
Twin Research and Human Genetics
Volume 20 Number 4 pp. 290–297 C© The Author(s) 2017 doi:10.1017/thg.2017.28

CSOLNP: Numerical Optimization Engine for
Solving Non-linearly Constrained Problems
Mahsa Zahery,1 Hermine H. Maes,2 and Michael C. Neale2

1Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
2Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA

We introduce the optimizer CSOLNP, which is a C++ implementation of the R package RSOLNP (Ghalanos
& Theussl, 2012, Rsolnp: General non-linear optimization using augmented Lagrange multiplier method. R
package version, 1) alongside some improvements. CSOLNP solves non-linearly constrained optimization
problems using a Sequential Quadratic Programming (SQP) algorithm. CSOLNP, NPSOL (a very popular
implementation of SQP method in FORTRAN (Gill et al., 1986, User’s guide for NPSOL (version 4.0): A For-
tran package for nonlinear programming (No. SOL-86-2). Stanford, CA: Stanford University Systems Opti-
mization Laboratory), and SLSQP (another SQP implementation available as part of the NLOPT collection
(Johnson, 2014, The NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt))
are three optimizers available in OpenMx package. These optimizers are compared in terms of runtimes,
final objective values, andmemory consumption. AMonte Carlo analysis of the performance of the optimiz-
ers was performed on ordinal and continuous models with five variables and one or two factors. While the
relative difference between the objective values is less than 0.5%, CSOLNP is in general faster than NPSOL
and SLSQP for ordinal analysis. As for continuous data, none of the optimizers performs consistently faster
than the others. In terms of memory usage, we used Valgrind’s heap profiler tool, called Massif, on one-
factor threshold models. CSOLNP and NPSOL consume the same amount of memory, while SLSQP uses
71 MB more memory than the other two optimizers.

� Keywords: OpenMx, non-linear programming, sequential quadratic programming, RSOLNP, NPSOL,
SLSQP

In all structural equation modeling (SEM) techniques, al-
ternative models are designed to test a hypothesis of in-
terest. These models are fitted to data to find the best set
of parameters that minimizes the difference between mod-
els and data. To minimize the misfit between the models
and data, SEM needs optimization, which unfortunately is
not an exact science. Optimization problems have differ-
ent ‘landscapes’ to search, and the best search algorithm de-
pends somewhat on the features of the landscape. OpenMx
currently offers three optimizers, which differ in their abil-
ities to find the solution. A goal of this article is to help the
applied researcher select the right optimizer for the problem
at hand.We focus on full information maximum likelihood
(ML) of ordinal data because this is a complex problem that
is subject to local minima.

CSOLNP, short for C++-based optimizer for Solving
Nonlinear Programs, is one of the optimizers available in
the OpenMx package (Boker et al., 2011; Neale et al., 2016).
OpenMx is an open-source software package licensed un-
der Apache 2.0, which is widely used for SEM and other
statistical modeling. It runs inside R, and provides model

specification in both path style and matrix style, as well as
optimizers for handling non-linear equality and inequal-
ity constraints. NPSOL (short for Nonlinear Programming
at Systems Optimization Laboratory at Stanford; Gill et al.,
1986) was the only available optimizer in Mx or OpenMx
since the early 1990s. Recently, SLSQP (short for Sequential
Least-Squares Quadratic Programming) from NLOPT col-
lection (Johnson, 2014) has been added to OpenMx. Here,
we compare CSOLNP to NPSOL and SLSQP within the
OpenMx package. Similar to NPSOL and SLSQP, CSOLNP
solves non-linear problems by applying the SQP method
to a linearly constrained Augmented Lagrangian objec-
tive function. While optimizers use similar algorithms,

received 7 December 2016; accepted 13 April 2017. First
published online 24 May 2017.
address for correspondence: Mahsa Zahery, Department of
Computer Science, Virginia Commonwealth University, Rich-
mond, VA 23284, USA. E-mail: zaherym@vcu.edu

290

https://doi.org/10.1017/thg.2017.28 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2017.28
mailto:zaherym@vcu.edu
https://doi.org/10.1017/thg.2017.28


CSOLNP: Numerical Optimizer for Non-linear Problems

the implementations are different. Details of the CSOLNP
optimizer will be explained in the methods section. The
rest of this section provides a general description of the
CSOLNP optimizer.

