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ABSTRACT. The framework of general relativity theory (GRT) is applied
to the problem of reduction of high precision astrometric observations
of the order of one microarcsecond. The equations of geometric optics
for the non-stationary gravitational field of the Solar system have
been deduced. Integration of the equations of geometric optics results
in the isotropic geodesic line connecting the source of emission (a
star, a quasar) and an observer. This permits to calculate the effects
of relativistic aberration of light due to monopole and quadrupole
components of the gravitational field of the Sun and the planets taking
into account their motions and rotation. Transformations between the
reference systems are used to calculate the light aberration occurring
when passing from the satelli te system to the geocentric system and
from the geocentric system to the barycentric system. The barycentric
components of the observed position vector reduced to the flat
space-time are corrected, if necessary, for parallax and proper motion
of n celestinl object using the classical techniques of Euclidean
geometry.

1. Introduction

At present, the discussion of high preClSlon measurements of light
deflection nnd time delny of rndio signnls in the Solar system
gravi tational field has confirmed the effects of the post-Newtoninn
approximntion of GRT within the nccurncy of 1.5% nnd 0.1% respectively
(Will, 1986). Meanwhile, the precision of measurement technique applied
in astrometric observations is still fnst increasing. In this respect,
some specific progrnms are now in elnboration aimed to determine the
nonlinear, effects of the post-post-Newtonian approximation of GRT. A
pnrticular attention is paid to the project POINTS of a space
interferometer to be placed on an Earth artificial sntc.lli te
(Rcasenberg and Shapiro, 1986; Reasenberg et al., 1988; Chandler and
Reasenberg, 1990). Preliminary estimation enable one to conclude that
the instrumental prccision of mcasurement of angular distances betwcen
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celestial objects may be of the order of one microarcsecond. This is
comparable with the magnitude of light deflection due to the
post-post-Newtonian solar gravitational field as well as to the
post-Nqwtonian corrections for oblateness, motion and rotation of the
Sun and the planets. Beside these effects, the reduction of
observations of space interferometer should involve the relativistic
corrections for light aberration occurring in converting the observed
positions of stars to the fixed barycentric reference system of the
Solar system. Corrections for parallax and proper motion of observed
objects should be also taken into account. Some relativistic effects.
for light deflection in the gravitational field of one fixed
gravitating body have been determined in (Epstein and Shapiro, 1980;
Fischbach and Freeman, 1980; Richter and Matzner, 1982, 1983;
Sarmiento, 1982; Cowling, 1984; Brumberg, 1987). But these papers do
not consider the relativistic effects due to the motions of the
gravitating body and an observer with respect to the barycentric
reference system and present no algorithm for taking into account
parallax and proper motion of observed objects. The aim of the present
paper is to develop the consistent relativistic approach for reduction
of observations of a space interferometer with due regard to all
effects of the order of one microarcsecond.

2. Reference systems

Neglecting the influence of the gravitational field of the Galaxy
on the light propagation and motion of the gravitating bodies one may
consider the Solar system as isolated. In GRT the characteristics of a
reference (coordinate) system introduced in some space-time domain and
the potentials of the gravitational field are described by a single
object, i.e. the metric tensor ga~. This tensor is determined by solving
the Einstein field equations with appropriately chosen boundary and (or)
initial values. It is well known that one may impose on ga~ four
arbitrary complementary conditions. We adopt harmonic conditions
(~ga~,p=o. In all formulae used below the greek indices run through
values 0,1,2,3; the small latin indices take values 1,2,3; each pair of
repeated indices means summation; comma denotes ordinary partial
derivative; raising and lowering of the latin indices are performed with
the aid of the unit matrix.

The gravitating bodies of the Solar system are considered here as
spheroids with constant spin. vectors. Numerating the bodies by capital
latin letters let ~s characterize body A by the quantities as follows:
mass MA, mean radius LA' spin vector ~A' and the oblateness parameter
JA. Let us introduce also barycentric velocity l'A of the body A,

velocity l~i' of the body's matter relative to its centre of mass, and
distance DA between body A and the nearest body. The independent saall
parameters of the problem at hand include J

A
, BJ,.=vJ,./c, .Bi,=l:r/C ,
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1j...=GM/C~L ... , and 6... =L... /D.... G and c arc the gravitational constant llIld
the light velocity respectively. Besides, there exists a small parameter
a characterizing the ratio of the mass of the planets and their
satellites to the mass of the Sun.

