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BY STATE VARIABLE TRANSFORMATIONS

R. B. LEIPNIK

(Received March 1989; revised November 1989)

Abstract

Linear dynamical systems of the Rayleigh form Mq + Cq + Kq = / are trans-
formed by linear state variable transformations w = Aq + Bq , where A and B
are chosen to simplify analysis and reduce computing time. In particular, A is es-
sentially a square root of M , and B is a Lyapunov quotient of C by A . Neither
K nor C is required to be symmetric, nor is C small. The resulting state-space
systems are analysed by factorisation of the evolution matrices into reducible fac-
tors. Eigenvectors and eigenvalues are determined by these factors. Conditions
for further simplification are derived in terms of Kronecker determinants. These
results are compared with classical reductions of Rayleigh, Duncan, and Caughey,
which are reviewed at the outset.

1. Introduction

Lagrangian systems with finite degrees of freedom are important in astron-
omy, particle mechanics, and lumped system electromagnetism. When non-
linear, they are usually treated by perturbations about steady or periodic
states, although a few systems have been completely integrable (Hamel [8],
Lax [10]). The resulting perturbation equations are generally second-order
linear systems of the damped Rayleigh type although sometimes they are
quadratic systems, which can display limit cycles or chaos in some parameter
regions. When the linear systems are of low order or the dissipation terms
are relatively small, the computational problems are manageable. However,
high-order systems with large dissipation are computationally difficult, al-
though the theory is well enough understood. Rayleigh systems also appear
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208 R. B. Leipnik [2]

in finite-element approximations to dynamical continuum problems, except
that the number of degrees of freedom varies with the number and type of
"elements" chosen.

A Rayleigh system is characterised by three matrices M, C, and K, which
may be time-dependent. The mass matrix M is symmetric and positive def-
inite. The Rayleigh matrix C = C, + C2 and Hooke matrix K = Kx+ K2

where Cx, AT, are symmetric (or Hermitian in electromagnetic problems)
and C2, K2 are anti-symmetric (or anti-Hermitian). C, represents dissi-
pation, C2 represents gyroscopic or magnetic forces, AT, represents conser-
vative restoring forces, and K2 represents non-conservative restoring (circu-
latory) forces. Most treatments of dissipation in high order systems assume
that C, is small and that C2 = K2 = 0.

A concise review of the material can be found in Frank and von Mises
[6], especially in II, Section 2 (eqns (1)-(12)) and III, Section 3 (eqns (1)-
(4)). Matrix-oriented results are available in Gantmacher [7] and Piccinini
et al [12]. Lyapunov observed (see [7]) that if the matrices M, C, K are
periodic with the same period, then a state variable transformation can be
defined so that the transformed system has constant matrices. For simplicity,
the assumption of constant (or piecewise constant) matrices is maintained
henceforth.

Lagrangian systems can often be simplified by conversion to Hamiltonian
form and transformation of the Hamiltonian variables by a contact trans-
formation (Hamel [8]). This has not been effective for general dissipative
systems, though there are interesting exceptions (Toda [15]). Rayleigh [13]
and Caughey [4] found that solutions of Rayleigh systems could be expressed
in terms of solutions of non-dissipative systems under special assumptions
on C, , in terms of M and K{. This procedure is here called reduction.

Duncan [5] and Brandon [3] adjoined Mq — Mq = 0 or Kq - Kq = 0
to the special Rayleigh system Mq + Cxq + Kxq = / to obtain a symmetric
first-order system in the state vector [q, q], which is equivalent to a non-
dissipative system. No special assumption on Cl is required, but C2 =
K2 = 0 in their approach.

In the analysis of large flexible systems subject to possible gyroscopic or
circulatory forces, none of the methods described above is quite appropri-
ate. The possibility of simplification of a general Rayleigh system by a state
variable transformation is suggested by the successful use in mechanics of
action-angle variables and the use in quantum mechanics and electromag-
netism of complex combinations of position and momentum. These simple
devices reduce apparently intractable systems into rather accessible forms.

