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AUTOMORPHISMS OF THE LIE ALGEBRAS
WŁ IN CHARACTERISTIC 0

J. MARSHALL OSBORN

1. Introduction. In a recent paper [2] we defined four classes of infinite dimen-
sional simple Lie algebras over a field of characteristic 0 which we called WŁ, SŁ, HŁ,
and KŁ. As the names suggest, these classes generalize the Lie algebras of Cartan type.
A second paper [3] investigates the derivations of the algebras WŁ and SŁ, and the possi-
ble isomorphisms between these algebras and the algebras defined by Block [1]. In the
present paper we investigate the automorphisms of the algebras of type WŁ. We show
that the automorphism group of an algebra A of type WŁ is isomorphic to a subgroup of
the automorphism group of the associative algebra B of which it is a subalgebra of the
derivations. In case A is all derivations of B, then Aut A ¾≥ Aut B. We also use automor-
phisms to show that two algebras of type WŁ can be isomorphic only if they have the
same number of invertible variables and the same number of noninvertible variables.

The definition of the algebras of type WŁ is given in Section 2, and much of the termi-
nology is established there. Our basic results on the automorphisms of these algebras is
found in Section 3, and some examples are given in Section 4. We also show in Section 4
that the dimension of a torus in the noninvertible part of the algebra is no more than the
number of noninvertible elements. Our final result on the isomorphisms of algebras of
type WŁ and the machinery necessary for this result are in Section 5.

2. Background. We begin by giving a definition of an algebra of type WŁ. (A more
formal definition can be found in [2] or [3].) Let F be a field of characteristic 0, let
x1, . . . , xn be n indeterminates or variables over F, and let the integer k � n be fixed. For
each i with 1 � i � k let ∆i denote the nonnegative integers, and for each i with k Ú i � n
let ∆i denote an additive subgroup of F containing the integers. Let B be the associative
algebra over F spanned by all products of the form xã1

1 xã2
2 Ð Ð Ð xãn

n where ãi 2 ∆i for each
i. We can write this element more succinctly as xã where ã is the n-tuple whose i-th
component is ãi. Multiplication in B is then given by xãxå ≥ xã+å in this notation. The
variables xi for 1 � i � k are called noninvertible, and those with k Ú i � n are called
invertible.

For 1 � i � n let ∂i denote the usual partial derivative with respect to xi acting on B.
We denote by A the set of all elements of the form

P
1�i�n fi∂i where each fi 2 B, and A
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is a Lie algebra under the product defined by letting

[fi∂i, gj∂j] ≥ fi∂i(gj)∂j � gj∂j(fi)∂i.

It is obvious that B acts as on A as a left module, and that A acts on B as a ring of
derivations.

The set of algebras A that we have constructed are exactly the algebras of type WŁ. In
the following, A will always denote a Lie algebra of type WŁ, and B will always denote
the associated associative algebra. The symbols n and k will always denote respectively
the number of variables and the number of noninvertible variables. The symbol èi will
denote the n-tuple with 1 in the i-th position and 0’s elsewhere. Thus, xèi ≥ xi.

If each ∆i for k Ú i � n has rank 1, then A is easily seen to be the set of all derivations
of B. Suppose, on the other hand, for some ‡ with k Ú ‡ � n that ∆‡ has rank Ù 1,
so that we can write ∆‡ ≥ ∆‡1 ý ∆‡2 for two nontrivial subgroups ∆‡1 and ∆‡2. Then
xã‡

‡
≥ xã‡1

‡
xã‡2
‡

where ã‡1 2 ∆‡1 and ã‡2 2 ∆‡2, and ã‡1 +ã‡2 ≥ ã‡. We have effectively
divided x‡ into two new variables. The new associative algebra B0 on n + 1 variables
which we get in this way, although isomorphic to B as an algebra, gives rise to another
algebra A0 of type WŁ which properly contains an isomorphic copy of A. In particular, A
is not the set of all derivations of B.

3. Relations between the automorphisms of A and of B. In this section we give
the basic results on which everything else is grounded.

THEOREM 3.1. Let k ½ 1 and let û be an automorphism of A. Then there exists an
automorphism õ of B such that û(tw) ≥ õ(t)û(w) and õ(wt) ≥ û(w)õ(t) for all t 2 B and
w 2 A.

PROOF. Define Ψ(t, w) ≥ û�1
�
tû(w)

�
for t 2 B and w 2 A, and note that Ψ(t, w) is

linear in both t and w. Then

(3. 2)

[x‡i ∂i, Ψ(t, ∂j)] ≥
h
x‡i ∂i,û�1

�
tû(∂j)

�i

≥ û�1
�h
û(x‡i ∂i), tû(∂j)

i�

≥ û�1
��
û(x‡i ∂i)t

�
û(∂j)

�
+ û�1

�
t
h
û(x‡i ∂i),û(∂j)

i�

≥ û�1
��
û(x‡i ∂i)t

�
û(∂j)

�
� ‡éijû

�1
�
tû(x‡�1

j ∂j)
�
.

It is clear from (3.2) that, when we apply the ad’s of the different toral elements xi∂i to
Ψ(t, ∂j) and take linear combinations to separate the different homogeneous components
of Ψ(t, ∂j), we are simultaneously separating t into its different homogeneous compo-
nents with respect to the different toral elements û(xi∂i). In particular, the toral elements
û(xi∂i) decompose t into elements in root spaces with exactly the same set of roots as the
decomposition of Ψ(t, éj) induced by the elements xi∂i.

