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ABSTRACT ' 
The manner in which inelastic shockwaves prop

agate through snow is evaluated. The volumetric 
material behavior of snow is represented as an in
elastic rate sensitive relationship. The constitutive 
equation has incorporated into it such crystalline 
properties as grain size, bond length, bond radius, 
pore size, and average number of bonds per grain. As 
a consequence, this constitutive formulation can be 
used to describe how shockwave behavior is affected 
by different physical properties. The governing 
equations, i.e. the momentum and continuity equations, 
are solved by integrating them to put these equations 
in terms of jumps in pressure, density, and particle 
velocity. 

Results are obtained for a wide variety of snow 
properties. First, the effect of density is evaluated 
by considering densities ranging from 150 to 
300 kg m- 3 • Then the effect of intergranular bonding 
is considered by varying the bond radius/grain radius 
ratio from 0.15 to 0.40. Finally, the shockwave 
frequency is varied parametrically to determine the 
effect of these parameters on wave attenuation rates. 

The results are then compared to experimental 
data. The theoretical results are shown to agree well 
with the test data. The degree of intergranular bond
ing was also found to have a very significant effect 
on attenuation rates. 

Finally the importance of the air phase on the 
propagation of shockwaves in snow is investigated. 
The goverl,i ng equati ons for each phase are developed 
by using a mixture theory formulation. An order of 
magnitude analysis is made in order to assess the 
importance of the air phase on attenuation rates. 

INTRODUCTION 
Recently Brown (1981) proposed the use of jump 

equations for evaluating shockwaves in snow. Normally 
shockwave propagation is evaluated by seeking a 
direct solution to the governing equation of motion: 

OTij 
-- + p bj = p aj, (1 ) 

aXi 

where Tij is the stress tensor, p . is the density,.bj 
is the body force vector, and aj 1S the accelerat10n 
vector. If a proper constitutive law relating Tij to 
the strain tensor Eij is available, this equation 
can be substituted into Equation (1) and solved 
directly for the displacements. 
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Normally this method of solution is quite tedi
ous, since the resulting equation is often nonlinear 
if the constitutive equation is nonlinear. Also, if 
large strains are involved, the wave equation becomes 
nonlinear by virtue of the kinematics involved. These 
types of equations can be solved numerically by the 
finite difference method. However, this method is 
sometimes complicated by stability problems. The 
particular problem of a pressure wave propagating 
through medium- to high-density snow (p>350 kg m- 3) 
was solved (Brown 1980[b)). Large computation times 
were required since small time increments were 
required in order to avoid an unstable solution. 

The problem of shockwave propagation in low
density dry snow (100(p(300 kg m- 3 ) can be a com
plicated problem for several reasons. The material 
is much more compressible than high-density snow. 
This high degree of porosity allows a more compli
cated set of deformation mechanisms to take place 
during deformation. The resulting constitutive 
equation required to describe the material behavior 
is therefore more complicated. Due to the high 
porosity of low-density snow, the air wave which 
propagates through the pore space becomes more sig
nificant. Johnson (unpublished) indicates that 
effects of this wave cannot necessarily be neglected. 
Such effects further complicate the problem. 

In the following sections, the problem of plane 
shockwave propagation in low-density snow is studied. 
First a solution is presented to describe how a 
shockwave propagates in snow when the effects of the 
air wave are neglected. A rate-sensitive constitutive 
law for low-density snow is used in this analysis. 
These results are compared with experimental results 
obtained by the author during a two-year test program. 
Finally, an analysis is presented for the case when 
the material is represented as a porous material made 
up of an ice structure with an air phase. In both of 
the above analyses, large-amplitude, plastic waves 
are studied. 

THEORY 
We present here only a summary of the analytical 

formulation, since the formulation has been developed 
in detail earlier (Brown 1981). In that paper, the 
propagation of inelastic shockwaves was developed in 
terms of jumps across the wave front. The wave front 
is treated as a singular surface propagating into an 
undisturbed medium. The wave produces jumps or dis
continuities in pressure, density, particle velocity 
and other material parameters. Mathematically, the 
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wave front is defined to be a smooth one-parameter 
family of points Y(t), such that Y(t) gives the 
position of the wave front at any time t. The wave 
velocity is 

v = dY(t)/dt (2) 

If f(X,t) is any material variable such as pressure 
or density, the jump or discontinuity produced across 
the wave is 

where for any 0>0, 

and 

f- = lim f(Y(t) - o,t) 
0+ 0 

f+ 1im f(Y(t) + o,t). 
0+ 0 

(3) 

f- is the value of f just behind the wave front, and 
f+ is the value just ahead of the wave. Therefore, 
[f] represents the change in f due to the shockwave. 
Normally shockl~ave analysis is concerned with the 
evaluation of rates of change [p] and [p] as well 
as the actual calculation of [p] and Cpl. 