Many choices will appear for the desired transformation, which have sim-
ilar physical meaning but are sharply different from the viewpoint of com-
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[3] Reduction of second order linear dynamical systems 209

putational efficiency. Some involve pairs of matrix inversions, and oth-
ers involve solutions of auxiliary equations of the Lyapunov type, such as
AB + BAT = C , where AAT = M. Matrix factorisations appear at several
stages of the development, both for theoretical and computational reasons.
The resulting compromises are not explored in depth in the present paper, as
they certainly require numerical experiments.

2. Classical results

The general Rayleigh system is written

Mq + Cq + Kq = f (2.1)

where C = Cy + C2, K = Kr+K2 as in Section 1. Dots indicate derivatives,
as usual. Rayleigh [13] noted that the "proportional damping" hypothesis

C, = aM + pKx, C2 = K2 = 0 (2.2)

permits reduction of the system (2.1) to a single generalised eigenproblem
(Kl — uM)y = 0. The condition (2.2) was relaxed to a semi-commutation or
intertwining condition

A = C1M~lKl-KlM~iCl = 0, C2 = K2 = 0 (2.3)

by Caughey [4]. From the perspective of this paper, (2.3) is better written in
the equivalent form

(7C, YT)(YKi YT) = (YKl Y
T){YCX YT) (2.4)

where Y — A~l and AAT = M. Since C,, Ki are symmetric, they have
complete eigensystems and so YCX Y

T and YKl Y
T have a common set of

eigenvectors. Thus (K{ - 8M)y = 0 and (C, - qM)y = 0 have common
eigenvectors, used in solving (2.1). Clearly

A = (aM + 0Kl)M~lKl - KlM~l(aM + 0KJ = 0,

when (2.2) holds, so that (2.3) or (2.4) is valid.
If the special Rayleigh system Mq + C{q + K{q = f is augmented by

Mq - Mq = 0, as suggested by Duncan [5], then the first order system

results. Note that both matrices which appear in (2.5) are symmetric, so that
the associated generalised irregular eigenproblem

-M
o j t j -l[u c J ) " = 0 <2-6>
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is of familiar type. When the matrices M, C, , Kx are large and sparse the
computational status of the related regular eigenproblem

-M 0(\

U
can be assessed by many methods (Stewart [14]). Note that the regular form
involves M, -M - e • XI, and the matrix pencil K{ - XCX .

The alternative augmentation by -AT,q + Kxq = 0, due to Brandon [3]
yields

and an associated symmetric eigenproblem

S ] ) "
This at least is regular, and involves the matrix pencil Cx —kM and the matrix
Kx, which may be preferable to the pairing M and AT,-AC, of Duncan. The
method suggested below uses ideas drawn from control theory, the Caughey
method, the Brandon method, and known state variable transformations of
mechanics.

3. Some state variable transforms

In classical dynamics, quadratic Hamiltonians of the diagonalised form
H = jJ2k(Qk + 0*) a r e transformed by the action-angle variables tan dk =
qk/qk , q\ + q^ = <okJk , where Jk = 0 and 6k = iok are the transformed
equations. Alternatively, the complex quantities

cok = qk + iqk, co*k = qk-iqk (3.1)

can be used as state variables, yielding H = j ^2k co*kcok . Similarly, in quan-
tum mechanics (Landau [9]), if

H(q,q) = (qTMq + qTKq)/2 (3.2)

the choice
w = Pq + iQq, w* = Pq - iQq (3.3)

leads to the expression

H = (wT)'w/2 = (qTPTPq + qTQTQq)/2 (3.4)

with corresponding simplifications of the quantum "equations of motion" in
the Heisenberg representation. Thus

PTP = M, QJQ = K (3.5)
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[5] Reduction of second order linear dynamical systems 211

Here the vectors q, q are formally infinite.
Now, in the Rayleigh system

Cq + Kq = f (3.6)

consider the linear state transformation

w = A3q + B3q (3.7)

and a corresponding equation of motion

A4w + BAw + Fq = f. (3.8)

The use of five conditioning matrices A3, B3, A4, B4, F in formulating
the state-space equations simultaneously generalises the devices of Rayleigh,
Hamel, Duncan, Caughey and Brandon in mechanics, Lyapunov in stabil-
ity and control theory, and Landau in quantum mechanics. This innovation
provides maximum flexibility in choosing the state space, while keeping the
resulting calculations well within existing theoretical and computational re-
sources. Once this expanded approach is adopted, many new results are ob-
tained with moderate effort. Since A4(A3q + B3q)' + B4{A3q + B3q) + Fq = f
from (3.7) and (3.8), comparison with (3.6) yields