We show next that Ψ(t, ∂j) is an element of B times ∂j. It is sufficient to show this when
t is in a single root space with respect to the torus consisting of the elements û(xi∂i). Say
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that, for each i, û(xi∂i)t ≥ ait for ai 2 F. If ai is not a positive integer for some i Â≥ j,
there exists bi 2 ∆i so that ai + bi is a positive integer. Further, we can pick bi to be
different from the exponent of xi in every term of Ψ(t, éj). In this case, Ψ(t, ∂j) has the
desired form if and only if

[xbi
i ∂i, Ψ(t, ∂j)] ≥ û�1

��
û(xbi

i ∂i)t
�
û(∂j)

�

≥ Ψ
�
û(xbi

i ∂i)t, ∂j

�

has the desired form. This shows that we can take each ai for i Â≥ j to be a nonnegative
integer. If any ai is positive, we see that [∂i , Ψ(t, ∂j)] has the same form, and its value of
ai is one less. Thus it is sufficient to deal with the case where each ai is 0 for i Â≥ j. But
in this case,

[∂i, Ψ(t, ∂j)] ≥ û�1
�h
û(∂i), tû(∂j)

i�
≥ 0,

for i Â≥ j. It follows that Ψ(t, ∂j) is just a multiple of ∂j by an element of B for any t.
Then when w ≥ ∂j, we can write Ψ(t, ∂j) ≥ ú(t)∂j . It is clear that ú is one-to-one,

and we want to see that it is also onto. But each monomial s 2 B is characterized by
its set of eigenvalues under the operators xi∂i. So choosing t 2 B to have the same set
of eigenvalues under the operators û(xi∂i) as s has under the xi∂i’s, we see that ú(t) is a
nonzero multiple of s by (3.2). Thus ú has an inverse õ, and we can write our relation in
the form

t∂j ≥ û�1
�
õ(t)û(∂j)

�
.

Applying û to both sides,

(3. 3) û(t∂j) ≥ õ(t)û(∂j).

Let õj be the function õ determined by using ∂j as above. We can change variables in
B by letting x01 ≥ x1 � xj, and x0i ≥ xi for i Â≥ 1. Making the change ∂0j ≥ ∂j + ∂1 and
∂0i ≥ ∂i for i Â≥ j in A, we arrive at new bases of B and A which act like the original bases.
If õ0j is the function õ going with ∂0j , we obtain

õj(t)û(∂j) + õ1(t)û(∂1) ≥ û
�
t(∂j + ∂1)

�
≥ õ0(t)û(∂j + ∂1),

and because of the independence of the B multiples of û(∂j) and û(∂1), we see that õj ≥
õ0 ≥ õ1. We have shown that õ is independent of the subscript j.

From the equation

û�1
�
û(∂j)õ(t)û(∂j)

�
≥ û�1

�h
û(∂j),õ(t)û(∂j)

i�

≥ [∂j , t∂j]

≥ (∂j t)∂j

≥ û�1
�
õ(∂j t)û(∂j)

�
,

we obtain

(3. 4) û(∂j)õ(t) ≥ õ(∂j t).
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We want to show next that

(3. 5) õ(s)õ(t) ≥ õ(st).

Applying û to both sides of [s∂j , t∂j] ≥ (s∂jt � t∂js)∂j yields

[õ(s)û(∂j),õ(t)û(∂j)] ≥ õ
�
(s∂j t � t∂js)

�
û(∂j).

The left side of this is fõ(s)û(∂j)õ(t) � õ(t)û(∂j)õ(s)gû(∂j), so we have

õ(s)û(∂j)õ(t) � õ(t)û(∂j)õ(s) ≥ õ(s∂j t � t∂js).

Using (3.4), this becomes

õ(s)õ(∂j t) � õ(t)õ(∂j s) ≥ õ(s∂jt � t∂js),

or

(3. 6) õ(s)õ(∂j t)� õ(s∂jt) ≥ õ(t)õ(∂j s)� õ(t∂js).

If ∂js ≥ 0, the right side of the last equation vanishes, giving

õ(s)õ(∂j t) ≥ õ(s∂j t).

Thus (3.5) holds for degj(t) Â≥ �1 and degj(s) ≥ 0. Now the right side of (3.6) also
vanishes when degj(s) ≥ 1, showing that the left side does also. Hence, (3.5) also holds
for degj(t) Â≥ �1 and degj(s) ≥ 1. We can use this last to show that (3.5) holds when
degj(t) ≥ �1 and degj(s) ≥ 0:

õ(s)õ(t) ≥ õ(s)õ(xj)õ(x�1
j t)

≥ õ(sxj)õ(x�1
j t)

≥ õ(sxjx
�1
j t)

≥ õ(st).

We also can obtain the special case of (3.5) with s ≥ xãj and t ≥ xåj by noting that
deg1(s) ≥ 0 and deg1(t) ≥ 0 for ‡ Â≥ j, and that we may interchange the roles of 1
and j. Finally, the general case of (3.5) follows by writing s ≥ xãj s0 and t ≥ xåj t0 where
degj(s0) ≥ 0 and degj(t0) ≥ 0, and by calculating that

õ(s)õ(t) ≥ õ(xãj )õ(xåj )õ(s0)õ(t0)

≥ õ(xã+å
j )õ(s0t0)

≥ õ(xã+å
j s0t0)

≥ õ(st).

