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Left-orderability and Exceptional Dehn
Surgery on Twist Knots
Masakazu Teragaito

Abstract. We show that any exceptional non-trivial Dehn surgery on a twist knot, except the trefoil,
yields a 3-manifold whose fundamental group is left-orderable. This is a generalization of a result
of Clay, Lidman, and Watson, and also gives a new supporting evidence for a conjecture of Boyer,
Gordon, and Watson.

1 Introduction

A group is left-orderable if it admits a strict total ordering that is invariant under
left-multiplication. It is well known that any knot group or link group is left-order-
able (see [3]). More generally, many classes of 3-manifolds are known to have left-
orderable fundamental groups.

Boyer, Gordon, and Watson [2] conjecture that an irreducible rational homology
3-sphere is an L-space if and only if its fundamental group is not left-orderable. Here,
an L-space, introduced by Ozsváth and Szabó [12], is a rational homology sphere M
whose Heegaard–Floer homology ĤF(M) is a free abelian group of rank equal to
|H1(M)|. This conjecture is verified for Seifert fibered manifolds, Sol manifolds, and
double branched covers of non-split alternating links in [2, 8, 9].

On the other hand, if a knot admits Dehn surgery yielding an L-space, referred
to as an L-space surgery, then there are some constraints for the knot. For example,
its Alexander polynomial has a specified form [12], and such a knot must be fibered
[11]. Therefore, it is not going too far to say that most knots do not admit an L-space
surgery. Thus we can expect that any non-trivial Dehn surgery on a hyperbolic knot,
which does not admit an L-space surgery, yields a 3-manifold whose fundamental
group is left-orderable.

In this direction, Boyer, Gordon, and Watson [2] show that if K is the figure-
eight knot and −4 < r < 4, then r-surgery on K yields a 3-manifold with left-
orderable fundamental group. Furthermore, Clay, Lidman, and Watson [6] show
that this also holds for r = ±4. (Note that the figure-eight knot does not admit an
L-space surgery.)

In this paper, we will examine the m-twist knot in the 3-sphere, illustrated in
Figure 1. We adopt the convention that the horizontal twists are right-handed if m is
positive, left-handed if m is negative. Thus, the 1-twist knot is the figure-eight knot,
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and the (−1)-twist knot is the right-handed trefoil. Also, if |m| ≥ 2, then the m-twist
knot is hyperbolic and non-fibered (see [5]).

m full twists-m-null twists

Figure 1

The purpose of this paper is to verify that 4-surgery on the m-twist knot with
|m| ≥ 2 yields a graph manifold whose fundamental group is left-orderable. Since
such a twist knot is non-fibered, it does not admit an L-space surgery. (This fact also
follows from the form of its Alexander polynomial.) Thus the following theorem
provides new supporting evidence for the conjecture of Boyer, Gordon, and Watson
mentioned above.

Theorem 1.1 Let K be the m-twist knot with |m| ≥ 2. Then 4-surgery on K yields a
graph manifold whose fundamental group is left-orderable.

Our argument follows that of Clay, Lidman, and Watson [6, Section 4] for the case
of 4-surgery of the figure-eight knot. They make use of the Dubrovina–Dubrovin or-
dering for the braid group B3 of order 3, which is isomorphic to the knot group of the
trefoil, but we need some left-orderings for torus knot groups defined by Navas [10].

By combining with known results, we can immediately prove the following corol-
lary.

Corollary 1.2 Let K be a hyperbolic twist knot. Then any exceptional non-trivial
Dehn surgery on K yields a 3-manifold whose fundamental group is left-orderable.

2 Fundamental Group

Let K be the m-twist knot. We can assume that m 6= 0,−1. It is well known that
4-surgery on K yields a toroidal manifold. In fact, the manifold is a graph manifold.
In this section, we will examine the structure of the manifold by using the Montesinos
trick and get a presentation of its fundamental group.