A4A3 = M, AAB3 + B4A3 = C, B4B3 + F = K (3.9)

Note the similarity with (3.5), when C = F = 0.
The set (3.9) of three bilinear matrix equations for the five state-space

conditioning matrices has several unique characteristics. Firstly, it allows
for two effectively arbitrary conditioning matrices to be chosen, potentially
off-setting difficulties due to failures of the Rayleigh or Caughey conditions
to hold between the mechanical (or electrical) system matrices M, C, K.
Secondly, the equation A4A3+B4A3 = C which is key to the above system, is
a wide generalisation of the Lyapunov condition (for constructing a Lyapunov
function to test for stability of a linear system). The extensive material in the
Russian and other literatures on the Lyapunov equation, and on the related
Sylvester equation, permits efficient exploitation of the new approach.

Solving (3.9) first for A4 and A3, then for B4 and B3, and last for F ,
there are effectively two equations in four matrix unknowns. Each solution
produces a different state space, and has a different effect on computing. This
underscores the artificiality of state space representations, but does not spoil
their usefulness.

The first problem is solving A4A3 = M. Five solutions suggest themselves.
The first choice is

A4 = A3 = A = M1/2 (3.10)
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where M1^2 is the unique positive definite symmetric square root of M.
More generally, A4 = aM , A3 = a~ M may have advantages, where
the scalar a is suitably chosen.

The second choice (or set of choices) is

A4 = LD4, A} = D3L
T (3.11)

where L is a lower triangular matrix with / 's on the diagonal, D4 and D3

are diagonal,
A4A3 = LDLT =M, D = D4D3

is the (Gauss) triangular factorisation of M, called the LDU decompo-
sition. Three subchoices for D4 and D3, and several detailed algorithms
are available. The first subchoice is to take D4 = I and to put the piv-
ots (p, , p2,...) in D3 . The second subchoice is to take D3 = I and
to put the pivots in D4. The third subchoice, due to Cholesky, is to put
D3 = D4 = diag(/?,1/2, p\12,...), so that A3 = Aj. Since M is positive def-
inite, D3 — D4 is well-defined in spite of the square roots. Evidence exists
that the Cholesky variant is more stable numerically, when the mass matrix
M has a mixture of small and large entries, than the other two variants and
is only slightly slower.

The third choice is

A4 = A = Ul}'2, A3 = AT = i}'2Ur (3.12)

where U is orthogonal and Z is the diagonal matrix of the eigenvalues of
A AT = M. Both (3.10) and (3.12) can be determined from the eigenvalues
and eigenvectors of M.

Thus A4A3 = M = VL , a formula known as the singular value decom-
position, where Z1/2 is the singular value matrix.

The fourth choice is

A4=VSl, A3 = S2V
T (3.13)

where M = VSXS2V
T = VRVT, V is orthogonal and SlS2 = R is upper

quasi-triangular (that is, upper triangular except for possible 2 x 2 blocks
along the diagonal). Generally, Sl and S2 satisfying S{S2 = R can be
found which are also upper quasi-triangular, besides the trivial choice 5, =
I,S2 = R.

The fifth choice, rather like the fourth choice, is

A4 = WHX, A3=H2W
T (3.14)

where M = WHXH2W
T = WJWT, W is orthogonal and HXH2 = J is up-

per Hessenberg (upper triangular plus one diagonal below the main diagonal).
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[7] Reduction of second order linear dynamical systems 213

Generally, // , and H2 satisfying HXH2 = J can be found so that Hx is
upper quasi-triangular and H2 is also upper Hessenberg. This construction
oddly enough is much faster computationally than the preceding one. Note
that in each of the first three choices A3 = Aj , adding to the symmetry of the
solution. However, the unsymmetrical factorisations involved in the fourth
and fifth choices may reduce the number of flops (combined multiplication
and addition steps) required, not only in the first equation but also in the
second equations discussed below.

The second problem is to solve A4Ay+B4A3 = C, where A3 and A4 have
been determined to solve A4A3 — M, for example by any of the five choices
of A3 and A4 outlined above.