As an immediate consequence of (3.5) we have

û(st∂j) ≥ õ(st)û(∂j) ≥ õ(s)õ(t)û(∂j ) ≥ õ(s)û(t∂j).
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We show finally that û(tw) ≥ õ(t)û(w) and û(w)õ(t) ≥ õ(wt) for all t 2 B and w 2 A.
Writing w ≥

P
i si∂i, we have

û(tw) ≥ û
�

t
X

i
si∂i

�

≥
X

i
û(tsi∂i)

≥ õ(t)
X

i
û(si∂i)

≥ õ(t)û(w),

û(w)õ(t) ≥ û
�X

i
si∂i

�
õ(t)

≥
X

i
õ(si)û(∂i)õ(t)

≥
X

i
õ(si)õ(∂i t)

≥
X

i
õ(si∂it)

≥ õ(wt)

THEOREM 3.7. The map ü from the group of automorphisms Aut A of A to the group
of automorphisms Aut B of B defined by mapping each û into its corresponding õ is an
isomorphism of Aut A into Aut B. Further, ü is onto if and only if each ∆i has rank 1 for
k Ú i � n.

PROOF. Let û1 and û2 be two automorphisms of A, and let õ1 ≥ ü(û1) and õ2 ≥
ü(û2). Then ü is a group homomorphism since

û1û2(tw) ≥ û1

�
õ2(t)û2(w)

�
≥ õ1

�
õ2(t)

�
û1û2(w).

Suppose that û is in the kernel of ü, i.e., that û(tw) ≥ tû(w) for all t 2 B. If j Â≥ i, then

0 ≥ û([∂i , x‡j ∂j])

≥ [û(∂i),û(x‡j ∂j)]

≥ [û(∂i), x‡j û(∂j)]

≥ fû(∂i)x‡j g∂j + x‡j [û(∂i),û(∂j)]

≥ fû(∂i)x
‡
j g∂j + x‡j û([∂i, ∂j])

≥ fû(∂i)x‡j g∂j.

Thus, û(∂i)x‡j ≥ 0 for all ‡ whenever j Â≥ i. But then û(∂i) ≥ fi∂i for some fi 2 B. For
i Â≥ j,

0 ≥ û([∂i , ∂j])

≥ [û(∂i),û(∂j)]

≥ [fi∂i, fj∂j]

≥ fi(∂j fi)∂j � fj(∂ifj)∂i,
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which implies that ∂jfi ≥ 0. Hence, fi is just a polynomial in xi. If fi is not a constant
polynomial, then any element on which û(∂i) acts ad-nilpotently is annihilated by û(∂i).
But this cannot happen sinceû(∂i) is the image of the element ∂j which acts ad-nilpotently
on some elements which it does not annihilate. It follows that fi 2 F. From the calculation

fi∂i ≥ û(∂i)

≥ û([∂i, xi∂i])

≥ [û(∂i),û(xi∂i)]

≥ [û(∂i), xiû(∂i)]

≥ [fi∂i, fixi∂i]

≥ f 2
i ∂i

we obtain fi ≥ 1. Thus, û is just the identity automorphism, and ü is 1-1.
If ∆‡ has rank greater than 1 for some ‡ with k Ú ‡ � n, then A can be embedded

into a larger algebra A0 of derivations of B by splitting the ‡-th variable, as noted at the
end of Section 2. The map ü0 of Aut A0 into Aut B is one-to-one and clearly extends
ü: Aut A ! Aut B, so ü could not be onto when rank ∆‡ Ù 1.

Suppose, on the other hand, that rank ∆i ≥ 1 for all i with k Ú i � n. To see that
ü is onto this time, let õ be an automorphism of B, and define the map û: A ! A by
û(w)t ≥ õ

�
wõ�1(t)

�
. Then clearly û(w) acts linearly on A, and the map û is linear also.

Further, û(w) is a derivation of B since

û(w)(st) ≥ õ
�
wõ�1(st)

�

≥ õ
�

w
�
õ�1(s)õ�1(t)

��

≥ õ
��

wõ�1(s)
�
õ�1(t) + õ�1(s)w

�
õ�1(t)

��

≥ õ
�
wõ�1(s)

�
t + sõ

�
wõ�1(t)

�

≥
�
û(w)s

�
t + sû(w)t,

for all w 2 A and s, t 2 B. Since A is all derivations of B in the case we are considering,
it follows that û(w) 2 A. Finally, õ ≥ ü(û) since

û(sw)t ≥ õ
�
swõ�1(t)

�
≥ õ(s)õ

�
wõ�1(t)

�
≥ õ(s)û(w)t,

for all w 2 B and s, t 2 A.

REMARK. The following example due to Zhao Kaiming shows explicitly that the
map û of the last paragraph does not map A into itself when rank ∆‡ Ù 1 for some ‡.
Splitting x‡ into two variables as at the end of Section 2, we let õ be the automorphism of
B which inverts one of the new variables and preserves the other new variable as well as
the other old variables. Then the map û of the last paragraph does not map A into itself.
Equivalently, this õ has no corresponding û in A.
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LEMMA 3.8. For any automorphism û of A the gradient of û(∂m) is zero for each m.

