingly rough surfaces are considered,
i.e. S1, S2 and S3, which are all computed tomography scans of additively manufactured surfaces, where
surface S3 is the most rough and surface S1 is the least rough. Figure 2 shows the height distribution
of the surface roughness, and table 1 tabulates the statistics of the roughness. The horizontal size of
the rough surfaces is Lx × Ly = 14h × 8.5h, where h is the intended half-channel height. Further details
of the three rough surfaces can be found in McClain et al. (2021), where the three rough surfaces are
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Figure 2. The height distribution of the three rough surfaces. k′ is the deviation of the real surface from
the intended channel surface.

Table 1. Rough-wall statistics. Here, kavg is the average roughness, Ra is the first-order moment, krms is
the r.m.s. of the roughness height, Sk is the skewness, Ku is the Kurtosis, Ex is the effective slope. The
average roughness height kavg is measured from the intended rough surface. This is why some values
are negative. We keep two significant digits after the decimal point. The reader is directed to Chung
et al. (2021) for the physical significance (not definition) of these roughness parameters.

Surface kavg/Ra krms/Ra Sk Ku Ex

S1 −0.20 1.27 0.20 3.20 0.088
S2 −0.11 1.27 0.10 3.49 0.24
S3 0.12 1.27 −0.25 3.25 0.40

referred to as up-skin, down-skin and realx102, respectively. The intended channel wall is at k′ ≈ 0.
The trough to peak heights are 0.16h, 0.34h and 0.8h for S1, S2 and S3, respectively. Although the
trough to peak height is often used as a measure of the roughness size (Jiménez, 2004), the statistic is
not very reliable because its value is determined by the roughness height at two individual locations.
Here, we also report the first-order moment: Ra/h = 0.017, 0.040, 0.1050 for S1, S2 and S3, and the
roughness root-mean-square (r.m.s.): krms/h = 0.021, 0.051, 0.134, which are more reliable statistics.
The single-point roughness height statistics are close to Gaussian for all three surfaces, see figure 3, and
therefore empirical correlations like the one in Flack and Schultz (2010) and Flack, Schultz, and Barros
(2020) should, in principle, apply. Figure 4 shows the streamwise-averaged roughness height. We see
some variations in the spanwise direction, but they are much smaller than the roughness’ peak to trough
height. If we were to repeat this exercise for roughness that consists of streamwise strips, we would see
much large spanwise roughness heterogeneity.
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mean roughness height, and 𝜎k′ is the standard deviation of the roughness height. The black solid line
is the standard Gaussian distribution.
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Figure 4. Streamwise-averaged roughness height. The black bold lines are the streamwise-averaged
roughness height. The two thin black lines show the roughness’ peak and trough locations.

We place each rough surface opposite a flat plate and the other two rough surfaces, leading to
six configurations. Table 2 shows the further details of the rough-wall channels. The nomenclature
is Ch+[bottom surface]+[top surface], where the bottom/top surface is S1, S2, S3 or smooth (S0). In
table 2, we also list the trough and the peak locations of the rough surfaces. The flow is not directly
blocked by the surface roughness between yb+ and yt+. For conventional small engineering roughness
on finished surfaces, yb ≈ yb+ ≈ yb−, yt ≈ yt+ ≈ yt− and yt+ − yb+ ≈ 2h. For the rough-wall channels
considered in this work, yt+ − yb+ ranges from 1.92h in Ch10 (the least rough channel) to 1.34h in Ch23
(the most rough channel). We will colour code the results in § 3, as shown in the last column of table 3.
In table 3, we also tabulate the aerodynamic properties of the rough surfaces, such as the equivalent
roughness height and the location of the virtual wall, which we will discuss in § 3.3.

2.2. DNS set-up

We conduct DNSs with two Reynolds numbers, namely Re𝜏 = 180 and 395. Here, Re𝜏 = hu𝜏,b/𝜈 is the
friction Reynolds number, with 𝜈 the kinematic viscosity of the fluid, and u𝜏,b =

√
−(dp/dx)h/𝜌 the

bulk friction velocity. Because |yt− −yb−| > 2h, the above friction Reynolds number is an under-estimate
of the conventional Reynolds number, whose definition is (h − yb−)u𝜏/𝜈.
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Table 2. Details of rough-wall channel configuration. Again, yb and yt are the intended bottom- and
top-wall locations and are at y = 0 and y = 2h, respectively. That is, yb = 0 and yt = 2h. The subscript
− indicates the trough location, and the subscript + indicates the peak location. ‘Bot. surf.’ is short for
bottom surface, and ‘Top surf.’ is short for top surface. S0 is a smooth surface. For a smooth surface,
yb = yb− = yb+ and yt = yt− = yt+. We keep two significant digits for the numbers reported here.