Note that A4 and —A3 will have no eigenvalues in common, since M =
A4A3 is symmetric positive definite and so has all positive eigenvalues. This
is important to solve the second equation for the choice B3 = B4 = B,
since the linear mapping L'(B) = A4B + BA3 is nonsingular under the above
eigenvalue condition on A4 and —A3 .

The most direct approach to the second problem is through the pair of
equations

A4B3 = CX, B4A3 = C2 (3.15)

where C{, C2 are parts of C . Clearly, this will satisfy the second equation.
The solution is

B3 = A~XCX, B4 = C2A~l (3.16)

and F = K - B4B3 = K - C2A~lA~lCl = K - C2M~iCl. Thus F is
independent of the various choices of A3 and A4 when this route is chosen.
Also, F = K if C, = 0 or C2 = 0, which explains why these cases do
simplify the reduction process. Some numerical evidence indicates that a
less direct method is more efficient.

Before discussing the Lyapunov-type choice B3 = B4 = B, it will be help-
ful to examine the new state space equations in the first order evolutionary
form

This vector equation is the desired general state-space form of the original
Rayleigh equation and all further developments here center on elucidation of
(3.17).

The analysis of (3.17) simplifies when the (2n) x {In) evolution matrix

G ' \ - l K~s*'"'} (3l8)
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is factored into reducible matrices. More generally, consider

LEMMA 1.

G-XI -

where

in \ [ - i n o j [ o /„

KX=K- X(B3 + B4) + X2In (3.20)

PROOF. Multiplication of the last two partitioned matrices yields
0 h

Further multiplication leads to

B4-XIn K,-{B3-XIn){B4-XIn)
~K Bi - XIn

_ f B4 K~ B3B4 ] _ iy -Q-Xl
~\~ln B3 J 2"~ 2

LEMMA 2.

PROOF. Since the factors in Lemma 1 are all reducible with at least one n
by n block of zeros, det(<7 - XI2n) = d e t ^ ) • 1.

THEOREM 1. The evolution matrix G of system (3.19) has the following
properties (i) The eigenvalues of G are the zeros of det(Kx). (ii) The right
eigenvectors of G are determined by the eigenvectors of B3 and the right null
vectors of Kx, as shown below, (iii) The left eigenvectors of G are determined
by BA and the left null vectors of Kx, as shown below.

PROOF, (i) is settled by Lemma 2. As for (ii), if v is a column vector
[",2,1 , then by Lemma 1,

, XI -BA f v(2)

Hence v is a right eigenvector if one of four possibilities occurs:
(a) v{2) = 0 and (B3 - XIn)v

{2) - v{i) = 0, that is v{1) = 0 which is a
trivial case; or,

(b) v{2) = 0 and v{1) ± 0 , while on multiplying, (XIn - B4)v
{i) =

0, andu( I ) = 0, a contradiction; or

https://doi.org/10.1017/S0334270000008432 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008432


[9] Reduction of second order linear dynamical systems 215

(c) v{2) ± 0 and (B3 - XIn)v
{2) - v(l) = v{3) = 0, Kxv

{2) = 0, so v{2) is a
right null vector of Kk and v{l) = (B3 - XIn)v

{2);

(d) v{2) ^ 0, v(3) ? 0, while on multiplying out Kxv
{2) + {XIn - B4)v

{3) = 0
and D(3) = 0, another contradiction.

As for (iii), suppose that [w(1), u/2)](G - H2n) = 0, so by Lemma 1,

= [wW{B4 - XIn) - w{2), w{i)(K - B4B3) + w(2){B3 - XIn)] = [0,0]

Hence to is a left eigenvector whenever

w{2) =w(l)(B4-XIn) and w{2)(B3 - XIH) = w{l)(B4B3 - K),

that is, whenever

w(x\{B4 - XIn){B3 - XIn) + K- B4B3] = w{1)Kx = 0.

That means tu(I) is a left null vector of Kx and io(2) is determined by u>(1)

and B4. This is another way of looking at det Kx = 0. Note that if

3 + B4) = (Bi + BA)K (3.23)

where K and Bi + B4 are assumed to have complete sets of eigenvectors,
then the left eigenvectors of G are determined by K, by reasoning around
(2.4).

THEOREM 2. If N is an intertwining operator for K and (Bi + B4), then K
and N primarily determine Kx.

