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ABSTRACT

This paper shows how a multivariate Bayes estimator can be adjusted to satisfy a set
of linear constraints. In the direct approach, the constraint is enforced by a restriction
on the class of admissible estimators. In an alternative approach, the constraint is
merely encouraged by a mixed risk function which penalises misbalance between the
estimator and the constraint. The adjustment to the optimal unconstrained estimator is
shown to depend on the risk function and the linear constraints only, not on the
probability model underlying the Bayes estimator. Two practical examples are given,
one of which involves reconciliation of independently assessed share values with
current market values.
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1. INTRODUCTION

Actuaries often need to reconcile the estimates they have arrived at, with the data
used to calculate the estimates. In the estimation of pure premiums, for instance, the
actuary would always check that the total premiums calculated are sufficient to
cover the total cost of claims.

The concept of balanced linear estimators was introduced by Neuhaus (1995). In
that paper, a linear estimator is called balanced if it satisfies certain linear con-
straints involving the original data; furthermore, the optimal linear estimator is
called the credibility estimator, and the optimal balanced linear estimator is called
the balanced credibility estimator.

This paper generalises the balancing concept in two directions. The first general-
isation, presented in Section 2, involves balancing arbitrary estimators, i.e. estima-
tors which are not necessarily linear in the data. By this approach one arrives at an
optimal balanced estimator. As a by-product one obtains a much shorter derivation
of the balanced credibility estimator than in Neuhaus (1995). A simple example of
the calculations needed is given in Section 3.

Section 4 provides a more practical example. Given independent valuations of the
different shares in a market, the actuary could wish to reconcile these values to the
market value of the portfolio currently held, as well as the overall value of the
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market. We apply the balancing formula to calculate the optimal adjustment of
individually assessed share values.

In Section 5 we compare the balanced credibility estimator with the homogeneous
unbiased credibility estimator in the Buhlmann-Straub model. The latter estimator
has long been known to be balanced, see e.g. Gisler (1987).

The second generalisation, briefly presented in Section 6, involves the use of a
mixed risk function, where balancing is not enforced but misbalance is penalised.
The mixed risk function is similar to the optimisation criterion used in Whittaker-
Henderson graduation (see e.g. Taylor, 1992). A mixed risk function has also been
used by Sundt (1992) as a way of smoothing a sequence of credibility estimators.

In both generalisations, the necessary adjustment to the unconstrained Bayes
estimator turns out to be independent of the probability model underlying the Bayes
estimator. This allows the actuary to balance the estimates after the unconstrained
Bayes estimator has been calculated, and without reference to the model used.

Finally, a few words on terminology: Actuaries' frequent need to balance a set of
estimators against a set of data, is the prime motivation for studying linearly
constrained estimators. Since in the general context it is easy, however, to construct
linear constraints that do not comply with any sensible notion of balancing, we will
simply talk of constrained estimators in the balance of this paper.

2. OPTIMAL ESTIMATION UNDER BINDING LINEAR CONSTRAINTS

We assume the existence of a latent random vector (the estimand),

trl:=(bu...,bp)', (2.1)

as well as the existence of an observed the random vector (the statistic)

X"' := (X , , . . . ,X n ) ' . (2.2)

Assume that b and X are defined over the same probability space and square
integrable, and assume also that the joint distribution of (b,X) is known.

An estimator b is any measurable function

b : R " -> Rp : x ->b (x ) , (2.3)

such that b(X) is square integrable. The criterion (risk function) we use to measure
the performance of a given estimator is generalised mean squared error,

r (b) :=E[(b(X)-b) 'W(b(X)-b) ] , (2.4)

with yfpxp an some fixed, positive definite risk weighting matrix.
It is well known that the optimal estimator in the absence of any constraints,

which we denote by b, is the conditional mean of b given X:

b(X) = E[b | X]. (2.5)
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The risk of that estimator is

r(b) = tr[W-ECov[b|X]]. (2.6)

The optimality of b and its risk (2.6) are a direct consequence of the decomposition

r(b) =EE[(b - b) "W(b - b) | X]

=tr[W • ECov(b | X)] + E[(b - b) "W(b - b)]

= r(b) + EE[(b - b)'W(b - b) | X]. (2.7)

We refer to the last term in the above expression as the excess risk of the estimator
b.