Barycentric reference system (BRS) of the Solar system is used to
describe the light propagation from the observed celestial object to an
observer and to study the motion of the bodies inside the Solar system.
BRS serves as a global reference system. Its metric tensor is resulted
from the Einstein field equations by using the post-Minkovskian
approximation technique in parameter Tl

A
(Damour, 1983; Blanchet and

Damour, 1986,1987). The BRS origin coincides with the Solar system
barycentre. Its spatial axes are dynamically non-rotating (Brumberg and
Kopejkin, 1989a).

Geocentric reference system (GRS) is used to study the motion of
the Earth satellite involved in space interferometry observations and
to derive the transformation (reduction) formulae of the position
vector components of the observed celestial object from GRS to BRS. GRS
is constructed in the space domain restricted by the orbit of the Moon.
In solving the Einstein field equations one applies therewith the
post-Newtonian approximation technique in parameters E

A
and Tl

A

(Kopejkin, 1988,1989a; Brumberg and Kopejkin, 1989a,b). The GRS origin
coincide wi th the centre of mass of the Earth. I ts spatial axes are
dj~amically non-rotating but they rotate kinematically relative to BRS
with the velocity of relativistic precession.

Satellite reference system (SRS) represents a coordinate system
with an observer (n space interferometer) at its origin. It is designed
for the specific description of observed quantities and for the
derivation of the transformation formulae for the position vector
components of the observed object from the SRS (instrumental) axes to
the GRS axes. SRS is constructed in the space domain restricted by the
terrestrial surface. Construction of SRS is performed by solving the
Einstein vacuum field equations using the post-Newtonian approximation
technique (Brumberg and Kopejkin, 1989b; Kopejkin, 1989a). The world
line of the satellite is assumed to be geodesic. Therefore, at the SRS
origin the metric tensor reduces to the Minkovsky tensor and its first
derivative vanish identically. The SRS spatial axes are dynamically
non-rotating but are subjected to kinematical rotation with respect to
GRS.
a Let

i
us Renote! the BRS, GRS and SRS coordinates by xQ=(ct,,{),

w =(cu, w ), t =(c't, f) respectively. At the SRS origin the time I
represents the proper time of an observer and the spatial axes ~

realize the instrumental triad of the observer's equipment (an
interferometer). Up to constant factors the time scales u and t arc
equal to TT and TB respectively (Brumberg and Kopejkin,1989c).
Transformations between BRS, GRS and SRS are given explicitly in
(Kopcjkin, 1988,1989a; Brumberg and Kopejkin, 1989a,b).
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3. Geometric optics in the Solar system gravitational field.

In optical region the length of thc electromagnetic waves is less
than the Solar system space-time curvature by many orders. For this
reason (Misner et al., 1973) the light propagation is governed by the
geometric optics laws implying the motion of photons in null
(isotropic) geodesics of the space-time.

The space-time is split up into three regions with the origin at
the Solar sl"stem barycentre: 1) external region R >Ro' Ro being th,?
radius of the orbit of Pluto, 2) internal region R < R

1
and 3) buffer

region R
1
< R <Ro' Let the light be emitted at the moment t

1
by a source

far outside the ~olar sYftem and be received by the observer at the
moment t~. Let x1 and x~ be the coordinates of the source and the
observer at the moments t 1 and t~ respectively. Equation of light
propagation is solved separately in the external and internal regions
with subsequent matching of both solutions in the buffer region leading
to the intermediate solution (Kopejkin, 1990).

The external region is dominated by the monopole component of the
total gravitational field of the Solar system. Therefore, the equation
of the null geodesics may be presented in the form

IIi GM 1 -2 GM · 2 1 ..1 GM L2
x = - --:- x + C --;- ( -x x + 4 (x x ) x ) + 0 ( ~ -2) (1)

R3 R3 - -- It H

The remainder terms arc due to the quadrupole component of the Solar
system total gravitational field. To solve Eq. (6) one substitutes into
its right-hand member the unperturbed solution x~( t) = x~ + ck1( t-t

1
)

with Ikl =(k1k1
)1/2 =1. The resulting ordinary differential equation

is solved under initial conditions: 1) X
1
(t

1
) =x~ and

2) li~ c-1~1(t) = k
1

• These conditions mean physically that the light
trajectory passes through the point of emission at moment t 1 and the
BRS coordinate velocity of a photon at the infinite isotropic past is
equal to the light velocity locally ~easurcd in SI units. The specific
form of the external solution x~(t) is given, for example, in
(Brumberg, 1972) .-2 The~ r~mainder terms of the obtained solution are
proportional to c GM L /R wi th L = Ro and M=i M