PROOF. Let û(∂m) ≥
P

i f (m)
i ∂i, let õ ≥ ü(û), and let õ(xj) ≥ gj. Then

P
i f (m)

i ∂igj ≥
û(∂m)õ(xj) ≥ õ(∂mxj) ≥ émj. For fixed m, the solution to this set of equations is given by
Cramer’s Rule as Cf (m)

i ≥ Ci where C ≥ det k∂igjk and where Ci is obtained from C by
replacing the i-th column by èm. To show that the gradient of û(∂m) is zero, we have to
establish that

P
i ∂if

(m)
i ≥ 0, or that

P
i ∂iCi ≥ 0. If Ci‡ is obtained from Ci by applying ∂i

to the ‡-th column, then ∂iCi ≥
P
‡ Ci‡. The assertion that the gradient of û(∂m) is zero

can then be written in the form
P

i
P
‡ Ci‡ ≥ 0. But this follows immediately from the

observation that Ci‡ ≥ �C‡i.

PROPOSITION 3.9. The gradient of the image of an element of A under û is the image
of the gradient of that element under õ. In particular, the set S of elements of gradient
zero is preserved under any automorphism.

PROOF. The gradient of xã∂m is ∂mxã ≥ ãmxã�èm . On the other hand, using the
notation of Lemma 3.8, the gradient of

û(xã∂m) ≥ õ(xã)û(∂m) ≥ õ(xã)
X

i
f (m)
i ∂i

is X
i

∂i

�
õ(xã)f (m)

i

�
≥
X

∂i

�
õ(xã)

�
f (m)
i + õ(xã)

X
∂if

(m)
i

≥
X

f (m)
i ∂i

�
õ(xã)

�
+ 0,

using Lemma 3.8. Then, using Theorem 3.1, this gradient is

û(∂m)
�
õ(xã)

�
≥ û(∂m)

Y
i
õ(xãi

i )

≥ õ(xã1
1 ) Ð Ð Ð û(∂m)õ(xãm

m ) Ð Ð Ð õ(xãn
n )

≥ ãmõ(xã1
1 ) Ð Ð Ð õ(xãm�1

m ) Ð Ð Ð õ(xãn
n )

≥ ãmõ(xã�èm ).

We have established the first statement of the proposition, and the second statement fol-
lows immediately from this.

Hereafter let A0 denote the subalgebra consisting of all elements of A of the formP
1�i�k fi∂i for fi 2 B. Also let G0 ≥ A0 \ S, i.e., G0 is the set of elements of A0 with

gradient zero. A subalgebra of A which is sent onto itself by every automorphism of A
will be called characteristic.

PROPOSITION 3.10. The subalgebra A0 is characteristic.

PROOF. We show first that û(∂i) 2 A0 when 1 � i � k for any automorphism û.
If this is not true, then û(∂i)x‡ Â≥ 0 for some ‡ Ù k. Since x‡ is invertible, õ�1(x‡) is
invertible, and so õ�1(x‡) ≥ axå for some a 2 F and å 2 ∆ with åj ≥ 0 for 1 � j � k.
In particular, åi ≥ 0, and so

0 Â≥ û(∂i)x‡ ≥ û(∂i)õ(axå) ≥ aû(∂i)
Y

j
õ(xåj

j ) ≥ 0,
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by Theorem 3.1. This contradiction shows that û(∂i) 2 A0. But then û(A0) ² A0 since

û
�X

i�k
B∂i

�
²
X
i�k

Bû(∂i) ² A0.

Combining Propositions 3.9 and 3.10, we obtain

COROLLARY 3.11. The subalgebra G0 is characteristic.

4. Examples of automorphisms. In view of Theorems 3.1 and 3.7, we can produce
examples of automorphisms of A simply by picking an automorphism õ of B and finding
images for ∂i’s that satisfy the second relation in Theorem 3.1.

EXAMPLE 4.1. For fixed j and for fixed nonzero ï 2 F, let õ(xj) ≥ ïxj and û(∂j) ≥
ï�1∂j, and for i Â≥ j let õ(xi) ≥ xi and û(∂i) ≥ ∂i. The automorphisms in the group
generated by automorphisms of this type are called scalar automorphisms.

EXAMPLE 4.2. For fixed j � k and for fixed ï 2 F, let õ(xj) ≥ ï + xj and õ(xi) ≥ xi

for i Â≥ j. For all i let û(∂i) ≥ ∂i. We shall denote this automorphism by û[iï]. Products
of automorphisms of this type are called scalar shift automorphisms.

EXAMPLE 4.3. For fixed j � k, choose g 2 B with ∂j(g) ≥ 0. Define õ(xi) ≥ xi + éijg
and û(∂i) ≥ ∂i � ∂i(g)∂j . We shall call this an elementary automorphism and denote it
by ûig.

EXAMPLE 4.4. For fixed j Ù k, let õ(xj) ≥ x�1
j and û(∂j) ≥ �x2

j ∂j, and for i Â≥ j let
õ(xi) ≥ xi and û(∂i) ≥ ∂i. Products of automorphisms of this type are called inverting
automorphisms.