As shown in Figure 2, put K in a symmetric position. By taking the quotient
under the involution map, we have a tangle description of the knot exterior. This
means that the double branched cover of the (outside) ball branched over the two
strings recovers the knot exterior.
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Figure 2

If we fill the ∞-tangle, as indicated by dotted lines in Figure 2, into the inner
ball, then it gives an unknot. Here, we choose the framing so that the 0-tangle filling
corresponds to 4-surgery. Figure 3 shows the 0-tangle filling yields a link with a
trivial component. Let S be the 2-sphere illustrated there that gives an essential tangle
decomposition.

m crossings-
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Figure 3

One side of S is the Montesinos tangle M(−1/2,−m/(2m + 1)), and the other
side is the Montesinos tangle M(−1/2, 1/2). Then the double branched cover M1 of
M(−1/2,−m/(2m + 1)) is the exterior of the torus knot of type (2, 2m + 1), and the
double cover M2 of M(−1/2, 1/2) is the twisted I-bundle over the Klein bottle. Thus
the resulting manifold M of 4-surgery on K is M1 ∪M2.

We have π1(M1) = 〈a, b : a2 = b2m+1〉. See Figure 4. The meridian µ is b−ma, and
the regular fiber h with respect to a (unique) Seifert fibration is a2 (= b2m+1).

It is well known that M2 admits two Seifert fibrations. One is a fibration over the
disk with two exceptional fibers of index 2, and the other is that over the Möbius
band with no exceptional fiber. Then we can choose the generators {x, y} of π1(M2)
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m

a

b

Figure 4

so that x corresponds to an exceptional fiber in the first fibration, and y corresponds
to a regular fiber in the second fibration. Thus we obtain that

π1(M2) = 〈x, y : x−1 yx = y−1〉,

and that π1(∂M2) is generated by x2 and y.
To get a presentation of π1(M), we have to examine the identification between

∂M1 and ∂M2.

Lemma 2.1 Under the identification between ∂M1 and ∂M2, µ and h on ∂M1 corre-
spond to y−1 and y−1x2 on ∂M2, respectively.

Proof Consider two loops z and w on the boundary of the Montesinos tangle
M(−1/2, 1/2) as illustrated in Figure 5. Then z and w lift to two copies of x2 and
y, respectively (see [5, Chapter 12]).

z

w

Figure 5

Next, we replace the Montesinos tangle M(−1/2, 1/2) with the 0-tangle as shown
in Figure 6, where we insert a narrow band f to chase z. The result is a trivial knot. By
taking the double branched cover along this trivial knot, the band f lifts to a knotted
annulus whose core forms the torus knot of type (2, 2m + 1). (This proves that the
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double branched cover of M(−1/2,−m/(2m + 1)) is the exterior of the torus knot
of type (2, 2m + 1).) Also, the framing determined by f has slope (4m + 1)/1. Recall
that h has slope (4m + 2)/1. Hence we can choose the orientations of x and y so that
y−1 and x2 correspond to the meridian µ and µ−1h, respectively.

m crossings-

m crossings-f

f

isotopic m-crossings
m-crossings

isotopic

Figure 6

Thus we have shown the following proposition.

Proposition 2.2 Let K be the m-twist knot with m 6= 0,−1. Then 4-surgery on K
yields a graph manifold M that is the union of the twisted I-bundle over the Klein bottle
and the knot exterior of torus knot of type (2, 2m + 1). Furthermore, its fundamental
group has a presentation

π1(M) =
〈

a, b, x, y : a2 = b2m+1, x−1 yx = y−1, µ = y−1, h = y−1x2
〉
,

where µ = b−ma and h correspond to a meridian and a regular fiber of the torus knot
exterior (with the Seifert fibration), respectively.

Remark 2.3 Our presentation in Proposition 2.2 is equivalent to that of [6] for the
case m = 1.

3 Normal Families of Left-orderings

Let G be a left-orderable non-trivial group. This means that G admits a strict total
ordering < such that a < b implies ga < gb for any g ∈ G. This is equivalent to
the existence of a positive cone P (6= ∅), which is a semigroup and gives a disjoint
decomposition P t {1} t P−1. For a given left-ordering <, the set P = {g ∈ G |
g > 1} gives a positive cone. Any element of P (resp. P−1) is said to be positive
(resp. negative). Conversely, given a positive cone P, declare a < b if and only if
a−1b ∈ P. This defines a left-ordering.