A set of governing equations can be developed 
which describe the variation of [p] and [p] as the 
stress wave propagates through the snowpack. Rather 
than working with the density p, the density ratio a 
is used, where 

Cl = Pm/P , (4) 

Pm bei n9 the dens i ty of the matri x materi a 1, in 
this case, ice. The governing equations used in this 
ana1ysi s are 

[p]t = - ET [a] t + Eir.~]t, (5 ) 

[ p] Po V [v] , (6) 

[ v] V [a]/aO (7) 

V2 = ao E~/po' (8) 

[f]t = [f] + V[fx] , (g) 

3 
El [~]t = [~] 

2 
(3ET + E~) [a]t - - - E~ (10) 

2 

v is the particle velocity, and the subscripts t and 
x imply the derivatives with respect to time and 
position, respectively. ET' E-, and El are, respect
ively the tangent, secant, an~ rate moduli behind the 
shockwave and are defined by the expressions 

Er 
dp 
da 

(11 ) 

Es 
[p] 

[a] 
(12 ) 

El 
dp-
- , 
de. 

(13) 

A superposed dot also implies time differentiation. 
It should be noted that [a] and [a]t are not the same 
expressions. [~] represents the jump in ~, whereas 
[a]t is the rate of change of the jump [a], as indi
cated by Equation (9). 
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The three modul i are dependent upon the materi al 
properties and the wave amplitude. In the above, the 
pressure response p of the material was assumed to be 
rate dependent as well as dependent on a. In cases 
where p does not depend on a, El would vanish, and 
the above governing equation would simplify somewhat. 

~1ATERIAL PROPERTIES 
Since we are concerned here with plane waves, 

only a volumetric constitutive law relating pressure 
to density changes is needed. Snow is a rate
dependent material, although this dependency becomes 
less significant at higher rates of deformation. 
Brown (1980[b]) formulated a volumetric constitutive 
law for snow. This constitutive law was based on a 
granular geometric model which determines deform
ation in terms of pressure sintering. It has been 
shown to represent the volumetric properties of snow 
for large, high-rate compactions of snow. The con
stitutive law is 

F 
p 

where 

2 

~G(a)~2 
a 

C2 + C3Po 
F = Cl P 0 (a/ ao ) 

(2a/3C) (R/lI)2 

1 
G = - ((a_1)-4/ 3 - a- 4 /3 ). 

6 

(14 ) 

(15) 

(16 ) 

(17) 

(18 ) 

(19) 

R, ao, II and L are the average values of grain radius, 
initial pore radius, neck radius and bond length. A, 
C, So are material constants for ice. Cl, C2, C3 are 
constants which have the values of 1.12 x 10-2 , 1.67, 
and 6.4 x 10- 3 • ao and Po are the initial values of 
the density ratio and density. 

During deformation, the bond radius and bond 
length both vary, but the grain radius changes very 
little, since the grai~s are.structura11y much more 
rigid than the necks. II and L may be related to the 
snow structure and the pressure. These relations have 
proved to be cumbersome to use, and here an approxi
mate relation is used to calculate these values. For 
lI, the following expression is used: 

II = lIo + (1.0 x 10-2 )Pm (1.2 x 10-5 -

1 1 
- 0.2 (6 0 - 2.0 x 10-5 ))(_ - -). 

a ao 
(20) 

This equation was found to approximate adequately the 
more complicated expressions used earlier (Brown 
1980[b]). 

The neck length L is found by solving the 
equation: 

where 
lIR

3 

vm = (4-2N) 
3 

(21) 

(22) 
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and 

N = 4 [1 + (p - 300)/500]. 

N represents the number of bonds per grain, and is 
seen to vary wi t h density. 

For a more detailed discussion of the constitut
ive law, the reader is referred to Brown (1980[b]). 
This constitutive law describes the behavior of snow 
for densities between 150 and 700 kg m-3 and for 
values of a ranging from -10-4 to as large as 
-10 5 s-l. In Equation (14) , the last term is insig
nificant for values of lal below 10 3 s-l. In the case 
of shockwaves this term cannot be neglected. 

SOLUTION OF WAVE PROBLEM 
Equations (5) to (14) can be used to evaluate 

the manner in which the shockwaves propagate through 
snowpack. In particular the decay rates [p]t, [a]t, 
and [~]t are found and then integrated to evaluate 
their variation with time. 