Bot. surf. Top surf. ( yb− − yb)/h ( yb+ − yb)/h ( yt − yt−)/h ( yt − yt+)/h

Ch10 S1 S0 −0.076 0.084 0 0
Ch20 S2 S0 −0.18 0.26 0 0
Ch30 S3 S0 −0.40 0.40 0 0
Ch12 S1 S2 −0.076 0.084 −0.18 0.26
Ch13 S1 S3 −0.076 0.084 −0.40 0.40
Ch23 S2 S3 −0.18 0.26 −0.40 0.40

Table 3. Rough surfaces’ aerodynamic properties. Here, yo is the equivalent roughness height, yd is the
y coordinate of the virtual wall.

yo,b/h |yd,b − yb |/h yo,t/h |yd,t − yt |/h symbol

Ch10 9.5 × 10−4 6.2 × 10−3 — —
Ch20 8.0 × 10−3 1.0 × 10−2 — —
Ch30 3.7 × 10−2 4.5 × 10−2 — —
Ch12 1.0 × 10−3 7.2 × 10−3 8.0 × 10−3 1.1 × 10−2

Ch13 1.1 × 10−3 5.8 × 10−2 3.7 × 10−2 4.0 × 10−2

Ch23 6.9 × 10−3 6.3 × 10−3 3.6 × 10−2 5.3 × 10−2

The computational domain size is Lx × Ly × Lz = 14h × ( yt− − yb−) × 8.5h. Here, Ly ≠ 2h because
yt/b,− ≠ yt/b. This computational domain is larger than the ones in, for example, Coceal, Thomas, Castro,
and Belcher (2006) and Chung, Chan, MacDonald, Hutchins, and Ooi (2015), where the roughness is
single scale, and a minimum channel suffices. The roughness on an additively manufactured surface is
multi-scale, and a large computational domain is needed to sample all the roughness scales as in, for
example, Yang and Meneveau (2017) and Anderson and Meneveau (2011). Also, our computational
domain matches the experiment in McClain et al. (2021).

Table 4 shows the grid information, where ‘R2’ is for Re𝜏 = 180 and ‘R4’ for Re𝜏 = 395. Uniform
grid spacings are used in the streamwise (x) and the spanwise (z) directions, while a hyperbolic-tangent
stretched grid is used in the wall-normal (y) direction following Jelly, Jung, and Zaki (2014) and Wang,
Wang, and Zaki (2019). The grid must resolve the flow and the roughness. Here, the x and z grids are
such that Δx+ × Δz+ � 12 × 6 to resolve the flow (Kim, Moin, & Moser, 1987; Lee & Moser, 2015;
Leonardi & Castro, 2010) and Δx × Δy � 0.033h × 0.033h to resolve the surface roughness (Yuan
& Piomelli, 2014). Here, 𝛥x, 𝛥y and 𝛥z are the grid spacings in the streamwise, wall-normal and spanwise
directions, respectively. Figure 5 shows the premultiplied energy spectra of the surface roughness and
the grid cutoff in the Re𝜏 = 395 DNSs. The surface roughness is very well resolved. The wall-normal
grid resolution is rather fine, with Δy+ ∼ 0.4 at the wall and Δy+ ∼ 3.5 at the channel centreline. These
resolutions are comparable to/finer than those in Moser, Kim, and Mansour (1999), and since we will
not study high-order statistics, these resolutions are sufficient (Yang, Hong, Lee, & Huang, 2021).

We employ the in-house code LESGO for the DNSs. The code solves the incompressible
Navier–Stokes equations. A spectral method (with the 3/2 rule for dealiasing) is used for spatial dis-
cretization in the x and z directions, and a second-order finite difference method is used in the y direction.
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Table 4. Grid information. Here, Nx, Ny and Nz are the grid numbers in the streamwise, wall-normal
and spanwise directions, respectively; R2 is for Re𝜏 = 180, and R4 is for Re𝜏 = 395. The two numbers
for Δy are the minimum (at the wall) and maximum (the channel centerline) wall-normal grid spacings.