CSOLNP solves non-linear problems of the form:

argmin f (x)
subject to :
g(x) = 0

lh ≤ h(x) ≤ uh
lx ≤ x ≤ ux

where

f (x) : Rn → R is the objective function (n is the num-
ber of free variables),
g(x) : Rn → Rme are the equality constraint functions
(me is the number of equality constraints),
h(x) : Rn → Rmi are the inequality constraint func-
tions (mi is the number of inequality constraints),
lh,uh are the lower and upper bounds for inequalities,
and lx,ux are the bounds for free variables.

CSOLNP is an iterative algorithm that solves a QP sub-
problem at each major iteration. QP is a special case of
non-linear programming optimization where the objective
function is quadratic and the constraints are linear. Each
major iteration starts by solving a linearly constrained prob-
lem with an augmented Lagrangian objective function of
the following form:

argmin f (x) − ykg(x) + (
ρ

2
) ∥∥g(x)∥∥2

subject to :
Jk(x − xk) = −g(xk)

lx ≤ x ≤ ux

The inequality constraints are converted to equality con-
straints by adding slack variables. The superscript k denotes
the iteration number, and Jkis the Jacobian matrix:

Jk = ∂g
∂x

|xk

The original objective function is converted to an aug-
mented Lagrangian function, which incorporates a penalty
term (ρ), as well as a Lagrange multiplier term (y). The
penalty term is used to penalize the objective function if the
current point estimation is violating the constraints, while
the Lagrangemultiplier is used to reduce the computational
cost imposed by updating the penalty term at each iteration.

The augmented Lagrangian objective function plays the
role of a merit function measuring the quality of each iter-
ation for finding a better point estimate.

The augmented Lagrangian objective function is a very
common choice for a merit function (Biegler et al., 2003).
This method does not have the drawback of penalty meth-
ods in terms of having to face an ill-conditioned uncon-
strained problem with huge gradients. For penalty meth-
ods, the penalty parameter is increased at each iteration to
ensure that the unsatisfied constraints are penalized more

severely, which eventually helps the optimizer stay close to
a feasible region. Hence, optimization is achieved when the
penalty parameter is increased to infinity while the term
‖g(x)‖2is close to zero, suggesting that no constraints are
violated. But increasing the penalty parameter to infinity
can result in increasing the condition number of the prob-
lem to infinity as the algorithm proceeds. Condition num-
ber is the sensitivity of the output of a system with respect
to small errors in the input. Hence, a large condition num-
ber implies that small changes in the input data can make
drastic changes in the solution of a system. A system with
a large condition number is called ill-conditioned and its
solution is not reliable. The augmented Lagrangianmethod
uses a Lagrangemultiplier term that avoids ill-conditioning
by stopping the penalty parameter from approaching infin-
ity (Wright & Nocedal, 1999).

After converting the problem to an augmented La-
grangian function with linearized constraints, CSOLNP
continues with a feasibility check of the current point. The
region that is bounded by the constraints of the problem is
called the feasible region. Any point in this region is called
feasible. If the current point is feasible, CSOLNP continues
with finding an optimal solution in the feasible region. Oth-
erwise, a phase 1 Linear Programming (LP) procedure is
applied to find a feasible point.

A two-phase LP technique approaches the optimal so-
lution of a system in two phases, feasibility seeking and
optimality seeking. In phase 1, an auxiliary problem is
constructed by introducing artificial variables. Artificial
variables do not have any physical meaning. They are only
introduced to the problem to find a feasible solution.

In phase 1, one artificial variable is added for each ≥
and = constraints. The original problem is then replaced
with the sum of these artificial variables. Since artificial
variables should not become part of an optimal solution to
the original problem, they have to be zero at the feasible so-
lution, and subsequently the sumof them should be equal to
zero. Hence, the goal is tominimize the new objective func-
tion subject to the constraints of the original problem. If the
minimum objective value is zero, then the original problem
has a feasible solution. This feasible solution is used as the
starting point for phase 2, where the original objective func-
tion is minimized for finding the optimal solution.