PROOF. The intertwining property

KN(B3 + B4) = (B3 + B4)NK (3.24)

can be exploited as follows. Let N = VLV* where U and V are unitary
and Z is diagonal (SV decomposition). Now let

K = ?}l2V*KUl}12, BS = B3 + B4, Bs=j}l2V\B3 + B4)Ul}12, etc.

Then

KBS = Zl/2V'KUli/2'L1/2Vt{B3 + B4)Ul}'2

= Ll/2V*KN{B3 + B4)U!1/2

= B5K.
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Thus if B5 and K have simple eigenvalues {yy}, {K.} (which we assume)

and Kxj = KjX., then BsXj = v .x. and so

j j

= KJXJ - XyjXj + l1/2V*X2Uli/2Xj

= (E - XT + A2T)Xj (3.25)

where E = diag(/cy), T = diagty), and I = l}'2V*Uj}'2. If X is the

eigenvector matrix [x, |x2 | . . . ] then {Kk - X2I)A = X{E - XT)X~l and so

Kx = X2I + VZ~i/2X(E - XT)X~{1TII2U\

In this formula, U, V, Z are determined by iV, while X and E are deter-
mined by K , and

determines F .
If Ax B denotes the Kronecker product of any two matrices A and B,

then (3.24) has a nontrivial solution N if and only if

det[# x (B3 + BA)T - (B3 + B4) xKT] = 0 (3.28)

as follows from writing N as a vector and (3.24) as a vector equation. The
above "Kronecker difference" determinant is relatively simple, and can be
evaluated in n2 steps by the conjugate gradient method, but is not discussed
further here. Condition (3.28) is the generalised substitute for the Caughey
condition (2.3) - which in the present language says that M~l is an inter-
twining operator for K{ and Cx. Since it is a single scalar condition, it is
more easily satisfied than the n(n + l) /2 scalar conditions of Caughey.

4. Lyapunov-type transformations

Another type of solution to the second equation of (3.9) is provided by
the choice B3 = B4 = B, resulting in the equation

AAB + BA3 = C (4.1)

Strictly (4.1) is a Lyapunov equation only when A3 = A4 , but the solution
methods are similar. The condition for (4.1) to have a solution for any C is
that

det(A4 e A3) = det(A4 xI + IxA3)^0 (4.2)

where © denotes Kronecker sum. Now (4.2) holds if and only if A4 and
—A3 have no eigenvalues in common. Since A4A3 = M is positive definite,
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[11] Reduction of second order linear dynamical systems 217

the real parts of the eigenvalues of A3 and A4 all have the same sign, which
can be taken as positive, so that condition (4.2) is assured.

The construction of the solution of (4.1) can be accomplished in four
quite different ways. The most elegant is Bellman's integral solution. There
is also a formal infinite series, which can be condensed via characteristic
equations to a finite expression. These three solutions have theoretical ad-
vantages, but unless A4 and A3 are in some way special, are not rapidly
calculable. Finally, methods based on Gaussian (triangular, Schur, or Hes-
senberg) reduction algorithms are computationally efficient but theoretically
opaque. These methods interact with five types of choices made for A3 and
A4 to a significant extent, as far as the number of required work steps of
combined addition and multiplication are concerned.

Bellman's solution [2] is

J°° - ^ 3 0 dt (4.3)

where C = Cy + C2, C{ is symmetric, C2 is anti-symmetric, and t has
physical dimension (mass)1/2. If A3 = Aj , as in the first three choices of
A3, A4 made in Section 3, then B[ = Bx and Bj = -B2 .

Also if A4 is triangular (lower or upper), then exp(—A4t) is also triangular,
and similarly for A^ and exp(—A^t), since powers of triangular matrices are
triangular. Thus if C = C, + C2 has a triangular (LDU) decomposition,
C = LC0U, then each matrix exp(-y44<)Cexp(-,43*) has a known LDU
decomposition.