A finite difference solution is used, since the 
nonlinearities associated with the constitutive law 
preclude an exact solution. [a] and [~] are pre
scribed as the initial conditions. These two vari
ables characterize the wave amplitude. [Cl] Iileasl}res 
the jump in density due to the shockwave, and [Cl] • 
reflects the wave frequency in the sense that as [Cl] 
increases, the wave front becomes sharper with a 
higher rate of loading. 

The solution technique will not be discussed in 
detail, since the procedure followed here is similar 
to that used by Brown (1980[a]). In that paper, only 
medium- to high-density snow was studied, since a 
different constitutive law was used. The study 
reported here allows a more detailed study of shock
wave propagation, since the constitutive law is 
defined in terms of micro-structural parameters such 
as bond geometry, grain size, etc. Consequently, this 
can provide some insight previously not available. 

In implementing the finite difference method, 
density ratios Cl1 at specific time points t 1 and 
coordinate posit~ons Xj are calculated by integrating 
the governing equations. It is assumed that p, v, ax, 
and & are all zero in front of the wave. Then the 
jumps [p], [v], [ClX]' and [a] equal, respectively, 
the values p-, v-, a~, and a- behind the wave. Equa
tions (9) (with f = a) and (10) can be put in the 
following difference forms (Brown 1981) 

j 
[Cl] 

tj 
+ Cl 

j 

j 

j-1 j-1 
- Cl & 

j-1 j-1 
lit (23 ) 

V LH 

(24) 

Equations (23) and (24) may then be used to solve 
directly for the rates of change [ Cl ]t and [a]t. 
I~ the~e equations the superscript implies the time 
t 1 = t 1- 1 + li t, and the ~ubscript implies the 
position X· = x '_l + VJ - lit. The constitutive laws 
are used t~ eva1uate the moduli in the above equa
tions; Equation (8) is used to calculate the wave 
speed at each time, and Equation (7) is used to find 
the particle velocity. Equations (23l and (24) are 
used to find new values of [ a ] and [ Cl], i.e • 

Cl 
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Fig.1. Effect of initial density on shockwave 
propagation in low-densi ty snow . 
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Fig.3. Comparison of experimental data with 
theoretical calculations. 
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The difference between the procedure followed 
here and the one used earlier (Brown 1981) is that 
the constitutive law for this problem is much more 
complicated. The jumps in ~, L, and N had to be cal
culated in order to evaluate the moduli ET, Es , and El 
just behind the wave. In order to do this, Equations 
(20) to (22) had to be utilized to find the respect
ive jumps in 6, L, and N. 

The shockwave solutions are shown in Figures 1 to 
4, which are essentially parametric studies of attenu
ation rates for various snowpack properties. For 
instance, Figure 1 illustrates how density affects 
attenuation rates for waves which have the same initial 
pressure. Figures 2 and 3 compare the theoretical 
results with experimental results for two different 
density ranges. Figure 4 demonstrates how intergranular 
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Fig.4. Effect of intergranular bonding on attenuation 
rates in low-density snow. Bonding is characterized 
by bond radius/grain radius ratio, ~/R. 
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Fig.5. Effect of wave frequency on attenuation rates. 
Wave frequency is roughly measured by the jump in 
& across the wave. 

bonding affects shockwave propagation. In this case, 
the average bond diameter was varied from 10% to as 
high as 40% of the average grain radius. Finally, 
Figure 5 illustrates the.effect of initial value of 
the density ratio rate [~] on the rate of pressure . 
attenuation [p]t. 
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SNOW AS A POROUS MEDIUM 
In the previous work by Brown (1980[a], 1981) .the 

snowpack was treated as a continuous medium, and the 
interaction between the pore pressure and the ice 
structure was not evaluated. One of the few studies 
on snow which has considered the interaction between 
the air phase in the pores and the ice structure is 
that of Johnson (unpublished), who restricted his 
study to stress waves with the ice structure charac
terized as an elastic material. The air wave in the 
pores was found to be responsible for some of the 
dissipative processes observed in the acoustic waves 
studied. 

Here we use a formulation similar to that of 
Bowen (1976). Again the wave is assumed to be a plane 
wave propagating in the X-direction such that the 
only macroscopically observable displacements are in 
the X-direction. This is a less general approach than 
Johnson's study since his work involved more compli
cated displacement fields. Here we are concerned with 
intense plastic waves in which the material constit
utive relations are quite complicated, and the simple 
geometry of plane waves will help to facilitate the 
analysis. Further, with plastic waves which produce 
pressures well in excess of 1 bar, the wave attenu
ation due to internal dissipation becomes the predom
inant factor characterizing this type of wave propag
ation, and this effect is adequately studied in the 
plane wave. 