After finding a feasible point, aQP sub-problem is solved
to find the search direction. The idea behind using a QP
sub-problem is that it can reflect the non-linearity of the
original problem in its quadratic objective function. Also,
the linear constraints make the original problem easy to
solve. An obvious choice of a QP sub-problem would have
the following format:

argmin ∇ f (xk)T (x − xk) + 1
2 (x − xk)TH(x − xk)

subject to :
∇g(xk)(x − xk) + g(xk) = 0
∇h(xk)(x − xk) + h(xk) = 0

TWIN RESEARCH AND HUMAN GENETICS 291

https://doi.org/10.1017/thg.2017.28 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2017.28


Mahsa Zahery, Hermine H. Maes and Michael C. Neale

FIGURE 1
A flowchart of CSOLNP’s algorithm. Starting with initial set of free variables x0, and Lagrange multipliers u0, the search directions dkx
and dku are found by solving a QP sub-problem. Finding an appropriate step length α, CSOLNP updates the free variables and Lagrange
multipliers. If the difference between the current objective value and the previous objective value is less than the optimality tolerance,
the point estimates are considered to be converged, and CSOLNP reports the final set of free variables as the optimum. Otherwise, the
Hessian matrix H is updated, and CSOLNP continues with the next iteration.

where

∇ denotes the first derivative,
T denotes transpose, and
H is an approximation to the hessian of the Lagrangian
of the objective function L(xk, uk).

Here, the objective function is obtained by the quadratic
approximation of the original objective function at the cur-
rent estimate xk, and the constraints are the linear approxi-
mations of the actual constraints at the same point estimate.
After the direction dkx = x − xk is found, CSOLNP pro-
ceeds by finding a step length (α) that satisfies all the con-
straints and provides sufficient decrease in the augmented
Lagrangian merit function. The next iteration starts from
the new point estimate xk+1 = xk + αdkx .

The solution of each QP sub-problem is a search direc-
tion toward a better point estimate. Eventually, after each
iteration of SQP algorithm, a better approximation, xk+1,
is constructed. The sequence of these approximations are
hoped to converge to a solution for the original constrained
non-linear problem. A flowchart of CSOLNP algorithm is
provided in Figure 1.

In the methods section, CSOLNP’s algorithm will be de-
tailed. What occurs at each iteration of both the SQP al-
gorithm and the QP sub-problem will be explained. Next,
the choice of step length α and the convergence criteria will

be discussed. Finally, a new feature added to the optimizer
for handling inequality constraints when not satisfied at the
starting point is discussed.

Methods
CSOLNP Algorithm

The procedure through which CSOLNP finds the solution
of a non-linear problem is as follows:

Initialization.Given the objective function and the con-
straints, CSOLNP starts with setting the following control
parameters. All of these parameters except the penalty pa-
rameter can be user defined. The default values for these
parameters are provided in parentheses:

1. maximumnumber ofmajor iterations (iterations of the
SQP algorithm = 400);

2. maximumnumber ofminor iterations (iterations of the
QP subproblem = 800);

3. penalty parameter (ρ = 1);
4. perturbation parameter δ in finite differences method

for finding the numerical gradient (= 1e-7);
5. tolerance on feasibility and optimality (= 1e-9).

The objective function and the constraints are evaluated.
The Lagrange multipliers are initialized to a vector of zeros
with length equal to the total number of constraints; in case
there are no constraints, it is set to zero.

292 TWIN RESEARCH AND HUMAN GENETICS

https://doi.org/10.1017/thg.2017.28 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2017.28


CSOLNP: Numerical Optimizer for Non-linear Problems

An augmented parameter vector containing the inequal-
ity evaluations at the starting point as well as free vari-
ables’ starting values is created. The corresponding Hessian
matrix is initialized with the identity matrix for the first
iteration.

Iterations of the SQP algorithm (major iterations).
The first major iteration of the SQP algorithm starts by
scaling the objective value, the constraints and the free
variables.

The gradients and the Jacobian are calculated using the
forward difference method. The default value for the per-
turbation parameter (δ) is 1e-7.

The candidate point is checked for feasibility. If it is not
feasible, a phase 1 LP procedure is performed to start the
QP algorithm with a feasible point. CSOLNP implements
phase 1 with a combination of Affine Scaling Method and
Gradient ProjectionMethod in the sense that the feasibility
direction is found using the Affine Scaling Method, while
the step tomove along this direction is found using theGra-
dient Projection Method.