Nx × Ny × Nz 𝛥+
x × 𝛥+

y × 𝛥+
z 𝛥x/h × 𝛥y/h × 𝛥z/h

R2 420 × 192 × 256 6.0 × (0.4, 3.5) × 6.0 0.033 × (0.0020, 0.018) × 0.033
R4 450 × 420 × 550 12.3 × (0.4, 3.5) × 6.1 0.031 × (0.0010, 0.0089) × 0.015
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Figure 5. Premultiplied roughness spectra. The spectra are normalized by their maxima. The blue lines
are the x direction spectra. The yellow lines are the z direction spectra. The vertical lines denote the
grid cutoff in the Re𝜏 = 395 DNSs.

Time advancement uses the second-order Adam–Bashforth method. The code has been extensively used
for rough-wall boundary-layer flows (Wang, Li, & Wang, 2018; Yang, Sadique, Mittal, & Meneveau,
2015; Zhu & Anderson, 2018), but most are large-eddy simulations. A DNS validation of the code can
be found in Zhu, Minnick, and Gayme (2021).

2.3. Statistical convergence

The x-momentum equation reads

d
dy

(
𝜈

d〈U〉

dy
− 〈u′v′〉 − 〈u′′v′′〉

)
−

1
𝜌

d〈p̄〉
dx

− f = 0, (2.1)

where f is the drag force (which is 0 outside the roughness occupied region), d/dx and d/dy are total
derivatives in the x and y directions, respectively (streamwise- and spanwise-averaged velocity and
stresses are only functions of y), 𝜈 is the kinematic viscosity, p is the pressure, ·̄ denotes time average,
𝜙′′ = 𝜙 − 〈𝜙〉 and 𝜙 is a generic variable (note that 𝜙′′

1 𝜙
′′
2 ≡ 𝜙′′

1 𝜙
′′
2 for any 𝜙1 and 𝜙2). The terms on the

left-hand side are the viscous diffusion term, the turbulent transport term, the dispersive stress term and
the pressure gradient term. Integrating equation (2.1) in the y direction leads to

𝜈
d〈U〉

dy
− 〈u′v′〉 − 〈u′′v′′〉 = Const. +

1
𝜌

d〈p̄〉
dx

y, (2.2)

outside the roughness, i.e. a linear function of y – given statistical convergence. Equation (2.2) is often
used to check the statistical convergence of a numerical simulation: a simulation is statistically converged
if the sum of the viscous, turbulent and dispersive fluxes is a linear function of y (Oliver, Malaya, Ulerich,
& Moser, 2014). Figure 6 shows the terms in (2.2), and a linear total flux is indeed found in our DNSs.
In addition to the linear total flux, we observe the following. First, the turbulent flux is by far the most
dominant term outside the roughness, and the viscous flux is notable only in the roughness occupied
layer and the viscous sublayer. This is distinctly different from flows above a spanwise heterogeneous
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Figure 6. The momentum budget. The x axis is from yb to yt rather than from yb− to yt−. The dashed
lines indicate the peak locations of the roughness. Turb, Disp, Visc and Total stand for turbulent flux,
dispersive flux, viscous flux and total flux, respectively. Here, normalization is by the bulk friction
velocity u𝜏,b =

√
−1/𝜌 d〈p̄〉/dx h.

Table 5. Flow statistics. Here, y𝜏 is the location where the total stress is 0; yt and yb are the intended
top and bottom surfaces. The superscript denotes normalization by 𝜈/u𝜏,b.

( y𝜏 − yb)/h ( y𝜏 − yt)/h ( y𝜏 − yb)
+ ( y𝜏 − yt)

+

Ch10-R4 1.1 0.9 434 356
Ch20-R4 1.35 0.65 533 257
Ch30-R4 1.56 0.44 616 174
Ch12-R4 0.74 1.26 292 498
Ch13-R4 0.5 1.5 197 593
Ch23-R4 0.72 1.28 284 506

roughness (Anderson, Li, & Bou-Zeid, 2015), where the dispersive flux is comparable to the turbulent
flux. Also, the terms in (2.2) are not symmetric with respect to the channel centreline. Table 5 tabulates
the locations where the total stress is 0, which we denote as y𝜏 , and the distance between y𝜏 and the
virtual wall, which is approximately the intended channel surface, i.e. yb,t (see the discussion in § 3). The
distance between y𝜏 and yb,t in plus units measures the effective Reynolds number and is also reported.
We see that a rougher surface leads to a larger distance between y𝜏 and the virtual wall, which in turn
leads to a larger effective Reynolds number. The effective Reynolds number is between 174 and 616.
A more in-depth discussion on the effect of the effective Reynolds number is postponed until § 3.