In general there are other automorphisms besides the group of automorphisms gener-
ated by these four types. For example, if ∆i ≥ ∆j we can interchange xi and xj; or we can
replace xj by xjxi. We can use elementary automorphisms to establish

PROPOSITION 4.5. Let T0 be a torus in A0. Then the dimension of T 0 is no more than
k.

PROOF. Let F̄ be the quotient field of the ring F0 ≥ F[xk+1, . . . , xn, x�1
k+1, . . . , x�1

n ], and
let Ā0 ≥ F̄ 
F0 A0. Then any semisimple element of A0 will be a semisimple element of
Ā0. Further, any set of linearly independent elements of a torus in A0 will remain linearly
independent in Ā0. Thus it is sufficient to show that the dimension of any torus T0 of Ā0

is no more than k. It will be convenient to use the standard grading of Ā0 in which the
element xã∂i is in the component of level ã1 + ã2 + Ð Ð Ð + ãk � 1. As usual, we can think
of the elements of level 0 as n ð n matrices under Lie product, and we can think of the
�1 level as an irreducible module over these matrices. The elementary automorphisms
in which g is a multiple of a noninvertible variable induce elementary transformations
on the matrices and its module. Thus, using products of elementary automorphisms, we
can do any change of basis on the matrices and module that is convenient.

https://doi.org/10.4153/CJM-1997-006-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-006-5


AUTOMORPHISMS OF THE LIE ALGEBRAS 127

Let t1, . . . , tr be linearly independent elements of the torus T0 of Ā. Let di and ei be
respectively the �1 and 0 level components of ti. If any set of nonzero di’s is linearly
dependent, we can subtract multiples of one ti from another to make the nonzero di’s
linearly independent. Further, we can do a change of basis so that the nonzero di’s are
respectively ∂1, ∂2, . . . , ∂‡. Then t‡+1, . . . , tr have zero components at the �1 level. It is
easy to see that e‡+1, . . . , er must then correspond to idempotents in the matrices. We
have ej Â≥ 0 for j Ù ‡ since otherwise tj could not act semisimply. If there is any linear
relation between the ej’s for j Ù ‡, we could subtract multiples of some tj’s from others
and get a tj without 0 component. The fact that the tj’s commute means that e‡+1, . . . , er

correspond to a set of pairwise orthogonal idempotents.
For 1 � i � ‡ Ú j � r, the relation [ti, tj] ≥ 0 implies that 0 ≥ [di, ej] ≥ [∂i , ej]. Thus,

e‡+1, . . . , er correspond to r�‡ orthogonal idempotents which lie in a set of matrices with
k � ‡ nonzero columns. It follows that r � ‡ � k � ‡, or that r � k, as we wished to
prove.

5. Characteristic subalgebras and autogeneration. We say that a set C of A is
autogenerated by an element w 2 A if C is contained in the set of all elements generated
from w under the operations of taking images under automorphisms of A, taking Lie
products, and forming linear combinations. The set of all elements autogenerated by w is
clearly a subalgebra. For our final result on isomorphisms of algebras of type WŁ we will
need to characterize certain subalgebras intrinsically, and the concept of autogeneration
will play a major role in this endeavor.

The subalgebra G0 of elements of A0 which have gradient zero is spanned by the ele-
ments of the form fxã∂j j ãj ≥ 0 and j � kg and of the form f∂j(f )∂i � ∂i(f )∂j j i, j �
k and f 2 Bg. If k ≥ 1, only elements of the first type will occur. Let G be the sum of G0

and the span of the elements of the form ffjxj∂j j j � k and ∂i(fj) ≥ 0 for all i � kg. It is
clear G is a subalgebra and that [G, G] ≥ G0. We will also need

A00 ≥
² X

kÚi�n
fi∂i j fi 2 B, and ∂‡(fi) ≥ 0 for all ‡ � k

¦
.

We have shown in [3] that the torus T ≥
P

iÙk Fxi∂i is the unique maximal torus of A00,
and that all toral elements of A00 are contained in it.

PROPOSITION 5.1. The subalgebra G is characteristic. Further, if f is a monomial in
the invertible variables and if i � k, then û(fxj∂j) is congruent to õ(f )xj∂j modulo G0 for
any automorphism û.

PROOF. In view of the Corollary 3.11, it is sufficient to show that the elements fxj∂j

for j � k where f is a monomial in the invertible variables are congruent to xj∂j modulo G.
Now û(xj∂j) 2 A0 for any automorphism û by Proposition 3.10, say û(xj∂j) ≥

P
i�k hi∂i.

Using Proposition 3.9, the gradient of û(xj∂j) is 1 ≥ ∂jxj ≥
P

i�k ∂ihi. Writing hi ≥
aixi + h0i where h0i involves all terms in hi which correspond to roots of hi∂i other than 0,
this becomes

(5. 2) 1 ≥
X
i�k

ai +
X
i�k

∂ih0i .
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Since the second summation involves exactly the terms which do not correspond to terms
on the left side of the equation, it must vanish. Thus

P
i�k h0i∂i 2 G0, andû(xi∂i) is congru-

ent to
P

i�k aixi∂i modulo G0. Thus (5.2) reduces to
P

i�k ai ≥ 1. Since xi∂i is congruent
modulo G0 to xj∂j for i, j � k, in fact, û(xj∂j) is congruent to xj∂j modulo G0.