The Affine ScalingMethod is a simplified variant of Kar-
markar’s algorithm (Karmarkar, 1984). The basic idea be-
hind this method is to start with a point lying in the in-
terior (inside the boundaries) of the feasible region, and
move in the direction of negative gradient descent to re-
duce (for minimization) the objective value at the fastest
possible rate. Moving toward the direction of negative gra-
dient descent, we might fall out of the feasible region. To
havemore space for reducing the objective value before hit-
ting the boundaries of the feasible region, the Affine Scal-
ing Method changes the coordinates of the feasible point to
be placed at equal distance from the boundaries. In other
words, it transforms the feasible region to place the cur-
rent point at its center. So, for a standard LP problem of the
form:

min cTx
subject to :
Ax = b
x ≥ 0

where A is of size m by n; x and c are vectors of n elements
and b is a vector of m elements, the Affine Scaling Method
aims at moving in the direction of negative gradient of the
objective function which is −c. Moving in this direction,
the objective value is reduced, but we may violate Ax = b.
To avoid this, −c is projected into the null space of matrix
A which is the set of all feasible direction vectors. This pro-
jection is

P = I − AT (AAT )−1A

Hence, the projected gradient is Pc and the feasible di-
rection would be −Pc. The last part of the Affine Scaling
Method is to have the projected gradient near the center of
the feasible region. This way, there is more room for fur-
ther iterations of the algorithm. For this purpose, the cur-

rent point x is rescaled to the point X = D−1x, where D is
a diagonal matrix of the elements of vector x. This changes
the LP problem to minimizing cTDX , subject to ADX = b
and x ≥ 0. Subsequently, the projection becomes P = I −
ÃT (ÃÃT )−1Ã, where Ã = AD. So, the projected gradient is
Pc̃with c̃ beingDc. The new point is then xk+1 = xk − αPc̃,
where α is the step length which is obtained by the Gradient
Projection Method as the following:

α =
{

xi−ui
vi

, if vi < 0
xi−li
vi

, if vi > 0

where v is the search direction obtained by the Affine Scal-
ing Method, and li, ui are respectively the lower and upper
bounds for xi.

The objective value and the constraints are re-evaluated
in case the starting point has been replaced with a feasible
one. The merit function is also evaluated at the candidate
point.

Iterations of the QP algorithm (minor iterations). The
gradient of the merit function is calculated (using the for-
ward difference method). If this is the first iteration of the
QP algorithm, the algorithm considers the identity ma-
trix as the Hessian approximation. Otherwise, a quasi-
Newton approximation to the Hessian of the Lagrangian
is calculated. In general, when the Hessian of the prob-
lem is dense, the quasi-Newton approximation can be a
better choice, as it saves the computation time per it-
eration. CSOLNP uses the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) quasi-Newton approximation to the Hes-
sian at each iteration of the QP algorithm:

Hk+1 = Hk + 1
yTd

yyT − HddTH
dTHd

Where H is the Hessian matrix, d is xk+1 − xk, and y is the
change in the gradient: gk+1 − gk.

Finding the search direction. The QP algorithm finds
the search direction using the Newton method. The search
direction is obtained by Cholesky factorization of the Hes-
sian matrix: Hkdk = −gk.

The Newton algorithm is considered to converge when
all the constraints (formulae 1 and 2) and free variables’
bounds (formula 3) are satisfied.

Finding steplengthα.After finding the search direction,
a new temporary point is approximated: xk+1 = xk + dk.
This point is not yet considered a new estimate for the next
iteration. It is necessary to figure out the length of the step
to move along the direction from the current point toward
this temporary point.

The step size is found using a binary search method: the
interval between the current point and the temporary point
is searched for a step size that results in the lowest merit
function. The search continues until this interval is less than
some tolerance.

TWIN RESEARCH AND HUMAN GENETICS 293

https://doi.org/10.1017/thg.2017.28 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2017.28


Mahsa Zahery, Hermine H. Maes and Michael C. Neale

Finding the next point estimate. Having the search di-
rection and the step size, CSOLNP finds the next point es-
timate: xk+1 = xk + αdk, and a new iteration of the QP al-
gorithm starts.

Convergence of the QP algorithm and restoring the
results. The QP algorithm stops if the difference between
the objective value at the current iteration of the QP algo-
rithm and the previous iteration is less than the optimality
tolerance.