3. Results

We present the DNS results. We focus on the Re𝜏 = 395 cases, i.e. R4 cases, and only show the
Re𝜏 = 180 results, i.e. R2 results, for comparison purposes. In the discussion below, we adopt the
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Figure 7. Contours of the instantaneous streamwise velocity in Ch23-R4 (a) at y = yb + kb/2 and (c) at
y = yt − kt/2. Contours of the time-averaged streamwise velocity in Ch23-R4 at (b) at y = yb + kb/2 and
(d) at y = yt − kt/2.

following shorthand Ch[a][b]-R[c] when referring to a DNS calculation; a and b are 1, 2 or 3, and c is 2
or 4. Here, Ch[a][b]-R[c] is the Re𝜏 = c× 102 channel whose bottom and top surfaces are S[a] and S[b].

3.1. Basic flow phenomenology

Figure 7 shows the contours of the instantaneous and temporally averaged streamwise velocity at
distances kb/2 and kt/2 from the intended bottom and top walls in Ch23-R4, where kb = |yb+ − yb−| and
kt = |yt− −yt+ | and are the bottom- and top-wall roughness heights. We see streaks of momentum deficits
and momentum excesses in figure 7(a,c) at the two y locations. While some of these streaks are transient,
some are locked in the spanwise direction, leading to low and high momentum pathways in the mean flow,
as we can see in figure 7(b,d). Similar low and high momentum pathways are often seen above spanwise
heterogeneous surface roughness (Anderson et al., 2015) and large-scale roughness (Nikora et al., 2019).
These are secondary flows of the second kind. In the following, we briefly review the recent literature
and explain the differences. The recent literature has given much attention to this kind of secondary flow
(Forooghi, Yang, & Abkar, 2020; Medjnoun, Vanderwel, & Ganapathisubramani, 2018; Stroh, Schäfer,
Frohnapfel, & Forooghi, 2020; Wangsawĳaya, Baidya, Chung, Marusic, & Hutchins, 2020; Yang, Xu,
Huang, & Ge, 2019). A well-studied model problem is a half-channel with spanwise alternating low
and high roughness on the bottom wall. The mean flow is homogeneous in the streamwise direction,
and secondary flows show up as counter-rotating vortices in the spanwise–wall-normal plane, and they
typically span the entire channel/half-channel. Their sizes and strengths are, by and large, controlled by
the spacing of the roughness and not so much by the roughness height k. The secondary flows we see
here in Ch23-R4 are somewhat different. First, we do not see apparent spanwise roughness heterogeneity
in S1, S2 or S3. Also, we do not see counter-rotating vortices in the spanwise–wall-normal plane. The
in-plane motions in figure 8 are weak and rather unorganized. It appears that the flows in figure 7(b,d)
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Figure 8. Contours of the time-averaged streamwise velocity at a constant x location. The arrows show
the in-plane motion. For visualization purposes, we show arrows between y = kb/2 and y = 2−kt/2 only.

are what one would find in a roughness sublayer. The results from the other channel configurations are
similar and are not shown here for brevity.

3.2. Mean flow inhomogeneity

It should be clear from figure 8 that measurements at a single spanwise–streamwise location are a poor
representation of the double-averaged velocity, i.e. 〈U〉 � U. Here, ‘double average’ refers to time and
streamwise–spanwise averaging. In this section, we quantify the flow inhomogeneity in the streamwise
and spanwise directions and determine what we need to do to get a close approximation of the double-
averaged velocity. Figure 9(a–c) compares the hot-wire measurements in McClain et al. (2021) and
our DNS data for Ch10, Ch20, Ch30. The experimental hot-wire measurements are taken at a single
spanwise–streamwise location but at Reynolds numbers from O(104 − 105). The Reynolds numbers
are on the high end of what we would see in real-world turbomachinery applications (Han & Chen,
2006; Nourin & Amano, 2020). The DNSs give access to the three-dimensional flow field, and we
show the variation of the time-averaged velocity in the domain, which is bounded by maxx,y [U(z)] and
minx,y [U(z)]. Figure 9(d) shows the variation of the time-averaged velocity in Ch30-R2 and Ch30-R4,
i.e. at Re𝜏 = 180 and Re𝜏 = 395. These Reynolds numbers are on the low end of what we would see in
the industry. In all, the Reynolds number does not impact the basic flow phenomenology, and we see
large mean flow variations at both Reynolds numbers.