Considering now the general element fxj∂j where f is a monomial in the invertible
variables, we note that õ(f ) must be an invertible element of B, so that õ(f ) is a scalar
multiple of a monomial in the invertible xi’s. Thus, û(fxj∂j) ≥ õ(f )û(xj∂j) is congruent
modulo G0 to õ(f )xj∂j 2 G.

LEMMA 5.3. If k ½ 2 and if i � k, then ∂i autogenerates G0.

PROOF. Let j � k and j Â≥ i. We show first that the element f ∂j with f 2 B where
∂j(f ) ≥ 0 is autogenerated by ∂i. Since xi is not invertible, we can find g 2 B with
∂j(g) ≥ 0 and ∂i(g) ≥ f . If ûjg is the elementary automorphism given in Example 4.3
using this g, then û(∂i) ≥ ∂i + f ∂j. Thus f ∂j is indeed autogenerated by ∂i. Choosing
the special case when f ≥ 1, we get ∂j. Then switching the roles of i and j in the above
argument, we obtain h∂i for any h 2 B with ∂i(h) ≥ 0. The elements that we have shown
to be autogenerated by ∂i in fact generate G0 as a subalgebra, to complete the proof.

LEMMA 5.4. (i) If ãi ≥ 0 ≥ åi and ãj ≥ 0 ≥ åj where i, j � k, then

[x‡i xm
j xãxi∂i, ‡0x‡

0�1
i xm0

j xå∂j � m0x‡
0

i xm0�1
j xå∂i] 2 G0

if and only if 0 ≥ (‡ + 1)(‡0m � ‡m0).
(ii) If ãi ≥ 0 ≥ åi and ãj ≥ 0 ≥ åj where i, j � k, and if q Ù k, then

[x‡i xm
j xã∂q, ‡0x‡

0�1
i xm0

j xå∂j � m0x‡
0

i xm0�1
j xåx1∂i] 2 G0

if and only if 0 ≥ (‡0m � ‡m0).

PROOF. Multiplying out the product in Part (i), the coefficient of the term with ∂j

will be ‡0(‡0�1), and the coefficient of the term with ∂i will be�m0‡0�‡0m + m0(‡+ 1).
Thus the condition that this lies in G0 will be

‡0(‡0 � 1)(m + m0) ≥ (‡ + ‡0)
�
�m0‡0 � ‡0m + m0(‡ + 1)

�
.

Simplifying this condition yields the one given in the statement of Part (i) of the lemma.
Computing the product in Part (ii), we see that the coefficient of the term with ∂q will

vanish if and only if 0 ≥ (‡0m� ‡m0). This is of course necessary if the product is to be
in G0 ² A0. The remaining expression is seen to be in G0 if and only if 0 ≥ (‡0m� ‡m0).
Thus Part (ii) holds.

LEMMA 5.5. Let k ½ 2. Then
(i) Any element of G0 autogenerates G0.

(ii) Any element of G autogenerates a subalgebra of G containing G0.
(iii) Any element of A0 not in G autogenerates A0.
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(iv) Any element of A not in A0 autogenerates a subalgebra containing G0.

PROOF. Suppose first that w 2 A0. We claim first that w autogenerates an element
of the form w0 ≥ xã∂j. By taking an appropriate linear combination of the images of w
under different scalar automorphisms, we see that the component of w in any root space
is in the subspace autogenerated by w. Thus, to see that w autogenerates all of G0, it is
sufficient to suppose that w is contained in a single root space. Say that w has root ã.
If ãi Ù 0 for some i � k, apply the scalar shift automorphism û[iï] to w and take the
terms which have the root ã � ãièi, which will be nonzero. Repeating this operation if
necessary, we can assume that w has root ã where ãi � 0 for each i � k. If ãj ≥ �1 for
some j � k then we have arrived at the element w0 ≥ xã

0∂j where ã0 ≥ ã + èj . If ãi ≥ 0
for all i � k, then w ≥ xã

P
i�k cixi∂i for some ci 2 F. Choosing j so that cj Â≥ 0, we

apply the scalar shift automorphism û[jï] to w and take the component of degree�1 in j
which is a nonzero multiple of w0 ≥ xã∂j.

Consider now the case when ãi Â≥ �1 for all i Ù k. Choosing ‡ � k with ‡ Â≥ j and g
so that ∂jg ≥ x�ã, we apply the automorphism û‡g which sends w0 into xã(∂j � x�ã∂‡).
One component of this is ∂‡, which autogenerates all of G0 by Lemma 5.1. On the other
hand, if ãi ≥ �1 for some i Ù k, we can again apply the automorphism û‡g, but this
time with g chosen to be a monomial in xk+1, . . . , xn with the property that deg xãg Â≥ �1
for i Ù k. We can then apply the first case to autogenerate G0.

We have shown that the subalgebra autogenerated by any element w 2 A0 contains
G0. If w 2 G0, we see from Corollary 3.6 that w generates exactly G0, to give Part (i).
If w is in G but not in G0, then the subalgebra generated by w contains G0 by the above
argument, and is contained in G by Proposition 5.1. Thus Part (ii) holds.