A
•

The internal region is characterized by the gravitational fields
of the individual attracting masses moving much slowly than a photon.
Due to this and taking into account the smallness of the time interval
of the light propagation through the internal region one may prescnt
the equations of null geodesics in the form
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with

1_ ~ ( -Il + c -2 ( _~2 Il + 4 (! ~A)
"1

F1 - E 3 !) +
A R

A
A - A

1- ( lr ~) II 1-
( ~A !) 1 Z

( !A ~A) (3)v - x -
C -A - A C A C

-4" " "1
C 4 (! ~A) ( !,A !) x ),

t Rb
C 8

(4)

(5)

(6)

"1(::. ~) x )15 r ~ ~ ~ I{ ( 1{ - 2
A R,A

with II=x1_x1 x1
( t) and lr

1=dx1/dt respectively the BRSA A A A A are
c9frdinates and velocity components of the centre of mass of fody A.
~. is the trace-free quadrupole moment of body A. The t~rms F

1
and F~

entering into Eq. (7) describe respectively the post-Newtonian and
post-post-Newtonian effects of the monopole components of the
gravitational fields of the attracting bodies taking into account their
motion. In calculating the post-post-Newtonian perturbations it is
sufficient to copsider ~nly the terms depending on the mass of the Sun
Ms. The terms F

3
and FA are due to the rotation and the quadrupole

components respectively of the solar and planetary gravitational
fields.

The internal solution x~(t) of Eq. (7) is looked up in the form

X~ ( t) =X~ ( t) + C-2 ( If (t) + d (t ) + If (t) ) (7)

1 1 1 ...1with unperturbed solution xft{ t) =x
2

+ cO (t-t
2
). Functions J:J,

satisfy the equations
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~ 1
C; = F ,

3
(8)

At the moment t
2

the trajectory of the internal solution should
1 1 1pass through the point of observation implying xl (t

2
) = x

2
• Vector a

being the arbi trary constant of integration is determined later in
matching the internal and external solutions. In solving the first of
Eqs. (13) the motion of the attracting bodies is assumed to be uniform
and rectilinear, i.e.

(9)

with a~=dl~/dt being the acceleration of the centre of mass of the body
A and ~ being some fixed moment of time. In solving remaining two Eqs.
(13) the centre of mass of any body A may be regarded as being at rest
at moment ~. The remainder terms in Eqs. (7) and (14) are responsible
for the errors of the internal solution. By the suitable fixing t!

regarded as the parameter of the solution one can minimize the
magnitude of the errors of the internal solution. It turns out that t

A

corresponds to the moments of the closest approach with body A provided
the latter is located between the light emitter and the observer. For
t~4is case the -2 magnitude of the residuals is proportional to
c GMAaARAln(RAr/dA) where r is the distance between the observer and
body A and d

A
is the impact parameter of the light trajectory .with

respect to body A. If the observer is located between the light source
and body A then ~ is to be coincident with the moment of observation
~ and the magnitude of the residual errors of the internal solution is
proportional therewith to c-4GM•a•R• in( R/r) •

Solution of Eq. (13) is partly given in (Brumberg, 1987;
Klioner,1989). In the complete form it should be published in our
future paper. From the methodological point of view it is of interest
to estimate the magnitude ot the light deflection due to various
factors in passing through the Solar system (sec TABLE 1) • These
estimates demonstrate that within the microarcsecond accuracy one has
to take into account the whole Solar system. Indeed, we have to
consider under certain conditions the influences of three largest
asteroids Ceres, Pallas, Vesta, the Galilean satellites of Jupiter,
Titan, Triton and perhaps some other satellites of Saturn and Uranus
whose physical properties are not well known yet. The values of °

1
due

to these bodies varies from 0.5 ~as (Pallas) to 33 ~as (Titan).
Matching of the external and internal solutions is performed in

the buffer region at some moment t* provided that coordinates x~( t*)
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and x~( t*) coincide and the difference' between tangent vectors ~~( t*)
and ~~( t*) is minimal. These conditions enable to find the .o.tching
radius R* for any body A. More specifically. R* is determined by either

of two equations -2 2 2 -3 2 2-3
MAaAln(R* r d1 ) = c ML R* ,MAaAln(R./r) =c ML R* •

For any attracting body the matching radius exceeds the radius Ro of

external region and may be chosen for all bodies in common enabling the
difference between the tangent vectors of the external and internal
solutions to be less than one microarcsecond. 1 . , .