We denote by LO(G) the set of all positive cones in G. This is regarded as the
set of all left-orderings of G as mentioned above. For g ∈ G and P ∈ LO(G), let
g(P) = gPg−1. This gives a G-action on LO(G). In other words, for a left-ordering
< of G, an element g sends < to a new left-ordering <g defined as follows: a <g b
if and only if ag < bg. We say that < and <g are conjugate orderings. Also, a family
L ⊂ LO(G) is said to be normal if it is G-invariant.
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Example 3.1 Let G = 〈x, y : x−1 yx = y−1〉. This is the fundamental group of
the Klein bottle. It is known that G admits exactly four left-orderings. We will define
two normal families L+ and L− of left-orderings as follows. Consider a short exact
sequence

1 −→ 〈y〉 −→ G
q−→ 〈x〉 −→ 1.

For g ∈ G, define 1 <++ g if q(g) = xs with s > 0, or q(g) = 1 and g = yr with
r > 0. Similarly, define 1 <+− g if q(g) = xs with s > 0, or q(g) = 1 and g = yr

with r < 0. Then we can easily prove that L+ = {<++, <+−} gives a normal family
of LO(G).

Similarly, define 1 <−+ g if q(g) = xs with s < 0, or q(g) = 1 and g = yr with
r > 0. And, define 1 <−− g if q(g) = xs with s < 0, or q(g) = 1 and g = yr with
r < 0. Then L− = {<−+, <−−} gives another normal family.

We need one more notion. For i = 1, 2, let Gi be a left-orderable group, let Hi be a
subgroup of Gi , and let Li ⊂ LO(Gi) be a family of left-orderings. Let φ : H1 → H2 be
an isomorphism. We recall that φ is compatible for the pair (L1, L2) if for any P1 ∈ L1,
there exists P2 ∈ L2 such that h1 ∈ P1 implies φ(h1) ∈ P2 for any h1 ∈ H1.

Theorem 3.2 (Bludov–Glass [1]) For i = 1, 2, let Gi be a left-orderable group and
let Hi be a subgroup of Gi . Let φ : H1 → H2 be an isomorphism. Then the free product
with amalgamation G1 ∗ G2 (H1

φ∼=H2) is left-orderable if and only if there exist normal
families Li ⊂ LO(Gi) for i = 1, 2 such that φ is compatible for (L1, L2).

4 An Ordering of Torus Knot Group

For n ≥ 1, let Γn = 〈b, c : b = cbnc〉. Navas [10] proved that the semigroup
generated by {b, c} gives a positive cone, hence a left-ordering of Γn. In other words,
an element w ∈ Γn is positive (resp. negative) if w can be written in only positive
(resp. negative) powers of b, c.

Let ∆ = bn+1. Then ∆ > 1. It is easy to see that ∆ is central. (In fact, ∆ generates
the center of Γn.) Also, b−1 = bn∆−1 and c−1 = bncbn∆−1. Thus, as Navas observes,
every element w ∈ Γn can be written in a form u∆` for some trivial or positive u and
` ∈ Z.

Furthermore, he shows that every element w ∈ Γn has a normal form

w = cn0 bm1 cn1 · · · cnk−1 bmk cnk ∆` = u∆`,

with the properties

(i) ni > 0 for 0 < i < k, n0 ≥ 0, nk ≥ 0;
(ii) mi ∈ {1, 2, . . . , n− 1} for 1 < i < k;
(iii) m1 ∈ {1, 2, . . . , n − 1} (resp. {1, 2, . . . , n}) if n0 > 0 (resp. n0 = 0); similarly,

mk ∈ {1, 2, . . . , n− 1} (resp. {1, 2, . . . , n}) if nk > 0 (resp. nk = 0);

and ` ∈ Z.
The next lemma is proved in [10, Section 2].