Suppose now that w is in A0 but not in G. As in the first part of this argument, the
component of w in any root space is autogenerated by w, so that we can assume that w is
not in G but is in a single root space, say the ã-root space. Modulo G0 which we know
is autogenerated by w, we can pick w to be a single monomial. Since w Â2 G0, it has the
form w ≥ xãxj∂j for some j � k; and since w Û2 G, ãi Â≥ 0 for some i � k. If ãj Â≥ 0,
the automorphism ûjg induced by õ(xj) ≥ xj + g and õ(xi) ≥ xi for i Â≥ j applied to w
will show us that gxã∂j is autogenerated by w. Here g can be any monomial which has
degree zero in xj. If ã‡ Â≥ 0 for some ‡ Â≥ j with ‡ � k, then the automorphism û‡g

where g ≥ xm
j applied to w will give that xm

j x�1
‡ w is autogenerated by w. Using these two

operations and the scalar shifts for lowering the powers of noninvertible variables, we
can get any monomial in A0 modulo G0, to establish Part (iii).

Finally for Part (iv), we have to show that any element w not in A0 autogenerates
at least G0. As usual, we may assume that w has a single root associated with it. If
any nonzero components of the root correspond to noninvertible variables, we can use
scalar shift automorphisms to get rid of these variables. Thus we may assume that w ≥
xã
P

iÙk cixi∂i for some ci 2 F where ãi ≥ 0 for i � k, and where cj Â≥ 0 for some
j Ù k. As in the proof of the last part, the automorphism û1g where g ≥ xm

j applied to
w yields a nonzero component in A0. This component can be separated off using a scalar
automorphism, and it will autogenerated all of G0 by the first part of the proof.
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If k ≥ 1, let G00 denote the span of all elements of the form xã∂1 where ã1 ≥ 0 and
ãi Â≥ 0 for all i ½ 2. Then we have

PROPOSITION 5.6. Suppose that k ≥ 1. (i) Let G# denote the intersection of all
subalgebras of A which are autogenerated by elements of A which are not ad-nilpotent.
Then G00 ² G# ² G0.

(ii) G0 is the centralizer of G#.

PROOF. The element x1∂1 is not ad-nilpotent and û(x1∂1) 2 Fx1∂1 + G0 for any
automorphism û by Proposition 5.1. Hence the subalgebra autogenerated by x1∂1 is con-
tained in Fx1∂1 + G0. Similarly, the subalgebra autogenerated by x2x1∂1 is contained inP
õ Fõ(x2)x1∂1 + G0, which does not contain x1∂1. It follows that G# ² G0.
If w ≥

P
i fi∂i for fi 2 B is an element of A which is not ad-nilpotent, we want to show

that w autogenerates G00. Suppose first that fj Â≥ 0 for some j Ù 1. Then w autogenerates
each of its homogeneous components, so that it is sufficient to show that one component
of w autogenerates G00. Select a component of w which has a nonzero coefficient for
∂j, say, w0 ≥ xã

P
i cixi∂i where ci 2 F. Applying the automorphism 4.4 to w0 which

sends xj into x�1
j , we obtain the element w00 ≥ xã�2ãjèj (

P
i xi∂i �2xj∂j). Then the element

z ≥ c�1
j [w00, w0] ≥ x2ã�2ãjèj xj∂j is autogenerated by w. Writing å ≥ 2ã � 2ãjèj, we

have z ≥ xåxj∂j. If å1 Â≥ 0, we can apply a scalar shift automorphism and take the
component that does not depend on x1. Thus we may assume that å1 ≥ 0. Now applying
the elementary automorphism û1g to z where ∂1g ≥ 0, and then subtracting z, we get the
element xåxj(∂jg)∂1 2 G0. As g ranges over all monomials in the invertible elements we
will get all elements of G00 (as well as some elements not in G00).

Suppose then that the element w that is not ad-nilpotent has the form f ∂1. Then some
homogeneous component of it is not ad-nilpotent. We can take a scalar shift of this ele-
ment and take the component which has degree zero in x1. Thus it is sufficient to show
that any element of the form z ≥ xãx1∂1 with ã1 ≥ 0 autogenerates all of G00. Applying
the automorphism û1g to z where ∂1g ≥ 0, and subtracting z from this, we obtain the
element xãg∂1 2 G0. As g ranges over all monomials in the invertible elements, we will
get all the elements of G00. This completes the proof of part (i).

For part (ii) we note first that G0 is abelian when k ≥ 1, so that G0 is contained in the
centralizer of G#. Conversely, let w ≥

P
i fi∂i centralize G#. Then for any ã with ã1 ≥ 0

and ãi Â≥ 0 for all i Ù 1,

0 ≥ [w, xã∂1] ≥
�X

i
fi∂i, xã∂1

½

≥
X

i
ãifix

ã�ãièi∂1 � xã
X

i
(∂1fi)∂i.

This implies that fi ≥ 0 for i Ù 1 and that ∂1f1 ≥ 0. Thus, w 2 G0.

PROPOSITION 5.7. (i) If k ½ 2, then G0 is the unique minimal nonzero characteristic
subalgebra of A.

(ii) G is the unique characteristic maximal ideal of the idealizer H of G0 in A.
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(iii) A0 is the unique largest characteristic subalgebra which properly contains G,
and whose intersection with H is G.

(iv) A00 + A0 is the idealizer of A0.