It is interesting to note that there are non-negligible variations of the time-averaged velocity near the
top smooth surface in figure 9, as the bottom roughness affects the flow near the top surface. This is
consistent with the conventional rough-wall boundary-layer theory. The peak to trough height is 0.16h,
0.44h and 0.8h for the S1, S2 and S3 roughness, respectively. The height of the sublayer is usually 3 to
5 times the roughness’ peak to trough height, giving rise to roughness sublayers that are 0.48h − 0.8h,
1.32h− 2.2h and 2.4h− 4h for S1, S2 and S3. The channel height is 2h. We can therefore expect that the
roughness sublayer on one side affects the flow on the other side. Moreover, the two roughness sublayers
overlap when we put two rough surfaces opposite to each other. This is what we see in figure 10: the
two roughness sublayers overlap, and maxx,y [U(z)] − minx,y [U(z)] maintains a large value throughout
the channel in Ch12, Ch13 and Ch23.

We can more formally quantify the mean flow’s variation by applying the following triple decom-
position to the velocity and examining the dispersive stress. The triple decomposition reads (Finnigan,
2000)

u = 〈U〉 + u′′ + u′, (3.1)

where u is the instantaneous velocity, 〈U〉 is the double-averaged velocity, u′ is the temporal fluctuation
at a given spatial location and u′′ is the spatial variation of the mean flow in the streamwise and spanwise
directions. The above triple decomposition may be applied to the other two velocity components, but
we are only interested in the streamwise component. The r.m.s. of u′′ gives a formal quantification
of the mean flow variation in the wall-parallel directions. Figure 11 shows u′′+

rms in the vicinity of S1,
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Figure 9. Velocity profiles in Ch10-R4, Ch20-R4, Ch30-R4 and Ch30-R2. The symbols in (a–c) are hot-
wire measurements at one streamwise–spanwise location (McClain et al., 2021). The shaded regions
show the variations of the time-averaged streamwise velocity in the domain. The coloured solid lines are
the double-averaged velocities in the R4 DNSs. The light and dark shades in (d) show the variation of the
time-averaged velocity in Ch30-R4 and Ch30-R2, respectively. Normalization is by the maximum value
of the double-averaged velocity. The vertical dashed lines indicate the peak locations of the surface
roughness.
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Figure 10. Same as figure 9(a–c) but for Ch12-R4, Ch13-R4 and Ch23-R4.

S2 and S3. Each rough surface appears three times in the six channel configurations, leading to the
three lines in figure 11(a–c). We make the following observations. First, the lines do not collapse. The
dispersive stress u′′+

rms above a rough surface is visibly affected by the roughness on the opposite wall,
particularly when the other rough surface is rougher. Second, the dispersive stress u′′+

rms is non-negligible
and is larger above a rougher surface. The value is approximately u′′+

rms ≈ 1 above S3. If we follow the
conventional rough-wall boundary-layer theory, we must conclude that there are no logarithmic layers
in these super-rough channels, a topic we will discuss more in § 3.3.

Here, we discuss how we can get a close approximation of the double-averaged velocity in a
laboratory experiment. If only one-dimensional measurements like hot-wire are available, measure-
ments at sufficiently many locations are required to determine the average. If two-dimensional (2-D)
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Figure 11. Dispersive stress u′′+
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Here, normalization is by the friction velocity u𝜏 .

measurements are available, like particle image velocimetry (PIV), which has been used in rough-
wall boundary-layer experiments (Gul & Ganapathisubramani, 2021; Medjnoun et al., 2021; Talapatra
& Katz, 2012), we may be able to take averages directly in a 2-D plane. The 2-D plane may be the
streamwise–wall-normal plane or the spanwise–wall-normal plane. Because the measurement window
is always limited in a laboratory experiment, a practical question is in which direction is averaging
more effective. Figure 12 compares spanwise averaging and streamwise averaging. We average in the x
and z direction at the scale lx = 14h(= Lx) and lz = 8.5h(= Lz) and plot the variation of the averaged
velocity in the domain. We see that spanwise averaging is generally more effective than streamwise
averaging in reducing mean flow variation both within and outside the roughness-occupied layers. This
is not surprising as the velocity correlation decays quickly in the spanwise direction than the streamwise
direction, and the same filtration length covers more statistically independent samples in the spanwise
direction than the streamwise direction. If we regard the streamwise- or the spanwise-averaged velocity
at a single spanwise or streamwise location to be an estimate of the double-averaged velocity, the error
in that estimate can be quantified as

Err =
1
Ly

∫ yt−

yb−

(
max

z,x
[Ũ+

lx,z ] − min
z,x

[Ũ+
lx,z ]