We now consider the snow to be made up of two 
materials, ice and air, which have respectively the 
partial stresses ITi and ITa . These represent the 
portion of the actual pressure produced within the 
snowpack due to the shockwave. In addition, we need 
to define momentum supplies Pi and Pa for the ice 
and air which reflect the manner in which these two 
constituents interact with each other. The partial 
stresses and the momentum supplies are assumed to 
have the following forms: 

(25) 

where va and Vi are the specific volumes for the two 
constituents. va and Vi are the material time deriv
atives of the specific volumes, i.e. they reflect the 
rate change of the specific volumes as each particu
lar constituent motion is followed. Ouring the shock 
loading each constituent will have different motions, 
and the material derivatives must follow each con
stituent motion. Therefore va implies 

at 

(26) 

Xa is the undeformed position of the air particle, xa 
is its time dependent deformed position, and xa is 
the velocity of the air particle. Similar relations 
hold for the ice phase. 

Each phase, the ice and air, must satisfy mass 
balance and momentum balance postulates. These postu
lates for uniaxial motion in the x-direction are 
(Bowen 1976) 

vao 3 = aVa 
ax a t 

(27) 

Vio 
aXi !::i 
ax at 
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P xa a 

an. A" 

_1 + Pio b + Pi Pioxi 
ax 

o 

(28) 

Xa and xi are the acce1erations. b is the body force. 
and vao and vio are the initial values of specific 
volume in the undeformed configuration. Likewise Pao 
and Pio are initial densities. 

The momentum equations differ from the usual 
momentum balance equations in that the momentum 
supplies representing constituent interactions are 
now present. The mass-balance equations are the usual 
ones. since we assume mass exchanges due to phase 
changes are not significant. These governing equa
tions may be solved in a manner identical to that 
used by Brown (1981) for shockwaves in snow. Conse
quently the details of the solution will not be given 
here. The procedure results in the following set of 
equations governing the growth and decay of shock
waves: 

[XaJ V[FaJ 

[Xi] V[Fi] 

where Fa = aXa/aX. Fi = aXi/ax are the deform
ation gradients 

vao[Xa] V[va] 

vi o[ xi] V[vi] 

[naJ 
V2 

[vaJ 
vao 

[ni] 
V2 

vio 
[vi] 

3 - 3-
- - ETai [Vi1t + - E1ai [vi1t + 

2 2 

1 3 2 (3 ETi + Esi) [vi]t - 2 E1i [Vi]t = 

+ V[Pi] - Esi [Vi] 

} (29) 

(31) 

(32) 

(33 ) 

where ETia. E1ia. ETai. E1ai are coupling tangent 
moduli and rate moduli 
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ETia 
_ ani 

av 
a 

ETai 
ana - a;-

i 
(34) 

Elia 
a ITi 
aVa 

E1ai 
a ITa 
aVi 

We see from Equations (30) and (31) that the attenu
ation rates are affected by the momentum supplies 
and additional terms involving the coupling moduli. 
One can make a direct comparison between Equations 
(10) and (30) and see that indeed differences do 
arise when the effect of the pore mass and its inter
action with the ice structure are allowed. In fact. 
we end up with a set of coupled differential equa
tions for the growth and decay of the shocks in both 
the ice and the pore mass • . 

Before a solution can be attempted. constitutive 
equations for the two phases are needed. They need to 
include terms which allow the calculation of the coup
ling moduli given in Equation (32). A possible form 
for the ice phase is: 

F & 
2 

T 
G(~)a2 ni -In (-) +-e

1 A1 a 

+ Q( Va ) 
Viio 

(35) 

and for the fluid or air phase 

na = Kva-1 + Q(a/ao)· (36) 

In the above. we take a = Pmvi. since the specific 
volume of the ice phase very closely approximates the 
value of lip for the snow. The above formulation 
assumes the same constitutive behavior as was used 
earlier for the ice phase. except the term Q(valv ao ) 
is added to represent the coupling with the air phase. 
Q is a coupling coefficient between the volume change 
of snow and the air. The fluid equation represents 
that of a gas plus the effect of coupling. 

Finally the momentum supply would have to be of 
the form 

where the coefficient A would be a function of Cl and 
vi. Then. with thi s assumed form. 

ETia Q/vao 

ETai Q/ao 
(37) 

Elia = 0 

El ai = 0 

With the use of Equations (28) and (35). the jump 
Equations (30) and (31) become 
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(38) 
and 

1 - - 3 -
-(3ETi + Esi) [vih - - Els [vih 
2 2 

(39) 

In the above, the initial ice specific volume vio is 
just ao/Pm, where ao is the initial density ratio 
Pm/Po for the snow, and Pm is the density of solid ice. 