The matching procedure impl ies that 01=k +O( c-2GML2R;3) • This

procedure results in salle intermediate solution coinciding wi th the
internal solution for R < R* and identical to the external solution for

R > R*. Formally, one may regard the intermediate solution as

coinciding wi th the internal solution in the whole space-time since
outside the Solar system the inter~~l ~o~ution differs from the
external solution only by the terms D( c GML R ).

TABLE 1. Estimates of relativistic effects due to Solar
system bodies.

Body °1 °2
63

Sun 1.75"106 2 0.1
Mercury 83 0.06 0.02
Venus 493 0.002 0.06
Earth 574 0.6 0.06
Moon 26 0.002 0.003
Mars 116 0.2 0.01
Jupiter 16300 240 0.8
Saturn 5800 95 0.2
Uranus 2100 25 0.05
Neptune 2600 10 0.05
Pluto ~20

0.8

0.2
0.04
0.007
0.006

11

0.001

~max

o
180
9'o
4.5 0
1~0
8
25'o
9°0
1§.5
1.2
51'
0.5"

The first five columns of the Table present the maximal values in ~s of
relativistic effects under study. These values have been estimated as
follows: the post9"Newtonian light deflection due to monopole field of
the body 61=4GM/c~L; the correction due to quadrupole field 62=61 "J ;

thc influence of the motion of the body 63=61 "v/c ; the effect of the

rotation 64=4GS/c3L2 ; the post-post-Newtonian deflection due to
.2242monopole fIeld °5=151/4" G M /c L • The absent values are less than

10-3• The last column contains the maximal angular distance between a
source and the body at which the influence of the body on the apparent
source position is still to be taken into account.
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4. Aberration of light

Let us denote the SRS, GRS and BRS 1sP~ri,1 comppn<:.I/ts1 of the
trng_~ntl vector to the null geodesic by s =c d~ /drr., q =c dw /du and
p =c dx

1
/ dt respectively. Directly measurable quanti ties arc the

components of vector _s1 directed oppositely to vector s1.
Aberration of the light is caused by the transformations from one

reference system to another system at the foint of observation.
Aberration relations between vectors s1 ,q1 and p have the form

(10)

Ka~=iJfa!t'wp l1Ild AaB=iJwaltlxp being the transformation matrices of the

coordinate bases ~t the point of observation. The length of vector s1
is equal to uni ty since at the SRS origin the metric is flat. Usin~

this tondition one may calculate from (15) the lengths lof vectors q
apd p. Aberration relations between the unit vectors s, 11l=q /q and
n =pljp derived from (15) have the form

1 2 1 Jj j -3 1 2 1
2 (! A~r) m + fl D1) + C (2" (! ~) (! A(! A~r)) -

(11)

J:f j-4
J:( ~ (m A(m All' )) + O( c )

- - ...J1'

1 1 -1 1 -2 1 1m = n + c (~A (~ A!J!j)) + c (2" (!l !J!i) (!l A (!l I\!.IS)) -

1 2 1 1 Jj:f2" (!l A!:J!l) n + {12 A(ll./,~jj) ) + p' ~ n~) +

-3 1 2 1 1 2 1
C (2" (!l !:J!i) (!! 1\ (!l 1\!J!i)) - 2" (!! !:J!i) (1]. A!1'1) n +

1 - 1
2 U (w) (n A{n All' )) + 2 U(x) (n A (n I\ll' )) +

J!i -'J.' - - ~ ~ - - ~

1 1(n ll') (n A(RAa )) + (a R) (n A{n I\ll' )) -
--J!j - -J!l-J!j -J!j-J!j - --J!j

(12)
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Here U~ is the Earth potential, U is the potential of all Solar

system bodies excluding the Earth, functions /p= _;1 charac~erizH
kinematical rotation of GRS with respect to BRS and functions 1I\I=-K
characterize kinematical rotation of SR~ with respect to GRS (Brumberg
and Kopejkin'11989a; Kopejkin, 1989b). 1

Vector n is related with the unit vector k characterizing the
direction of propagation from the source to the obser,rcr by Dleans of
expression resulted from the internal solution (12)

n1 = k1 + c-3
( (! A(~!!))1+ (! A(0!))1+ (!! 1\(~!!))1)

c-o( i (!,,~l k
1 + (! ~)(!,,(~!)/ ) + (13)

-4 -4 -4o (c 6J. ) + 0 (C JJ. ) + 0 (c a)

with dot denoting the differentiation with respect to time t.