)
dy, (3.2)

where ·̃ denotes streamwise or spanwise averaging at a scale lx/z. This error represents the average width
of the shaded region in figure 12, as a function of the averaging scale. Figure 13 shows the error as a
function of the averaging length scale. For both streamwise and spanwise averaging, spatial averaging
is, in general, more effective in reducing the error for less rough channels, where there is less variation
in the mean flow to begin with. However, there are exceptions. For example, streamwise averaging is
more effective for Ch23, the rougher channel, than Ch20, the less rough channel. Additionally, we see
diminished returns from both streamwise and spanwise averaging, and the error reduces very slowly as
the averaging length increases beyond a 1 to 2 half-channel heights. Last, we see spanwise averaging is
more effective in reducing the error, which is consistent with figure 12.

Before proceeding to the next section, we make a few additional remarks about the Reynolds number.
The Reynolds numbers of many engineering flows are high – too high for DNSs. If DNSs are used
to study these flows, making sure that the simulations are in the fully rough regime is important. The
logic is that, since the Reynolds number does not play an important role in the fully rough regime, the
lower Reynolds number simulation result should still apply to the real-world high Reynolds number
flows as long as the simulations are also in the fully rough regime. The above is the conventional
wisdom. However, ensuring that our simulations are in the fully rough regime is not crucial here, and
the conventional wisdom does not apply. Unlike many engineering flows, the Reynolds numbers of the
flows in cooling channels are not that high. The bulk Reynolds number in these flows range from a few
thousand to tens of thousands (Chyu & Siw, 2013; Nourin & Amano, 2020). Here, we want to know
the role played by the Reynolds number rather than ensuring that the Reynolds number does not play a
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Figure 12. Mean velocity. The shades show the variation of the mean velocity when the data are not
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Figure 13. The error in the mean velocity when one applies (a) streamwise averaging of size lx and
(b) spanwise averaging of size lz.

significant role. Figure 14 compares the double-averaged velocities in the Re𝜏 = 180 and the Re𝜏 = 395
cases. The bulk Reynolds number is approximately 1000 in Ch23-R2, and more than 5000 in Ch10-R4.
We see that the Reynolds number affects the mean flow, but its impact is small compared with that of
the surface roughness. Hence, we can safely say that conclusions we draw from the Re𝜏 = 395 cases
about the mean flow inhomogeneity should apply to flows at other Reynolds numbers.

3.3. Mean flow scaling

If we follow the logic of the conventional rough-wall boundary-layer theory, we would have to conclude
that there cannot be a logarithmic layer in these super rough channels, nor mean flow universality.
The results, however, contradict these expectations. Figure 15 shows the double-averaged streamwise
velocities near the three rough surfaces and the flat plate. The flow is asymmetric with respect to the
channel centreline because of the disparate roughnesses on the top and bottom walls. As a result, the
profiles bend down, i.e. arrive at dU/dy = 0, at different locations even above the same surface. In
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Figure 14. Mean velocity. Dashed lines are R4, i.e. Re𝜏 = 395, results, and solid lines are R2, i.e.
Re𝜏 = 180, results.

figure 15, we see clear logarithmic behaviours as well as mean flow universality. More specifically, the
mean flow follows the regular smooth-wall law of the wall above S0 and a logarithmic scaling above the
surface roughness on S1, S2 and S3, and the profiles collapse irrespective of the surface on the other
side. Also shown in figure 15 are predictions of two roughness models, a result we will discuss in § 3.4.
It should be noted that normalization here is by the friction velocity u𝜏 and not u𝜏,b.

Although why the mean flow exhibits a logarithmic behaviour in the roughness sublayer is not clear,
this is certainly a convenient fact from an engineering perspective. It means that the logarithmic scaling
in (1.1) can be used to describe the flow in a super-rough channel. The scaling in (1.1) contains two
unknowns, i.e. the equivalent roughness height yo and the zero-plane displacement height d. We fit
the mean velocity profile for these two parameters. The fitting is conducted between y1 = yb/t+ and
y2 = yb/t+ ± 0.4|yc − yt/b+ |, where dU/dy = 0 at yc. The fitted values of yo and d are reported in
table 3. Here, we report the raw values, i.e. yo and d normalized by the half-channel height. The three
surfaces yield distinctly different equivalent roughness heights, with S1 yielding yo/h ≈ 1.0 × 10−3,
S2 yielding yo/h ≈ 8.0 × 10−3 and S3 yielding yo/h ≈ 3.7 × 10−2. The yo values for the same rough
surface do vary depending on the rough surface on the other side, but the variation is within the
expected uncertainty. The zero-plane displacement heights in table 3 are measured from the intended
channel surface, with a positive value denoting a zero displacement height above the intended channel
surface and a negative value denoting a zero-plane displacement height below the intended channel
surface. Compared with the roughness peak to trough heights, the zero-plane displacements are small,
suggesting that the virtual walls are approximately at the intended channel surfaces. This should be
a mere coincidence. We plot U/u𝜏 as a function of ( y − d)+ in figure 16. Four groups of profiles
emerge, which correspond to the profiles above S0, S1, S2 and S3, respectively. A rougher surface
incurs a larger drag penalty, producing a group of profiles further away from the smooth-wall law
of the wall. The profiles in each group collapse reasonably well, and they all exhibit a logarithmic
behaviour.