PROOF. Part (i) follows from the fact that every nonzero element of A autogenerates
at least G0 by Lemma 5.5, and that elements of G0 autogenerate exactly G0 when k ½ 2.
Turning to Part (ii), we know from Lemma 5.1 that G is a characteristic subalgebra, and
it is clearly contained in H. To complete the proof of Part (ii) we need to show that G is
the unique maximal ideal of H.

In view of Lemma 5.4(i), the only elements of A0 in H are the elements of G. (Note
that every element of A0 that is in a single root space can be taken to have a single term
modulo G0). If w 2 H and w Â2 A0, then w ≥ w1 +w2 where w2 2 A0 and w1 ≥

P
iÙk cifi∂i.

Each fi must be a function only of the invertible variables, since otherwise w cannot send
every element of G0 into G0. Thus, w1 2 A00. On the other hand, it is easy to see that each
element of A00 will idealize G0. Then w2 ≥ w�w1 2 H, and so w2 2 G. We have shown
that H ≥ A00 + G. Since [A00, G] ² G and since A00 is a simple algebra, G is a maximal
ideal of H. To establish uniqueness, let w 2 H and w Û2 G, and we will show that the
autoinvariant ideal of H generated by w is all of H. Now w ≥ w1 + w2 where w1 2 A00

and w2 2 G, and w1 Â≥ 0. As usual, by applying different scalar automorphisms we can
assume that w is in a single root space, say, w ≥ xã

P
i cixi∂i. Then cj Â≥ 0 for some j Ù k,

and h
x2

j ∂j, [∂j , w]
i
≥ (ã2

j � ãj)xã
X

i
cixi∂i � 2cjxj∂j.

Subtracting (ã2
j � ãj)w from this we obtain that xãxj∂j is in the ideal. Thus, w autogen-

erates all of A00, since A00 is simple. Hence w autogenerates H because G ≥ [A00, G]. This
completes the proof of Part (ii).

To show Part (iii), we note first that A0 is characteristic by Proposition 3.10, and that
it properly contains G. The remaining thing to be shown for Part (iii) is that any other
subalgebra with these properties which is not contained in A0 must have intersection with
H which is larger than G. Let w be an element in such an algebra, and we can suppose
that it is not in A0. By using scalar and scalar shift automorphisms, we can assume that w
is in a single root space, and that the corresponding root ã has the property that ãi ≥ 0
for i � k. Under this reduction we retain the property that w Û2 A0. Then w ≥ w1 + w2

where 0 Â≥ w1 ≥ xã
P

iÙk xi∂i 2 A00 and w2 ≥ xã
P

i�k xi∂i 2 G. But this element is in
H, showing that the intersection of the algebra with H is bigger than G. This completes
the proof of Part (iii). When k ½ 2 it follows from Lemma 5.5(iii) that A0 is the only
characteristic subalgebra of A which properly contains G and whose intersection with H
is G.

Finally, for Part (iv) we note that an element w ≥
P

i cifi∂i for ci 2 F and fi 2 B will
idealize A0 if and only if, for each i Ù k, fi is a function only of the invertible variables.
But this says that w idealizes A0 if and only if w 2 A00 + A0.
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NOTATION. To get the analogue in an algebra Ai of the various subalgebras G0, G,
A0, A00 of A, we shall simply add the subscript i. Similarly, the number of noninvertible
variables in Ai will be denoted by ki and the number of all variables by ni.

THEOREM 5.8. Let í: A1
¾≥ A2 be an isomorphism where A1, A2 2 WŁ. Then A0

1
¾≥ A0

2

and A00
1
¾≥ A00

2 . In particular, k1 ≥ k2 and n1 ≥ n2.

PROOF. If k1 ≥ 0, then k2 ≥ 0 and n1 ≥ n2 by [3, Theorem 4.16 and Corollary 4.12].
Both isomorphisms are trivial in this case. If k1 ≥ 1, then G0

1 is abelian, and so A2 must
contain an abelian characteristic subalgebra. Thus, k2 Ú 2 by Proposition 5.7(i). The
possibility that k1 ≥ 0 is ruled out by applying the first step of the proof to í�1, showing
that k2 ≥ 1. Then G0

1 and G0
2 are invariantly characterized in A1 and A2 by Proposition 5.6,

and so A0
1 and A0

2 are invariantly characterized in A1 and A2 by Proposition 5.7. Hence,
í(A0

1) ≥ A0
2.

In order to complete the proof that A0
1
¾≥ A0

2 and k1 ≥ k2, we may assume that k1 ½ 2
and k2 ½ 2. By Proposition 5.7, A0

1 and A0
2 can be characterized in an invariant manner, so

í must map the one onto the other. Now A0
1 has a torus of dimension k1 of noninvertible

variables in A1, and hence A0
2 must have a torus of dimension k1. By Proposition 4.5,

k1 � k2. By symmetry, k1 ≥ k2.
Since A00

i + A0
i is the idealizer of A0

i , í must also map A00
1 + A0

1 onto A00
2 + A0

2. Then,
A00

1
¾≥ (A00

1 + A0
1)ÛA0

1
¾≥ (A00

2 + A0
2)ÛA0

2
¾≥ A00

2 . By [3, Corollary 4.12], A00
1 and A00

2 must have
the same number of variables.
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