Assume now that a constraint of the following general form has been imposed on
the class of admissible estimators:

/(b(X))=g(X) a.s., (2.8)

where/: K/ -> R« and g : R" -» R ? are known, fixed functions. The constraint
may equivalently be stated as

b ( X ) e f ' { ? ( X ) } , (2.9)

provided that/~'{g(X)} ^ 0 a.s. An estimator will be called constrained if it
satisfies (2.8).

From the decomposition (2.7) and the observation that both b and b are functions
of the statistic X, it is evident that the optimal constrained estimator, which we
denote by b(X), can be found by pointwise minimisation for each possible realisa-
tion X=x:

1UW}), (2.10)

where prow(a | B) denotes a projection of a vector a into a set B, with respect to the
metric derived from the inner product <a, b> = a'Wb. For general functions/, g,
this projection need not be unique and may not even exist; however, the projection
does exist if/ is a continuous function. In particular, if/and g are linear functions,
the projection has the explicit formula given in the next theorem.

Theorem
Assume that the two constraining functions are linear,

/(b) = Lb, g(x) = Px, (2.11)

where Uxp and Vxn are known, fixed matrices, and L is of full row rank q < p; then
the optimal constrained estimator is
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b(X) = b(X) + W 'L'Q '(PX - Lb(X)), (2.12)

with Q = LW 'L'.

Proof
Consider a fixed value of the statistic (X = x) and note that both b and b are
functions of x. Define the Lagrange functional

F = l(b-b) ' W ( b - b ) - A ' ( L b - P x ) , (2.13)

with \qxX a vector of Lagrange multipliers. Solving the equation

— = ( b - b ) 'W-A'L = 0 (2.14)
db

yields

b + W~1L'A. (2.15)

Now use the constraint (2.11) to determine A = Q~'(Px—Lb); substitute this
expression in (2.15) to find (2.12).

Remarks
Two remarks on the hypotheses of the theorem are in order. Firstly, the full rank
assumption on L is needed in order to ensure that the equation (2.8) is consistent.
Secondly, the assumption that g is linear has not been used at all; thus the estimator
(2.12) may easily be extended to more general functions g; however, the assumption
that g is linear will allow us to derive transparent formulas for the excess risk, which
is our next stopping point.
Using (2.12), the excess risk of the optimal constrained estimator over the uncon-
strained Bayes estimator is easily seen to be

E[(b - b) "W(b - b)] = tr[Q-'E(PX - Lb)(PX - Lb)']. (2.16)

One can write

E(PX - Lb)(PX - Lb)' = E[E(PX - Lb | X) • E' (PX - Lb | X)]

= CovE[PX - Lb | X] + E(PX - Lb) • E' (PX - Lb)

= Cov(PX - Lb) - ECovpPX - Lb | X]

+ E(PX - Lb) • E' (PX - Lb)

= E(PX - Lb)(PX - Lb) ' - L • ECovfb | X] • L'

= P • ECov[X | b] • P' - L • ECov[b | X] • V

+ E[(P • E(X | b) - Lb)(P • E(X | b) - Lb)']. (2.17)
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In the important special case where n — p and E(X | b) = b and L = P, the last term
drops out and the expression is reduced to L(ECov[X | b] —ECov[b | X]) L'.

Note that the adjustment matrix in (2.12), namely

J = W-1L'Q"1 , (2.18)

does not depend on the probability distribution of (b, X). As a consequence, one can
calculate the constraining adjustment after the unconstrained Bayes estimator has
been calculated, and without reference to the model used to derive that estimator.
Unlike the unconstrained Bayes estimator, however, the optimal constrained esti-
mator b depends on the risk weighting matrix W and, of course, the constraints.

An important special case is where W = diag(wi,. . . , wp) is a diagonal matrix and
there is only one constraint (q = 1). In that case one can write L = {l\,..., lp) and P
= (p\,...,pn). Inserted into (2.12), this gives the following formula for the rth
component of the optimal constrained estimator:

(2.19)

where A is the 'amount of misbalance' exhibited by the unconstrained Bayes
estimator. The excess risk in this case becomes

- l

(2.20)

Neuhaus (1995) treated the case where, on top of linear constraints of the form
(2.11), one imposes the additional constraint that the estimator b be a linear function
of the statistic X (i.e. a 'credibility' estimator). Using Lagrange minimisation, the
resulting 'balanced credibility estimator' was shown to be of the same form as
(2.12), with b the credibility estimator rather than the Bayes estimator. Given the
present result, a simple reasoning leading to that result goes as follows: since the
risk r(b) of a linear estimator b depends on the distribution of (b, X) only through its
moments of first and second order, the balanced credibility estimator can only
depend on those moments, too. But those moments could have been generated by a
Gaussian distribution, in which case even the optimal constrained estimator is a
linear function of X. Being selected from a wider class of admissible estimators, the
optimal constrained estimator in the Gaussian case must coincide with the balanced
credibility estimator; which in turn coincides with the balanced credibility estimator
in any other model that generates the same first and second order moments.