The vector of free variables, the Hessian matrix, as well
as the objective value and the Lagrange multipliers (in case
there are constraints) are updated, and a new iteration of
the SQP algorithm (major iteration) is started.

Convergence of the SQP algorithm. The problem is
converged when the difference between the current objec-
tive value and the previous objective value is less than the
optimality tolerance. Additionally, the constraints are satis-
fied to within the feasibility tolerance.

Improvements of CSOLNP Over RSOLNP

Although RSOLNP can find the solution when the inequal-
ity constraints are not satisfied at the starting point, there
are cases where it fails to find the correct optimum.We have
overcome this difficulty in CSOLNP by adding a new fea-
ture. For caseswhere the inequality constraints are not satis-
fied initially, CSOLNP replaces the objective function with
the sum of violated inequalities, and optimizes the param-
eters with respect to this new objective function. The opti-
mum will then be used as the starting point for the original
problem (original objective function). This feature has en-
hanced the performance of CSOLNP over RSOLNP, in the
sense that models failing with RSOLNP now run success-
fully with CSOLNP (the results are validated by the other
two optimizers).

Application

We have compared the performances of CSOLNP, NPSOL,
and SLSQP on factor models with ordinal and continuous
variables. A brief description of factor models and how or-
dinal variables are measured with such models is presented
in the remainder of this section.

Factor analysis is a statistical method assuming a set
of unobserved, underlying factors (latent variables) are re-
sponsible for variation among a set of observed variables.
The regression of an observed variable on a factor is inter-
preted as factor loading. Considering p observed variables,
m factors, and n subjects, the factor model can be written
as

Yi j = biXj + Ei j

where i = 1, …, p variables and j = 1, …, n subjects. Yi js
represent observed variables for each subject. Xjare factor
scores, which are values of each factor for each of the sub-
jects j in the sample. bis are factor loadings. Ei jis unique for
each observed variable, and explains the variability beyond

that explained by common factors. Factor loadings are esti-
mated as

�YY = BPB′ + E

where
∑

yyis a p × p covariance matrix of observed vari-
ables, B is a p × mmatrix of factor loadings, P is anm × m
covariance matrix of the common factors, and E is a p × p
matrix of specific variances.

In confirmatory factor models, a hypothesized factor
model is tested to find whether the sample data supports
the model. There are several estimation procedures to find
the model parameters. One is ML, which evaluates the
goodness of fit of the hypothesizedmodel to the sample data
by estimating the matrix of factor loadings. Model estima-
tion is considered successful if the original covariance ma-
trix can be reproduced from the estimated factor loadings.
If it cannot be reproduced, then the hypothesized model
may have not been correctly specified.

Maximum likelihood estimation (MLE) assumes multi-
variate normality (mvn) of residuals of a model with con-
tinuous measures. Behavioral data are often binary (yes/no
responses) or ordinal (none/some/a lot), which are inher-
ently less accurate than continuous measures. A common
approach with binary/ordinal data is to assume that there is
a latent, normally distributed continuous variable underly-
ing each binary/ordinal symptom or item. For example, in
substance use behavior, sensitivity to the rewarding experi-
ence of drug usemay formpart of the underlying propensity
to use substances frequently.

Such liability is typically thought of as being due to the
additive effects of a large number of factors each of small
effect, which the central limit theorem predicts will gen-
erate a normal distribution of liability. Thresholds on this
liability distribution delimit binary or ordinal response cat-
egories. For binary data, yes responses are observed above a
threshold, while no responses are observed below that. For
ordinal data, the number of thresholds is one fewer than
the number of categories in the data. For example, sub-
jects with scores below the first threshold have observed
value of none. Subjects with scores in between the first and
second thresholds have observed value of some, and those
with scores above the second threshold have observed value
of a lot.