Lemma 4.1 ([10]) Let w = u∆` be a normal form of a non-trivial element w ∈ Γn.
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(i) If u = 1, then w is positive or negative, according to the sign of `.
(ii) If u 6= 1 and ` ≥ 0, then w is positive. If u 6= 1 and ` < 0, then w is negative.

Lemma 4.2 For any w ∈ Γn, there exists an integer ` such that ∆` < w < ∆`+1.

Proof Let w = u∆` be a normal form, where u is trivial or positive. If u = 1, then
the conclusion is clear. So, let u > 1. Recall that ∆ is central. Then ∆` < ∆`u, and
∆`u < ∆`+1 by Lemma 4.1(ii). Thus we have ∆` < w < ∆`+1.

Let G2m+1 = 〈a, b : a2 = b2m+1〉. We are interested in the case where |m| ≥ 2. This
is isomorphic to the knot group of the torus knot of type (2, 2m + 1). It is well known
(see [5]) that h = a2 = b2m+1 is a central element, which corresponds to a regular
fiber of the torus knot exterior with a (unique) Seifert fibration, and the meridian µ
is b−ma.

Suppose m > 0. Then

G2m+1 = 〈a, b, c : a2 = b2m+1, c = ba−1〉 = 〈b, c : b = cb2mc〉.

Thus this is Γ2m in Navas’s notation. We remark that ∆ = h.
Assume m < 0. Set n = −m− 1 (≥ 1). Then

G2m+1 = 〈a, b, c : a2 = b−2n−1, c = ab〉 = 〈b, c : b = cb2nc〉.

Hence G2m+1 = Γ2n = Γ−2m−2. We should remark that ∆ = b2n+1 = b−2m−1 =
h−1.

In either case, we can introduce Navas’s left-ordering to G2m+1, denoted by <,
hereafter.

Lemma 4.3 Both µ and h are either positive or negative, according to the sign of m.

Proof Assume m > 0. Since b−ma = bm+1a−1 and c = ba−1,

µ = bm+1a−1 = bm(ba−1) = bmc.

Thus µ is positive by Lemma 4.1. Also, h = ∆ > 1.
Assume m < 0, and set n = −m− 1 as before. Then

µ = bn+1a = bn+1cb−1 = bn+1cb2n∆−1,

since a = cb−1 and b−1 = b2n∆−1. Hence µ < 1. Finally, h = ∆−1 < 1.

Lemma 4.4 For any integer r, µr < ∆.

Proof Suppose m > 0. As in the proof of Lemma 4.3, µ = bmc. If r > 0, then
∆−1µr = µr∆−1 = (bmc)r∆−1 < 1 by the criterion of Lemma 4.1. Thus µr < ∆.

If r < 0, then set k = −r. Then µr = µ−k = (c−1b−m)k. By c−1 = b2mcb2m∆−1,
we have µr = (b2mcbm)k∆−k. When k = 1, this is a normal form, so µr < 1 < ∆.
When k > 1, µr = (b2mcbm)(b2mcbm) · · · (b2mcbm)∆−k = b2mcbm−1 · · · cbm∆−1.
Again, µr < 1 < ∆.
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Now, assume m < 0. Set n = −m − 1 as before. As in the proof of Lemma 4.3,
µ = bn+1cb−1 = bn+1cb2n∆−1. If r = 1, then µ = bn+1cb2n∆−1 < 1 < ∆. If r > 1,
then

µr = (bn+1cb−1)r = bn+1cbn · · · bncb−1 = bn+1cbn · · · bncb2n∆−1 < 1 < ∆.

If r < 0, set k = −r. Then µr = µ−k = (bc−1b−n−1)k = (cbn−1)k < ∆.

The next lemma is proved by a similar argument to that of [6].

Lemma 4.5 For any element g ∈ G2m+1 and an integer r, ∆−1 < g−1µrg < ∆.