The excess risk (2.16) measures the average cost of constraining the estimator in
the long run by repeated independent estimation situations. One could argue that the
expectation should be dropped and that the pointwise increase of loss is what
matters. If one takes this view, the pointwise increase at X = x can be easily
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calculated by the formula

(b(x) - b(x)) 'W(b(x) - b(x)) = (Px - Lb(x)) Q '(Px - Lb(x)), (2.21)

being simply the distance between b and its projection onto/~'{g(x)}.

3. EXAMPLE: OPTIMAL CONSTRAINED ESTIMATION OF LOGNORMAL MEANS

As we have seen, the optimal constrained estimator (2.12) always has a component
that is linear in the statistic X. Let us now consider a model in which the optimal
unconstrained estimator is non-linear in X, and quantify the excess risk generated by
the constraint.

Assume that the portfolio under consideration consists of stochastically indepen-
dent policies labelled by i = 1, ...,/>. For policy no. i, assume we have observed
claim amounts Xy•: j — 1,...,«,, with «, fixed. Now assume that the Xy are
conditionally independent, given the value #, of a hidden random parameter ©,,
and that under the same conditional distribution,

Yy := \og(Xy) ~ Normal {$,, 0), (3.1)

with a fixed value of <j>. Assume that the hidden risk parameters 6 , are independent
with

e,-~Normal(/i ,A). (3.2)

The properties of the lognormal distribution are summarised in e.g. Hogg & Klug-
man (1984). In particular, the conditional mean of Xy, given 0,, is

bi = E[XiJ\ei]=e?< + i (3.3)

Now assume that it is our intention to estimate the vector of lognormal means,

b:=(bh...,bp)' (3.4)

under the constraint that the weighted sum of the estimates must equal the sum of
claims:

E "••*'• = E E x'j = E "'*'' (3-5)

where Xj := njx ^2,-Xy is the average of claims against policy no /.
It is well known that the conditional distribution of 9,, given Xj\,..., XiJh, is

again a normal with conditional mean
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and conditional variance

A ( 1 Z ) A

The Bayes estimator of bj is its conditional mean

Si = E[bi \XiU...,XUn] = e"< + * ? • (3.8)

and its conditional variance is

Varfr \XiU...,XUn] = e2"'+ * + A'(eA< - 1). (3.9)

Using (3.9) and the marginal distribution of Yt, which is Normal(//, A + (fr/n,), we
find after some tedious manipulation the Bayes risk for estimating b,:

EVar[/>, \XiU..., *,>,] = e2" + 2A + *(1 - e"*1). (3.10)

Let us assume that the matrix W is diagonal. Inserting /,- — pt •= «,-(/ = 1,...,/?) and
A,- given by (3.8) into (2.19), the optimal constrained estimator can be read off
directly.

In order to calculate the excess risk using (2.16) and (2.17), we must also find

EVar[jr,-| A,-] = i e
2 " + 2A + ^(e^ - 1). (3.11)

Now inserting the expressions (3.11) and (3.10) into (2.17), we find the excess risk
generated by the constraint:

/ P 2 \ " ' P
r ( b ) - r ( b ) = n - e ^ A + *^«l-[(e*-l)-»1-(l-e-A<)]. (3.12)

V = 1 W'J i = i

Using Jensen's inequality one can check that each of the summands on the right
hand side is non-negative.

The weighted Bayes risk is
v

r(b) = e2'i + 2A + ' *^w, - ( l - e~ A ' ) . (3.13)
/= I

In the case where ti\ = ... = np — n and W = I, it is easy to calculate the relative
excess risk,

r(b)-_r(b) U l e » - l x

r(b) p [n 1 - e"A'
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with Ai = \<j)/(n\ + <f>) = (1 — z\)\. The relative excess risk can become arbitra-
rily large. One can also show that

\

independent of A. Thus constraints should never be applied uncritically, and special
care must be taken when the original observations have a heavy-tailed distribution.