With the first choice Ay = A4 = M1^2, an explicit formula for B is
possible. Let p}., j = 1, . . . , n be the orthonormal eigenvectors of M, and
nijj be the corresponding eigenvalues, so that

,,1/2

and
exp(-V/2/) = £ expi-m^DPjpJ. (4.5)

If

yjk = p]cPk'
 c = H yjkPjPk (4-6)

is the orthogonal decomposition of C into the dyads p,pj generated by M,
then insertion of (4.5) and (4.6) into (4.3) yields

B = E v X ' *jk = y^H+™ii2rl (4.7)
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218 R. B. Leipnik [12]

upon term-by-term integration of (4.3).
The formal series for B mentioned above is

B = JT(-A4)
mCA;{m+l). (4.8)

m=0

Then A4B + BA3 = C + A4CA~X - A4CA\~X + • • • = C. The dual series
B = Y^=oA~{m+x)C{-Ay)

m also satisfies (4.1) formally. As for conver-
gence, if || || denotes a matrix norm, then (4.8) converges if H^C^J"1!! <
1. But that is implied by | |C | | (P4 | | |Mj' | | )m < 1 for all m sufficiently
large, and hence by the inequality p — \\A4\\ \\A3

X\\ < 1. The choice
A4 = aMxl1, A3 = a~lMx/2 yields p = | a | 2 | |V / 2 | | ||M~ 1/2|| = |a|2n(Af1/2),
where n(D) = \\D\\ ||Z>~'|| is the condition number of a matrix D. Hence
|a| < (n(Mxl2))~xl2 will guarantee convergence of (4.8).

Infinite series can be avoided by using the Hamilton-Cayley equations of
A3 and A4 to condense (4.8) into a finite expression. This is primarily of
theoretical interest, (Leipnik [11]), as it, like Bellman's formula is rather slow,
compared to the methods of Bartels [1] or Van Loan [17] based on matrix
factorization.

Briefly, the idea of Bartels is to use the Schur decompositions

UJA4 U4 = R4 and UJA] U3 = R3 (4.9)
where R4 and i?3 are upper or lower quasi-triangular and C/3, U4 are or-
thogonal. Of course, if A3 and A4 have been chosen to be upper and lower
triangular (as in (3.11)), or essentially unitary (as in (3.12)) or products of
unitary and triangular (or unitary and Hessenberg) matrices, this task is eased.

The resulting equation based on (4.1) and (4.9) is

R4Y+YR^ = Z (4.10)

where Y = UJBU3 and Z = uJCU3. The columns of Y are expressible
in terms of columns of higher index to produce an upper quasi-triangular
system, requiring 10n3 flops for i?4 , another 10n3 flops for RJ (if they are
not simply related), and 5« flops for the solution of (4.10). Also 2n2(+2n2)+
n storage locations are needed.

Van Loan's improvement is to relax one of the two reductions to be upper
Hessenberg instead of upper quasi-triangular. Suppose then that R4 is upper
Hessenberg. This step now requires (Golubetal [17]) only 5«3/3 operations,
using symmetric projections (Householder reflections). The equation (4.10)
now requires 7.5n flops, and storage locations totaling 6« . Hence about
19«3 flops are required, a 25% reduction in work, with a 20% increase in
storage (which is comparatively minor).
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[13] Reduction of second order linear dynamical systems 219

A research project covering the combined computational effectiveness of
the 15 proposed different methods (5 for the determination of the A's and 3
for the determination of B) as applied to a set of typical Rayleigh problems
with variable (but high) dissipations and/or nonzero gyroscopic forces (C2 /
0) and/or circulatory forces (K2 / 0) , is awaiting funding. As mentioned
in the introduction, the usual treatments of high order systems are restricted
to small dissipations, without gyroscopic or circulatory (lift) contributions.
The credible removal of these restrictions, unrealistic for modern spacecraft,
will require considerable effort.

Supposing that (4.1) has been solved somehow for B, the state space
equations are now

" (4.11)

, _ . B K-B2] .
where ( 5 = 1 and

- / B J

B-kl K-B2

-I B-kl.
i r _ o i r n T~\ r T ii _ m

(4.12)
K-2XB + X2! M-B] \ 0 I]\I XI - B

0 / J [-1 0 | | 0 /
Here k has physical dimension (mass ) ^ 2 /time.

As in (3.20)-(3.28), and Lemmas 1, 2 and Theorem 1 of Section 3, the
eigenvalues and eigenvectors of G are controlled by B and the null vectors
of Kk . If BK = KB or more generally BNK = KNB for some N, then the
eigenbehavior of G is controlled by K and TV, as in Theorem 2 of Section
3. These results are also new, reducing to Caughey's when C and K are
symmetric and M~l is an intertwining operator for them.