Proof For a given g, there exists an integer ` such that ∆` < g < ∆`+1 by Lemma 4.2.
Since ∆ is central, we also have ∆−`−1 < g−1 < ∆−`.

Here, assume that ∆ < g−1µrg for contradiction. Then ∆ = ∆`∆2∆−`−1 <
g(g−1µrg)2g−1 = µ2r. This contradicts Lemma 4.4.

Assume g−1µrg < ∆−1. Then µ2r = g(g−1µrg)2g−1 < ∆`+1∆−2∆−` = ∆−1.
So, ∆ < µ−2r, which contradicts Lemma 4.4 again.

Unfortunately, Navas’s ordering does not satisfy the so-called Property S, but we
have a weaker result, which is sufficient to our purpose.

Lemma 4.6 For any conjugate ordering <g of Navas’s ordering < of G2m+1, assume
1 <g µrhs. Then we have the following.

(i) If m > 0, then

(a) s > 0; or
(b) s = 0 and r > 0 (resp. r < 0) if g−1µg > 1 (resp. g−1µg < 1).

(ii) If m < 0, then

(a) s < 0; or
(b) s = 0 and r > 0 (resp. r < 0) if g−1µg > 1 (resp. g−1µg < 1).

Proof By definition, 1 < g−1µrhsg. Then g−1µ−rg < hs.
(i) Assume m > 0. Then ∆ = h. By Lemma 4.5, we have s ≥ 0. So, suppose

s = 0. If g−1µg > 1, then g−1µ−rg < 1 if and only if r > 0. Similarly, if g−1µg < 1,
then g−1µ−rg < 1 if and only if r < 0.

(ii) Assume m < 0. Then ∆ = h−1. By Lemma 4.5, we have s ≤ 0. When s = 0,
the argument is the same as above.

5 Proofs

Proof of Theorem 1.1 Let M be the resulting manifold by 4-surgery on the m-
twist knot. Let M1 be the exterior of the torus knot of type (2, 2m + 1) and let
M2 be the twisted I-bundle over the Klein bottle. Also, let Gi = π1(Mi) and
Hi = π1(∂Mi). Then by Proposition 2.2, π1(M) is the free product with amalga-
mation G1 ∗ G2 (H1

φ∼=H2) where

G1 = 〈a, b : a2 = b2m+1〉,G2 = 〈x, y : x−1 yx = y−1〉, φ(µ) = y−1, φ(h) = y−1x2.
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For LO(G1), let L1 be the (normal) family of all conjugate orderings of Navas’s
ordering. For LO(G2), set L2 to be the normal family L+ = {<++, <+−} or L− =
{<−+, <−−}, defined in Example 3.1, according to the sign of m. To show that
π1(M) is left-orderable, it is sufficient to verify that φ is compatible for the pair
(L1, L2) by Theorem 3.2.

Let <g∈ L1. Suppose 1 <g µrhs. Assume m > 0. According as g−1µg is positive
or negative with respect to Navas’s ordering, we choose<+− or<++ from L2, respec-
tively. Since φ(µrhs) = y−r(y−1x2)s, q(φ(µrhs)) = x2s. Then φ(µrhs) is positive by
Lemma 4.6. When m < 0, we choose <−− or <−+ from L2.

Proof of Corollary 1.2 Let K be the m-twist knot. Then it is sufficient to consider
the case where |m| ≥ 2, because the conclusion for the figure-eight knot is settled by
[2, 6]. According to the classification of exceptional Dehn surgery on 2-bridge knots
[4], K admits exactly five exceptional (non-trivial) Dehn surgeries. More precisely,
those slopes are 0, 1, 2, 3, and 4. For r = 1, 2, or 3, r-surgery yields a small Seifert
fibered manifold ([4]). Since K is not fibered, it does not admit an L-space surgery by
[11]. Hence such a Seifert fibered manifold has left-orderable fundamental group by
[2, Theorem 4]. For r = 0, the resulting manifold is prime ([7]) and has positive Betti
number, so its fundamental group is left-orderable by [3]. Finally, our Theorem 1.1
solves the remaining case r = 4.
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