5. Parallax and proper motion

For the sake of convenience let us re-designate the moment of
emission by T, the moment of reception by t, the coordinates of the
emitter at the mOfent T by t and the coordinates of the observer at
the moment t by x. Vector k is expressed in terms of the coordinates
of the emittcr and thc observer as follows (Brumbers, 1972,1987)

1 J 1 C!k = ( Ie (T) - x (t))/ I~(T) - !(t)1 + O(c- ) (14)

For a limited time interval the coordinates of the emitter may be
presented in the form

with AT= T-To' To being the initial epoch of emission. V- = dII/dT and
if =JII/ dT are BRS veloci ty and acceleration of the emitter
respectively.

The parallax may be taken into account by expanding the right-hand
member of Eq. (19) in powers of the parallactic ratio ~I~I/R .
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1 -1 J. -3 1 1 -~ , J
k =R H - R (~/\(!"~)) - 2 R (~/\!) K -

-~ 1 3R (~!o) (~/\ (!/\/].) ) + 0 (I )
(16)

The proper motion of the light source is taken into account by
expanding the right-hand member of (21) in powers of AT and using (20).
Finally, one gets

1 1 1, 1 1
k =ko ( 1 + (~ l!.) AT - "2 ~ ) + ~ AT ( 1 + R (!o !)) -

(17)

li( 1+ Rl (!o~) - Rl (!o !)AT) ~ ~1Af +0(1
3

) +00'1)
o 0 w

1.J. · 1 -1.1 1 1 . i
with ko =Ko/Ro' ko =Ro ( V -(!o!')ko)' I.L =(!o/\(!o/\!o» is the vector
of proper motion and 1

1 = R-
1
(k/\(XI\k »1 is the vector of parallax.o -0 --0

BRS time interval AT is not directly measurable quantity. It
should be expressed in terms of the BRS time interval At = t-to at the
point of observation (to being the initial epoch of observation) by

means of relation

-, -1 -1
AT = ( 1 + c (!of)) (At + c (!o!)) +

O( c-1Ro I') + O( c-11!1 ~ At)

(18)

-1The term c (!o~) in (23) is of the sinusoidal form with the

maximal ampli tude of the order of 500 seconds and the period of one
year. This term should be taken into account for stars with large
proper motion. For example, for the Barnard star with ~10" per year
such term results to the change of the star coordinate by the order of
200 microarcseconds per year. Within the accuracy of the one
microarcsecond this term may be easily detected.

6. Conclusion

This paper presents an algorithm of reduction of astrometric
observations to be performed on an Earth satellite with the precision
of one microarcsecond. To be short, this algorithm is reduced to
Expressions (16) - (18) and (22), (23) for the tran,formation from the
observed vector _Sl to the BRS unit vector ko' Two independent

components of the latter yield the position of the source on the
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1celestial sphere at epoch to' Aset of vectors ko referred to one and
the same initial epoch to for sufficiently large number of sources
determines an inertial reference system on the sky.

It may be noted that the relativistic precessions ~j and 1I j need
not to be known for reduction of observations performed on a satellite
insofar one deals here with relative observations. The relativistic
precession is wanted only to provide absoluteness to the inertial
reference system constructed with the aid of satellite board
observations.
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Discussion

HUGHES: This paper, with its complicated considerations, gives us a perfect example ofthe necessity
of very carefully setting up a considered nomenclature for dealing with space/time. It
becomes naive in the extreme to speak simply ofsome "coordinate system" or such, without
a very careful specification of the underlying theory, approximations etc. in the "reference
system" or whatever we finally call such a thing.

BASTIAN: Is POINTS able to detect low-frequency gravitational waves, of which the universe may be
filled?

KOPEJKIN: A level of 0.1 mas would be expected, according to a study by Braginsky.
BASTIAN: So at least some challenge remains.

TURYSHEV: How do you derme the region of matching of coordinate systems?
KOPEJKIN: The region ofmatching is initially bounded by the distance to the nearest attracting body.

For example, for the matching ofbarycentric and geocentric reference frames, the region of
matching is bounded initially by the distance from the Earth to the Moon. After the
detennination of the functions incorporated in the coordinate transfonnations, the region of
matching can be extended to a greater distance, namely to the point in space where the
detenninant of the coordinate transfonnations is equal to zero.
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