4. EXAMPLE: COMBINING SHARE VALUATIONS WITH MARKET VALUES

Consider an actuary who has been charged with an analysis of a portfolio of p
shares. Assume that in addition to the market values at any time t, which we denote
by

X(t) = (Xl(t),...,Xp(t))', (4.1)

the actuary has access to an individual valuation of the shares, based on an analysis
of the economic fundamentals. Let us assume that the individually assessed share
values reflect the analyst's conditional expectation, given all the information avail-
able to him, and denote the analyst's best bet by

(bl ( / ) , . . . , bp{t))'. (4.2)

Of course it is possible that b,(t) — Xi{t) for the major stocks and those stocks that
have not had the attention of the analyst.

In order not to stray too far from the market value of the shares, the actuary now
wishes to ensure that at least the overall value of the shares coincides with their
overall market value. Thus assume that the number of shares listed is

..,np(t))', (4.3)

while the number of shares held by the company (or pension fund) is

m(0 = (mi ( / ) , . . . , I M , ( 0 ) \ (4-4)

Assume that n(/) and m(/) are linearly independent. We must also assume that
shares have a common nominal value.

There could conceivably be two different constraints the actuary wishes to obey:

1 = 1 1 = 1

(2) : £ mi{t)bi{t) = £ mMXiit). (4.5)
1 = 1

The first constraint prevents any deviation from a market weighted index, while the
second constraint ensures that the values used in the actuary's analysis add up to the
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total value the company must show in its books. There could be additional con-
straints, for example a constraint to prevent deviation from a major sub-index like
the All Industrials.

The two constraints in (4.5) are formalised by the matrices

We suppress the argument (t) in the rest of this section.
The optimal adjustment to make to the analyst's set of estimates, follows directly

from (2.12):

b - b = W 1 L ' Q I A , (4.7)

where the vector

contains the misbalance of the analyst's estimates against each of the two con-
straints.

If W is diagonal, one can derive the following expression for the adjustment to
vector of share values:

(4.9)

i=i,...,P

In particular if mean squared error is weighted by the number of shares listed
(WJ = «,), we obtain the simple adjustment

r ^ , (4.10)

with N := T,jTij the total number of shares listed, M :— Tijirij the total number of
shares held, 5, := w,/«, the stake held in stock /, s := M~lH,jmjSj the average stake
held and S := M/N the overall stake in the stock market; 6\ := Ai/iV and
62 := A2/M denote the relative (per share) deviations between the market values
and the analyst's values.

From (4.10) one sees how the optimal adjustment depends on the relative
misbalances and the company's relative exposure to the different stocks. In parti-
cular, if 62 > 8\, then the adjustment to be made to share price no. /, is an increasing
function of 57, the stake held in stock no. i. Roughly speaking, 62 > 61 means that the
market likes the portfolio held by the company better than the analyst; in that case it
seems reasonable that the value of stocks of which the company has a major
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holding, should be assessed more highly than the value of stocks of which the
company only has a small holding. The opposite holds if 82 < 6\; if 62 = 61 = 6,
then each share price is adjusted with the same amount 6.

5. BALANCED VS. HOMOGENEOUS CREDIBILITY ESTIMATION

IN THE BUHLMANN-STRAUB MODEL

For the purpose of this section only, we revert to using the term 'balanced
estimators', since the constraint applied here neatly fits in with the intuitive notion
of balancing. Moreover, the estimators analysed in this section satisfy several
different constraints, so that the simple term 'constrained estimator' without a
number of qualifiers would be highly ambiguous.

Assume that the actuary is charged with estimating the pure premiums of n
independent insurance policies. For policy no. i, what has been observed is a
measure of exposure, denoted by pt, and the total claims cost, denoted by S,. The
empirical pure premium per unit of exposure of policy no. / is then Xj = Sj/pj.

Assume now that the probability distribution of Xt is governed by an unobserved
random parameter 0,- coming from a distribution U, in such a way that

= b(8i),

= v{9t)/Pl. ' '

Define the following structural parameters:

A = Var(6(0)). (5.2)

If a diagonal risk weighting matrix W = diag(wi,.. . , wn) is used, the balanced
credibility estimator under the constraint

PiXi (5.3)
1 = 1 / = i

is given by

/ n p2\~X n

(i — ! , . . . , « ) , and its risk is

7=1

where Zj = Xpj/(Xpj + 4>) are the credibility factors. The results (5.4) and (5. 5) are
proved in Neuhaus (1995).