Sy comparing Equations (10) and (39), the attenu
ation rate of the wave in the ice structure is aug
mented by the amount 

The question about the order of these terms must then 
be considered. Based on previous work by the author 
and calculations by Johnson (unpublished), the follow
ing magnitudes may be attributed to the above terms 
in a shockwave which produces a stress of 5 bar on 
the snow phase and a comparable pressure on the air 
phase 

Q 0(10 4 ) 

V 0(10 2 ) 

[va]/vao 0(10) 

[vi]/vio 0(1) 

ETi 0(10 8 ) 

E si 0(10 8 ) 
(40) 

Eli o (103) 

[vi] 0{10-3 ) 

[vih O( 10) 

[ViJt = 0(10 5 ) 

The ~bove values for [vi]t, [vi], and [vi] were 
obta1ned from values calculated by Brown (1981). The 
~ollowing . orders of magnitude result with the follow-
1ng equat10n: 

O((ETi + Esi) [vi]t) 0(10 9 ) 

-
O(Esi[vi]) 0(10 8 ) 

O(~[va]t) 5 [ ] vao 10 O( va t/vao) 

[Vi])) 
vio 

(41 ) 

Bpown: Wave ppopagation in s now 

If [va]t is of the same order as [vi]t, the effect 
of Q[va]t/vao would be negligible. However, since [va] 
can be an order of magnitude larger than [Vi], it 
appears reasonable that [va]t may exceed [vi]t by an 
order of magnitude. Therefore the effect of the air 
phase may actually become significant. 

At the time of writing this paper, the author 
had no accurate values for the coefficient A. How
ever, in order for this to be a significant factor, 
it would have to have a value with an order of mag
nitude of 10 5 • In spite of this, it appears that 
coupling between the air and ice phases is large 
enough to increase attenuation rates appreciably. 
This would apply to the case of intense plastic 
waves which produce large partial stresses ITa in 
the air phase. With the current information avail
able, a more definite quantitative statement cannot 
be made. More research into this problem is needed 
before the effect of the air phase on shockwave prop
agation in snow can be determined quantitatively. 

DISCUSSIONS AND CONCLUSIOflS 
The first part of this study was devoted to the 

propagation of nonsteady shockwaves in lOW-density 
snow. The effect of the air phase in the pores was 
neglected. Only strong shocks producing massive com
paction of the material were considered. The results 
of this analysis are illustrated in Figures 1 to 5. 
Some comparisons with experimental results obtained 
by the author is also presented in these figures. 

Figure 1 gives a parametric illustration of the 
attenuation experienced as a function of propagation 
distance (X) and initial density. An initial pressure 
of 6.5 bar was used. A rather surprising result was 
that the shockwaves in the higher-density snow atten
uated more quickly. This appears to be characteristic 
only of inelastic shockwaves which produce finite 
amounts of compaction. One explanation for this 
result is that the shocks traveled faster in the 
lower- than in the higher-density snow, since the 
former underwent much more compaction. Consequently, 
the lOW-density snow experienced more work-hardening. 
The resulting stiffening of the low-density snow due 
to this added compaction resulted with larger wave 
speeds. 

Figures 2 and 3 compare data with theoretical 
calculati ons, and the results appear reasonable. 
Figure 4 illustrates how temperature gradient meta
morphism can affect shockwave attenuation. In this 
case attenuation for snow with three different bond 
radius/grain radius ratios were compared for snow. 
The initial shock pressures were adjusted so that 
the same density jump was initially produced in all 
three cases. Reduced intergranular bonding results 
with increased rates of shockwave attenuation. 

Finally, Figure 5 gives a qualitative measure 
of how wave frequency affects attenuation rates. 
Frequency here is roughly interpreted as proportional 
to the jump in the strain rate & due to the shockwave. 
However, unless the shock structure is known, an 
exact correlation between the dominant wave frequency 
and the value of [a] cannot be specified in an exact 
manner. What can be said is that attenuation tends to 
increase with frequency. 

The final part of the paper considered the wave 
propagation problem when the snow was modeled as a 
porous material with air filling the pores. The 
governing equations defining the attenuation rates 
of both the wave in the ice structure and the wave in 
the pore space were formulated. Since some of the 
constitutive coefficients describing the coupling 
effects between these two waves have not been accur
ately determined, the governing equations were not 
solved. However, an order of magnitude analysis did 
show that the interaction between the air and ice 
structures might significantly increase the attenu
ation rates. More work in this area is needed before 
a quantitative evaluation of this can be made. 
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