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INTRODUCTION 

The transformation of radiocarbon years to calendar years (cal AD/BC) is not straightforward 
because of past variations in atmospheric 14C content (de Vries 1958; Suess 1970). A calibration 
curve, y = f(x), transforms each dendrochronologically dated calendar age (x) to a 14C date (y). By 
inverting this relationship, one can determine the calibrated calendar age of a given sample. In 
some time intervals, the calibration curve is problematic in that f(x) is not uniquely invertible (Fig. 
1); even an exact measurement of y cannot be converted to a single calendar age (see examples 
in van der Plicht & Mook (1987)). 

The most widely distributed calibration programs are those of Seattle (Stuiver & Reimer 1986) and 
Groningen (van der Plicht & Mook 1989). Calibration procedures in both programs are essentially 
the same (Aitchison et al. 1989). Questions have been raised about the validity of mathematical 
procedures underlying the calibrations. Here we discuss problems in the statistical theory to derive 
correct expressions of the error limits of a calibrated 14C date. 

An important purpose of statistical estimation theory is to provide error limits for estimates given. 
A 14C age, the result of repeated measurements, can be assigned a sample standard deviation, a, 
centered around the arithmetic mean. The key question is how one should transform these error 
limits in the calibration process. The computer program developed in Groningen (van der Plicht 
& Mook 1989) uses the error function 

(1) 

where y is the true 14C date, y is the measurement outcome (the mean value), 6 is the standard 
deviation. The error curve for the 14C age is transformed to an error curve for the calibrated age 
by e(x) = c(f(x)). This procedure differs from "classical probability" density transformations 
according to c *(x) = I dy/dx I 

e f (x). 

Figure 2 illustrates problematic consequences of obtaining probability densities under a monotone 
transformation y = f x). Here, consider a piecewise monotone function, with a change in slope at 

y (the outcome of the measurement), as transformation function. Figure 2A shows the result of 
transforming y ± Q along the x-axis, using the Groningen program. Figure 2B shows the result of 
the classical transformation. The area under the Gaussian curve is symmetric with respect to the 
measurement outcome y. For the calibrated distribution, this is also true for the example shown in 
Figure 2B, whereas this is not true for the example shown in Figure 2A. Although the two resulting 
distributions are different, one should not conclude that the program is wrong. This is illustrated 
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Fig, 1. Example of the 14C calibration procedure: 
Transformation of a 14C date into a calibrated 
calendar age probability distribution. The graph 
shows the calibration curve, y = f (x), the Gaus- 
sian probability distribution corresponding to the 
14C age along the y-axis, and the calibrated calen- 
dar age probability distribution along the x-axis. 
The confidence limit, ca, is defined in the text. 

X 

in Figure 3, where the transformation function has a horizontal stretch. Figure 3A shows the 
Groningen result, Figure 3B, the classical result. The latter is counterintuitive; why should the cali- 
brated interval corresponding to the horizontal part of the curve have a near-zero probability, 
whereas the measurement agrees perfectly with any age in this interval? We aim to resolve this 
ambiguity by offering a clear interpretation of the error curve being transformed, and shall do this 
within both classical statistical and Bayesian frameworks. 

Fig. 2A,B. The calibration paradox (1): Two ways of obtaining a calibrated probability distribution, using an 
artificial calibration curve 

Bayesian methods and classical statistics differ in their approach to statistical inferences. 
Significance tests, point estimates and confidence limits are essential parts of classical inference, 
whereas Bayesian inference is expressed as a posterior probability distribution. The fundamental 
difference between these methods concerns the meaning of probability. The classical objective 
approach assigns a probability only for events in repeated experiments. In contrast, the Bayesian 
subjective approach interprets a probability distribution as a degree of belief, in which probabilities 
can be assigned in situations where the objective approach does not apply. 