We have compared the performances of CSOLNP,
NPSOL, and SLSQP on a variety of thresholdmodels as well
as continuous data.MLE is used as fit function for threshold
models to estimate factor loadings and thresholds. The like-
lihood function is the joint probability of the latent contin-
uous variables underlying the set of ordinal variables and is
defined as multivariate integration of the distribution over
the intervals defined by the thresholds. Formvn integration,
we use Genz’s SADMVN routine (Genz, 1992). The preci-
sionwithwhich SADMVNcomputes themvn integration is
varied between 1e-3 and 1e-7 in our simulations to compare

294 TWIN RESEARCH AND HUMAN GENETICS

https://doi.org/10.1017/thg.2017.28 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2017.28


CSOLNP: Numerical Optimizer for Non-linear Problems

FIGURE 2
(Colour online) Runtimes of CSOLNP, NPSOL, and SLSQP in logarithmic scale for threshold models with (a) five variables and one factor,
and (b) five variables and two factors for a sample of size of 1,000. Runtimes are averaged over 250 different runs.

FIGURE 3
(Colour online) Runtimes of CSOLNP, NPSOL, and SLSQP in logarithmic scale for threshold models with (a) five variables and one factor,
and (b) five variables and two factors for a sample of size of 10,000. Runtimes are averaged over 250 different runs.

the performances of CSOLNP, NPSOL, and SLSQP. Other
varying elements in our simulations are the number of la-
tent variables (factors) and the sample sizes. Themodels are
run with 1 and 2 factors on datasets of size 1,000, 10,000,
and 20,000 samples. The results section illustrates the per-
formances of the three optimizers on different threshold
and continuous models averaged over 250 simulations.

Results and Discussion
We compared the performances of CSOLNP, NPSOL, and
SLSQP on threshold models, as well as continuous models
with five variables and one to two factors.

Having five variables and one or two factors, the parame-
ters for equation�YY = BPB′ + E are defined as the follow-
ing: matrix B is a 5 × 2 matrix of factor loadings. The start-
ing values are set to 0.2 for all factor loadings. Matrix P is an
identity matrix in our models. Matrix E is a 5 × 5 matrix of
residual variances obtained by the equation E = 1 − B∗B.
Finally, the model’s expected covariance is calculated. At
each iteration of the optimization algorithm, the difference

between the model’s expected covariance and the observed
covariance is minimized to find the model that best fits the
data.

Comparing Runtimes of Optimizers

For threshold models, the performances were compared
with respect to runtime of the optimizers when mvn in-
tegration absolute error tolerance is reduced from 1e-3 to
1e-7. Figures 2–4 illustrate the runtimes in logarithmic
scale for thresholdmodels with one and two factors on sam-
ples of 1,000, 10,000, and 20,000 sizes, respectively. The re-
sults are averaged over 250 simulations. The error bars show
the standard deviation of each optimizer’s runtime obtained
from 250 different runs. We also compared the final objec-
tive values at which the three optimizers stop. The relative
difference between the final objective values are less than
0.5%, and hence not shown.

In all the thresholdmodels shown in this section, the op-
timizers take significantly more time as the requested nu-
merical integration precision for absolute error tolerance
is reduced from 1e-3 to 1e-7. This is expected as smaller

TWIN RESEARCH AND HUMAN GENETICS 295

https://doi.org/10.1017/thg.2017.28 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2017.28


Mahsa Zahery, Hermine H. Maes and Michael C. Neale

FIGURE 4
(Colour online) Runtimes of CSOLNP, NPSOL, and SLSQP in logarithmic scale for threshold models with (a) five variables and one factor,
and (b) five variables and two factors for a sample of size of 20,000. Runtimes are averaged over 250 different runs.

FIGURE 5
(Colour online) Runtimes of CSOLNP, NPSOL, and SLSQP in logarithmic scale for continuous models with (a) five variables and one factor,
and (b) five variables and two factors for samples of sizes 1,000, 10,000, and 20,000. Runtimes are averaged over 250 different runs.

absolute error tolerance dictates the accuracy of numerical
integration. Since there is no closed form solution for the
integration of the mvn distribution, it is carried out numer-
ically to a particular degree of numerical precision. How-
ever, the more precise the integral calculation, the longer
it takes. NPSOL is in general the slowest optimizer, except
when the absolute error tolerance is 1e-7. For other values
of absolute error tolerance, CSOLNP is faster than the other
optimizers.

Figure 5 illustrates runtime of the three optimizers in
logarithmic scale for continuous models with one and two
factors on samples of 1,000, 10,000, and 20,000 sizes, respec-
tively. The results are averaged over 250 simulations. Since
mvn integration is not required to calculate the likelihood
for continuous data, the mvn parameter value is irrelevant.
The final objective values are almost identical for the three
optimizers and hence not shown.