3.4. Roughness modelling

If we accept (1.1) as a working approximation of the mean flow in super-rough channels, a practical
engineering question is whether the existing models still work. Roughness modelling is a very old topic,
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Figure 15. Mean velocity near (a) surface S0, (b) surface S1, (c) surface S2 and (d) surface S3. The
black solid lines in (a) correspond to U+ = y+ and U+ = log( y+)/𝜅 + B. The vertical lines in (b–d)
indicate the peak locations of the surface roughness. The solid red lines correspond to the predictions
of the sheltering model in Yang et al. (2016). The dashed red lines correspond to the predictions of
the roughness correlation in Flack and Schultz (2010). Here, normalization is by the friction velocity
u𝜏 =

√
D/𝜌, where D is the drag force on the bottom/top wall.

and many models exist (Chung et al., 2021; Flack & Schultz, 2010). Comparing all the available models
for the roughness encountered in additively manufactured cooling channels is lengthy and falls out of
the scope of this work. Here, we compare two models, namely the algebraic model in Flack and Schultz
(2010) and the flow sheltering model in Yang et al. (2016). The model in Flack and Schultz (2010)
reads

ks = akrms (1 + sk)
b, (3.3)

where ks is the equivalent sandgrain roughness height and is directly related to the equivalent roughness
height yo as shown in (1.1), krms is the r.m.s. of the surface roughness, sk is the skewness of the surface
roughness and a, b are calibration coefficients. The model is intended for small engineering roughnesses
for which the zero-plane displacement height is small compared with the boundary-layer height. This
is not true for the roughness considered in this work, but since the virtual wall is approximately at the
intended wall, we take yd = yb/t, where yd is the y coordinate of the virtual wall. Also, for the roughness
considered here, sk ≈ 0, and (3.3) reduces to

ks ≈ akrms. (3.4)

Flack and Schultz (2010) calibrated their model against a range of engineering roughness and arrived
at a = 4.43 and b = 1.37.
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Figure 16. This figure shows the velocity profiles above all surfaces in all R4 cases. Each profile is cut-
off at dU/dy = 0. Each channel has two walls, which lead to two profiles for each channel configuration
and 12 profiles in total. We use the same colour for two profiles in the same channel configuration. For
example, the two profiles in Ch23-R4 are both in cyan. Each surface appears three times. For example,
surface S3 appears in Chan13, Chan23 and Chan30, leading to three profiles above surface S3. Surfaces
S0, S1, S2 and S3 are increasingly rough and lead to increasingly large roughness functions (downward
shift as compared with the smooth-wall logarithmic law). Hence, we see four groups of profiles with
profiles above surface S0 at the top and profiles above surface S3 at the bottom. In addition, we use
bold lines for the profiles above the roughness-occupied layer and thin lines for the profiles within the
roughness-occupied layer.

The sheltering model in Yang et al. (2016) is yet another roughness model. It begins by invoking the
following ansatz for the velocity profile in the boundary layer:

U = Uk exp
(
a

y − k
k

)
, for y < k,

U =
u𝜏

𝜅
log

(
y − d

y0

)
+

2𝛱
𝜅

𝒲( y/𝛿), for y > k,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.5)

where Uk is the velocity at the roughness crest, 𝒲( y/𝛿) is the wake function and 𝛱 is the wake
parameter (Coles, 1956). There are five unknowns in the profile, i.e. Uh, a, u𝜏 , d and y0. Four constraints
can be easily identified: firstly, the velocity must be continuous at y = h; secondly, the velocity must be
equal to the free-stream velocity at y = 𝛿; thirdly, the momentum flux 𝜌u2