A Bayesian approach, though subjective, has wider applicability. For instance, two archaeologists 
examining the same object might have different opinions about the probability that it dates from 
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Fig. 3A,B. The calibration paradox (2): Two ways of obtaining a calibrated probability distribution, using an artificial 
calibration curve 

a certain period. If there is no prior information, a common approach would be to assume a uni- 
form distribution. However, the uniform distribution is not invariant under coordinate transforma- 
tions, so that the choice of coordinate system is somewhat arbitrary. In our calibration example, 
the uniform distribution along the cal AD/BC axis is different from the uniform distribution along 
the yr BP axis. This leads to the Bayesian explanation of the aforementioned ambiguity. 

A STATISTICAL MODEL FOR 14C MEASUREMENTS 

A 14C age measurement is subject to random disturbances. We model this by assuming that the 
actual measurement, y, is the real value of a random variable with a distribution around the true, 
but unknown 14C age q. We employ the Gaussian error model, where y has a normal probability 
density with mean and variance Q2: 

1 plvlii) 
2no2 

(2) 

So far, we have viewed the density (Ii) as a function of y for a fixed i. Now, if y is the actual 
outcome of the measurement, we can study p(yrl) as a function of rl, given as the so-called 
likelihood function L. The maximum value of L is the widely used maximum likelihood estimate. 

In the Gaussian measurement error model, the likelihood is given by 

L(ii) ° P(vIi) = 
1 

e (3) 

2no2 

Note that because of symmetry regarding y and ri, the likelihood has exactly the same shape as the 
density. The Gaussian error curve, drawn along the yr BP axis around y, is the likelihood function. 

Using the calibration curve, we reparametrize the model in order to derive calibrated probabilities, 
relevant to archaeologists. If denotes the true calendar age, the 14C age is given by i= f(), and 
hence, the measured 14C age follows the density: 
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-- 
p *(y) = p (y I1 _ - e 

2a2 

If we take the calendar age as the model parameter, the likelihood is given by 

L «( ) = p *(y ) = p (y 
I 

= L (t t)) 

(4) 

(5) 

Thus, the likelihood function L(i) on the 14C age scale (y-axis) is transformed into the likelihood 
function L`() on the calendar age scale (x-axis). 

AN OBJECTIVE APPROACH: CONFIDENCE REGIONS 

A point estimate, of rl, is inadequate in statistical application, because it gives no information 
about the uncertainty involved. The objective approach expresses this uncertainty as a confidence 
region R. This function associates, to each outcome y, a set of parameters C(y) C R. We say that 
C is a (1- a) confidence region for vl, with 0 <a < 1, if 

P({ E C(Y)}) = 
J{yrnC(y)} 

p (y 
I ) dy = 1-a (6) 

for all r. This specifies that in a long series of measurements where the true parameter is r, the 
confidence regions C(y1), C(y2), ... obtained will contain rl in about 100(1- a)% of all cases. For 
example, for a normal distribution p(y Irl) with known variance o2, the (random) interval [y - a, y 
+ Q] is a 68% confidence region, because C(y) will cover the parameter rl if the observed value 
y has a distance less than or equal to a from rl. For any value rl of the parameter, the random 
confidence region, C(y), will cover 1- with probability (1 - a). From a classical viewpoint, the 
parameter 1 either lies in the confidence region Co or not, but we cannot determine which. Neither 
could a Bayesian approach compute the probability that rl E CO, because this depends essentially 
on the prior probability. 

One approach to obtain confidence limits, based on the likelihood principle, suggests confidence 
regions given by level sets C(y) = {rl : L, (y) s ca} of the likelihood function. The constant Ca must 
be chosen in such a way that C(y) is a (1 - a) confidence region. 

As observed, error curves drawn on the yr BP and cal AD/BC axes are likelihood functions for 
and rl, respectively. Thus, the 1 Q (2 Q) interval on the BP axis, along with the level set on the 
AD/BC axis, are likelihood-based confidence regions with confidence level 68 (95)%. Now the 
confidence region for covers the true age if and only if If() - y s Q (2 Q). But this has 
again a probability of 68 (95)%, since y follows a normal distribution with mean and variance a2. 