The runtimes differ little between optimizers for contin-
uous data analysis. None of the optimizers performs consis-
tently faster than the others for such models.

Comparing Memory Usage of Optimizers

Valgrind is a memory management tool suite used for de-
bugging and profiling. We used Massif, a heap profiler tool
available in Valgrind, to compare memory consumption of
the optimizers. We ran the one-factor, five-variate model
with default value for mvn absolute error tolerance (1e-3)
underMassif for all three optimizers. CSOLNP andNPSOL
reach to peak memory of 417.8 MB, while SLSQP’s peak is
at 489.8 MB. SLSQP consumes about 71 MBmemory more
than CSOLNP and NPSOL.

CSOLNP appears to be a better choice of optimizer for
threshold model analysis, due to its faster performance,
reliability, and efficiency. It is the fastest optimizer except
for the case where absolute error tolerance is 1e-7. Given
the default value for absolute error tolerance in OpenMx
package is 1e-3, CSOLNP is the fastest optimizer in all
the scenarios. Furthermore, we consider CSOLNP more
consistent than the other two optimizers, as the standard
deviation of runtime over 250 different runs is much
smaller with CSOLNP than the other two. NPSOL is very

296 TWIN RESEARCH AND HUMAN GENETICS

https://doi.org/10.1017/thg.2017.28 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2017.28


CSOLNP: Numerical Optimizer for Non-linear Problems

inconsistent and has the largest standard deviations inmost
of the cases. In terms of memory management, CSOLNP
uses less amount of memory in comparison with SLSQP
or the same amount when compared with NPSOL. All
the above points make CSOLNP the preferred OpenMx
optimizer for threshold model analysis.

The simple factormodel is expected to have performance
similar to any analysis of multivariate data, such as the
classical twin study. Thus, we can recommend CSOLNP as
the preferred choice for ordinal data from twins, although
it should be noted that multidimensional integration be-
comes intractable computationally beyond a total of about
20 variables, that is, 10 variables per twin.

References
Biegler, L. T., Ghattas, O., Heinkenschloss, M., & Bloemen

Waanders, B. (2003). Large-scale PDE-constrained opti-
mization: An introduction. Large-Scale PDE-Constrained
Optimization, 30, 3–13.

Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick,
T., …Mehta, P. (2011). OpenMx: An open source extended
structural equation modeling framework. Psychometrika,
76, 306–317.

Genz, A. (1992). Numerical computation of multivariate nor-
mal probabilities. Journal of Computational and Graphical
Statistics, 1, 141–149.

Ghalanos, A., & Theussl, S. (2012). Rsolnp: General non-
linear optimization using augmented Lagrange multiplier
method. R package version, 1. Retrieved from http://
CRAN.R-project.org/package=Rsolnp

Gill, P. E., Murray, W., Saunders, M. A., & Wright, M. H.
(1986). User’s guide for NPSOL (version 4.0): A For-
tran package for nonlinear programming (No. SOL-86-2).
Stanford, CA: Stanford University Systems Optimization
Laboratory.

Johnson, S. G. (2014). The NLopt nonlinear-optimization
package. Retrieved from http://ab-initio.mit.edu/nlopt.

Karmarkar, N. (1984). A new polynomial-time algorithm for
linear programming. Proceedings of the Sixteenth Annual
ACM Symposium on Theory of Computing, pp. 302–311.
New York, NY: ACM Special Interest Group on Algorithms
and Computation Theory.

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick,
T. R., Kirkpatrick, R. M., …Boker, S. M. (2016). OpenMx
2.0: Extended structural equation and statistical modeling.
Psychometrika, 81, 535–549.

Wright, S., & Nocedal, J. (1999). Numerical optimization.
Springer Science, 35, 67–68.

TWIN RESEARCH AND HUMAN GENETICS 297

https://doi.org/10.1017/thg.2017.28 Published online by Cambridge University Press

http://CRAN.R-project.org/package=Rsolnp
http://ab-initio.mit.edu/nlopt
https://doi.org/10.1017/thg.2017.28

	Methods
	CSOLNP Algorithm
	Improvements of CSOLNP Over RSOLNP
	Application

	Results and Discussion
	Comparing Runtimes of Optimizers
	Comparing Memory Usage of Optimizers

	References