𝜏 must equal the drag force
on the roughness; fourthly, d equals the height at which the effective drag acts (Jackson, 1981). The
fifth constraint is given by modelling the wake interactions among the surface roughness. The basic
idea is that a roughness element in the wake of another roughness element exerts less drag force on
the flow than a roughness element fully exposed to the incoming fluid. Figure 17(a) is a sketch of
the sheltering behind a leeward point. The sheltering downstream of all leeward points on a leeward
surface gives the sheltering behind a roughness element. For example, figure 17(b) shows the sheltering
behind a frustum. The volume of sheltering contracts in the wall-normal direction and expands in the
cross-flow direction. The expansion/contraction rate is 𝜃 = u𝜏/Uc, where Uc is a convective velocity
and is often taken to be the velocity at the roughness crest. Figure 17(d) shows the sheltering among
the roughness in figure 17(c), which is a cut from surface S3. The user must supply the sectional drag
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Figure 17. (a) A sketch of the sheltering behind a leeward point. (b) A sketch of the sheltering behind
a frustum. (c) A cut from S3. (d) Flow sheltering on the roughness in (c). The flow is from the −x to the
+x direction.

coefficient of an unsheltered roughness element, for which we use Cd = 0.7 (Coceal & Belcher, 2004;
Delany & Sorensen, 1953; Santiago, Coceal, Martilli, & Belcher, 2008). Further details of the model
can be found in Yang et al. (2016) and are not presented here for brevity. It is worth noting that Yang
et al. (2016) neglected the dispersive stress and assumed horizontal homogeneity above the surface
roughness, and therefore it is not clear if the sheltering model in Yang et al. (2016) still applies to the
roughness in an additively manufactured super-channel.

Figure 15 compares the two models with the DNS data. The algebraic model over-predicts the
equivalent roughness height for S1, accurately predicts of the equivalent roughness height for S2 and
under-predicts for S3. The sheltering model, on the other hand, is quite robust.

4. Conclusions

Additively manufactured cooling channels are super-rough with the roughness’ trough to peak height
comparable to the half-channel height. Large roughness on the channel’s top and bottom surfaces give
rise to thick roughness sublayers that overlap. Flow in such super-rough channels is directly influenced by
the roughness on both surfaces and therefore lacks streamwise/spanwise homogeneity anywhere in the
channel. A direct consequence is that measurements at one streamwise/spanwise location, e.g. hot-wire
measurements at one streamwise/spanwise location, give only poor approximations of the double-
averaged velocity – a consideration that received little attention in the recent research on additively
manufactured cooling channels. Streamwise or spanwise averaging, which is available from PIV, is
needed to gain an accurate estimate of the double-averaged velocity, and analysis shows that spanwise
averaging is very effective. For the roughness considered here, spanwise filtration at the length scale 5h
gives good approximation of the double-averaged profile.

Because the roughness sublayers are thick, if one follows the conventional rough-wall boundary-layer
theory to its logical conclusion, one must conclude that the logarithmic layer cannot survive and that the
velocity on the one side of the channel depends on the rough surface on the other side. This, however,
is not what we see in the data. The results show that the logarithmic law of the wall is a good working
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approximation of the double-averaged velocity almost immediately above the roughness’ crest. Although
it is not clear why the double-averaged flow is logarithmic in the roughness sublayer, it is undoubtedly
convenient. From a practical engineering perspective, we can parameterize the additively manufactured
surface roughness in these super-rough channels in a similar fashion to small engineering roughness.
Comparing all existing roughness models for additively manufactured roughness would be very lengthy,
so here we compared two models, i.e. the algebraic roughness function in Flack and Schultz (2010) and
the sheltering roughness model in Yang et al. (2016). Both models rely on the existence of a logarithmic
layer. According to the classic turbulence theory, a logarithmic layer emerges at a wall-normal distance
y such that y � k and y 	 𝛿. In a super-rough channel, the roughness height k is comparable to the
half-channel height 𝛿, and therefore a logarithmic layer in its conventional sense cannot exist. Hence,
there is, in principle, no reason why the conventional models should still work, and this can help to
explain why the model in Flack and Schultz (2010) does not do very well. Nonetheless, we show that
the sheltering model is robustly accurate – although further investigation is needed to understand if this
is just fortuitous.

Flow in additively manufactured super-rough channels is a new flow problem. We take a practical
perspective on this flow problem and answer a few relevant engineering questions. These include how
to get the double-averaged velocity profiles, what the double-averaged velocity looks like and whether
the existing roughness models still work. Future work will take a more fundamental perspective, and we
will try to answer the question of why the logarithmic layer co-exists with the roughness sublayer.
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