Another linear estimator that is known to balance (i.e. satisfy the constraint (5.3)),
is the optimal homogeneous and unbiased credibility estimator,
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(5.6)

This fact has been noted by e.g. Gisler (1987).
Since the optimal homogeneous and unbiased estimator has two constraints to

satisfy and just happens to be balanced as well, there is no prize for guessing that its
risk will exceed that of the optimal balanced estimator. The question is just, by how
much the risks differ.

Specialising equation (5.27) of Neuhaus(1995) or using the representation (5.6)
directly, one easily shows that the risk of b is

j = i \j' = i / j = i

After some manipulations one can write the difference in risk as

7,2

r(b) - r(b) - ^
n

j = \

> 0 . (5.S

The inequality is a consequence of Jensen's inequality applied to the convex
ZjWj/pjfunction x —> x ' (x > 0), and will be strict unless all z.-Wj/pj are identical.

6. OPTIMAL ESTIMATION UNDER A PENALTY FOR MISBALANCE

In the example of Section 3 we noted that the relative excess risk introduced by the
constraint, can become arbitrarily large. Thus one must consider whether the benefit
of constraining the estimator is worth the added risk.

A compromise approach would be not to enforce the constraint, but merely to
'encourage' it by a suitable modification of the risk function, so that the modified
risk function reflects our preference of constrained estimators. This approach is
similar to that taken in Whittaker-Henderson graduation, see e.g. Taylor (1992). It is
also very similar to the smoothing approach proposed by Sundt (1992).

Let us therefore introduce the following, mixed risk function:

ra(b) = (1 - a) • E(b - b) 'W(b - b) + a • E(Lb - PX) 'V(Lb - PX), (6.1)

with W, V fixed, positive definite matrices, and a e [0,1) a parameter which
quantifies the trade-off between estimator precision and estimator constraints.

One can write

ra(b) = EE[(1 - a) • (b - b) 'W(b - b) + a • (Lb - PX) 'V(Lb - PX) | X].

(6.2)

Thus the optimal estimator may be determined pointwise for each possible realisa-
tion of X = x, and after having decomposed the first term in (6.2) as in (2.7), it is
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easy to verify that the optimal estimator is

ba(x) = ((1 - ^ W + aL'VL)"1^! - a)Wb(x) + aL'VPx]. (6.3)

Using tedious but straightforward matrix transformations, we can derive an equiva-
lent expression,

b a (x )=b(x) + J Q (Px-Lb(x) ) , (6.4)

with

J a = a W - 1 L ' ( ( l - a ) V - I + a Q ) ^ 1 . (6.5)

It is plain to see that

limba(x) = b(x), (6.6)

i.e. the optimal estimator under the risk function ra converges to the constrained
estimator when the relative penalty for misbalance increases.

7. CONCLUSION

The results of the author's previous paper (Neuhaus, 1995) have been generalised.
Constrained estimators solve a practical problem faced by most actuaries and, as

it turns out, the necessary adjustment is often very simple to compute. However, the
warning about constraints creating an excess risk cannot be put too strongly; in
unfavourable cases, an elaborate search for a realistic model and the optimal
estimator may well have been in vain, if subsequent use of constraints greatly
increases the risk of the estimator.

An interesting aspect concerns the use of constraints in empirical Bayes estima-
tion and empirical credibility estimation. The normal procedure followed by actu-
aries is to estimate the distribution of (b, X) (or its first and second order moments if
only a credibility estimator is sought), and then to act as if the estimated model was
the true model. In that case the constraining adjustment is still appropriate because,
as we have seen, it is independent of the model used to derive the Bayes (or
credibility) estimator. However, the resulting constrained estimator will not be the
optimal constrained estimator (or balanced credibility estimator), only an approx-
imation of it.

The last argument may be extended to arbitrary estimators. The derivation in
Section 2 rests fully on a pointwise minimum distance projection of the optimal
estimator into the space of constrained estimators. Now if one redefines the
optimisation problem from one of finding the optimal constrained estimator, to
one of finding the constrained estimator with minimum distance from a given
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estimator, one still arrives at the same constraining adjustment. A similar argument
is valid for the weighted estimator of Section 6.
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