The simplification of (4.11) or its generalisation (3.17) is more complete
if G and [(Aj, 0 ) T , (0, A^)T] commute or, more generally, if there is a
(partitioned) nonzero 2n x 2« intertwining operator such that

' A 4 O l f S T ] \ B 4 F ] _ \ B 4 F ] \ S T ] \ A 4 0
0 A 3 \ [ U V \ [ - I B 3 \ [ - 1 B 3 \ [ U V \ [ O A 3

where F = K- B4B3. The formal proof of this result resembles that of The-
orem 2, but is rather longer. Then some associated operators will commute,
as detailed in (3.24)-(3.28) in the n x n case.

After writing out (4.13) as four linear matrix equations in S, T, U, V ,
rescaling all quantities to dimensionless form, and converting the equations
to vector equations in the coefficients of 5 , T, U, V via Kronecker prod-
ucts, the condition for nontrivial solutions becomes the rather cumbersome
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equation

det
hi

'12
J22

"13

0 a
0 a

24

0 a

- B4x

33

43 a44 J

= 0 (4.14)

n
= -A4 x I, a

x3
- B4 x

n 4 x3 = -F x
j , a24 = -F x A], a3l = I x j 3 3

j , a43 = A3xFT , and a44 = A3x

a2l =
a33 =

where an = A4 x Bj
A4 x FT, a22 = A4 x
A3xBj-B3XAJ , a34 = -A3xl, a42 =

Bj - B3 x AJ . The columns are obtained from the entries of S, T, U, V,
and the rows are obtained from the equations for the four blocks, in the order
(1, 1), (1, 2), (2, 1), (2, 2), which seems to be most convenient. Again the for-
mal proof is tedious but direct. As usual, this determinant can be calculated
by a Gauss triangularisation or conjugate gradient method. Equation (4.14)
is another generalisation and weakening of the Caughey condition (2.3). Of
course it simplifies when B3 = B4 = B or A4 = A3 = M ^2. An attractive
feature is that if M or C contain adjustable parameters, then these may be
chosen to satisfy (4.14) and hence increase the degree of reduction.

5. System reduction

The original system has been rewritten as

'A4 ° l M ' + [ 5 4 K-B4E
0 A3\ [q\ +[-Il 5 - 3 j [q

and the eigenstructure revealed, where A4A3 = M and A4B3 + A3B4 = C.
It remains to study the solution for given / . Now when C — 0, take
B3 = B4 = 0 and consider the related system

0
0

A.
0 K

-I 0
(5.1)

•3J L<?0

Here w0 — A3gQ - g0 is a conventional momentum-type variable attached to
the non-dissipative equation

Mq0 + Kq0 = f0 + A4g0 (5.2)

whose solution is supposed known. If now f0 is taken to be f - f, where
/ is to be chosen later, the result of subtracting (5.1) from (3.17) is

4

0
where

0
A,

4 0 4

-go-B3go

w = w - w,0 ' (5.4)
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All the simplifications proposed in Sections 3 and 4 for the left side of
the system (5.3) are available, and will not be recapitulated. For the right
side, two further alternative simplifications suggest themselves. The first is
to choose

so that the non-dissipative equation (5.2) has the same driving function as
did the original Rayleigh equation. This results in the driving function

for the perturbation equation (5.3).
The second choice is to take [f -B4w0 + 5453#0, -go-B3qQ]T orthogonal

to some of the solutions of

A* O1KO1 [0 * l K o l = o (56)

The orthogonality would be relative to the inner product

([<£,, V , ] T , [<t>2, V2]
T) =[[</>], vJ\{G + GT)[<g, y/J]T dt (5.7)

where a, b are two "times" natural to the problem, such as times at which
wQ and q0 are known.

This results in a differential equation with integral constraints, effectively
a "Green's method", which needs further investigation. In either case, q =
qo + q and w = wo + w , where q0, wQ are related to a non-dissipative prob-
lem and q, w are determined by a simplified problem, driven by "known"
functions. This simplified problem may be determined itself by a non-
dissipative or partly decoupled dissipative problem if a commutation or de-
terminantal condition holds, as seen in Sections 3 and 4.
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