A BAYESIAN APPROACH 

The Bayesian calibration solution provides a basis for interpretation of the error curve (drawn in 
Figures 2 and 3) as a probability density on the age space. It requires specification of a prior 
probability density on the parameter space, representing parameter information prior to any 
measurement. Lindley (1965) and Naylor and Smith (1988) give a thorough treatment of the 
Bayesian approach. In our situation, either i or must be regarded as the fundamental parameter 
about which prior assumptions are made. For instance, an archaeologist might, on the basis of 
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previous samples from a single site, be convinced that this material is from a certain age period. 
This could be expressed by choosing an appropriate density, either rc(i) for i or t) for . 

Beginning with rc(ii), note that we have a conditional density p(yli), where i is now considered 
random. If y denotes the observation actually made, we can compute the density of r, given y, 
using a continuous analog of Bayes' theorem on inverse probabilities 

3t(11ly) = p(vln)n(n) 

JP(YIi)rt(i)di 
(7) 

n(ri Iy) is the posterior density, and it incorporates both our prior information and the measurement 
result. Alternatively, we can express our prior information with a prior density t'() on the 
calendar age. Then the posterior density is given by 

= p _ I f ())n*() 
( y) 

p U' If ( ))n*( ) d 
(S) 

A special "improper" case of this is the uniform prior distribution rr(i) =1(rc*() = 1) on the real 
line, also called the non-informative prior distribution. (Note that this is not a probability density, 
since f 1 di _ oo.) In this case, the posterior probability is formally given by the normalized 
likelihood function 

nOnly) = p(yIi) *(ly) = P(If()) 

f PU'Il)dl fPYIf())d 
(9) 

In this way, we justify the interpretation of the Gaussian error curve drawn in Figures 2 and 3 as 
a posterior density on 14C age space, corresponding to a non-informative prior on this space. 

As rt(i y) is a Bayesian density, it must be transformed according to the classical formula for 
densities 

(10) 

How can we now explain the examples discussed in Figures 2 and 3? As mentioned above, a 
Bayesian interpretation of the Gaussian error curve (the likelihood function) as a posterior density 
implicitly assumes a uniform prior distribution t(i) on the 14C age, and corresponds to a 
non-uniform prior distribution 

on the calendar age BC/AD. This accounts for the unusual transformations shown, e.g., in Figure 
3B, where the prior rt+() places no mass in the interval where f is constant. Of course, if we 
choose a prior distribution specifying that the probability of an observation in this range is zero, 
the posterior density will also place mass zero here. In this light, it seems unreasonable to express 
the lack of prior information on the age of the sample by a uniform prior distribution on the yr BP 
axis. However, a uniform prior distribution on the calendar axis would correspond to a non-uniform 
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prior distribution on yr BP, so that the Gaussian error curve on age BP is no longer the posterior 
density. But, the curve produced by the calibration programs, being the correct likelihood function, 
is then, with respect to normalization, the posterior distribution on calendar age, corresponding to 
the uniform prior on calendar age. 

We observe that both the Groningen and classical error curves are posterior densities, the first 
corresponding to a uniform distribution on cal AD/BC years, the latter to a uniform distribution on 
yr BP as prior densities. That the latter is an unreasonable prior distribution is evident from Figures 
2 and 3. 

CONCLUSION 

Calibration of radiocarbon dates involves the transformation of a measured 14C age (BP ± 6) into 
a calibrated age distribution (cal AD/BC range). Because of the wiggly nature of the calibration 
curve, the correct procedure to obtain calibrated age ranges and confidence intervals is not 
straightforward. Mathematical pitfalls can cause calibration procedures to contradict classical 
formulas. 

We show that these ambiguities can be understood in terms of classical and Bayesian approaches 
to statistical theory. The classical formulas correspond to a uniform prior distribution along the BP 

axis, the calibration procedure to a uniform prior distribution along the calendar axis. We argue 
that the latter is the correct choice, i.e., the computer programs used for radiocarbon calibration 
are correct. 
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