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CONNECTEDNESS PROPERTIES OF LATTICES 

BY 

R. VAINIO 

ABSTRACT. Let L be a lattice and q a convergence structure (or a 
topology) finer than the interval topology of L. In case of compact maximal 
chains and continuous lattice translations, the connected components of the 
space (L,q) are characterized using lattice conditions only. Moreover, 
lattice conditions of L are related to connectedness conditions of the order 
convergence space (L, o). Throughout this note, maximal chain conditions 
and maximal chain techniques play an important role. 

0. Introduction. In posets and lattices, convergence structures provide a more 
effective tool than topologies, which was demonstrated in for instance Ball [1], Erné 
[4] and Kent [7]. Therefore, this note is written in full generality to concern con
vergence structures rather than topologies only. By a lattice convergence space we shall 
mean a lattice endowed with a convergence structure which is finer than the interval 
topology of the lattice. 

In Section 2, purely lattice theoretical lemmata on conditional completeness are 
given. It is proved i.a. that a lattice is conditionally complete, if it has complete 
maximal chains. Section 3 utilizes these results in a theorem characterizing the con
nected components of certain lattice convergence spaces. Finally, Section 4 deals with 
certain intrinsic topologies and convergence structures on conditionally complete lat
tices. It is proved that in structures finer than interval topology but coarser than order 
convergence, every maximal chain carries its own interval topology. This result is used 
in creating a connectedness theory for the structures in question. 

1. Preliminaries 

1.1 Convergence structures Let S be a set and let F(S) denote the collection of all 
proper filters on S. A convergence (structure) on 5 is a map q : S —> 2F(S\ which for 
every x (E S satisfies 

(1) [x] E q(x), where [x] denotes the fixed ultrafilter generated by {x}. 
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(2) If ^ G q(x) and ^ D ï , then <S G q(x). 

(3) If 3? G tf(jt), then 3? H [*] G £(*). 

The pair (S ,q) is called a convergence space. Examples are topological spaces, pseu-
dotopological spaces (G. Choquet) and limit spaces (H.J. Kowalsky, H.R. Fischer). 
The natural topological modification of the convergence q is the finest topology on S 
coarser than q; it is denoted by top(g). The notion of open (closed) set in a space (S, q) 
always refers to the topology top(g). There is a rich literature on convergences and 
applications; reference is made to Gâhler [6]. 

Below, the necessary definitions of connectivity properties in convergence spaces 
are recapitulated from Gâhler [6] and Vainio [9], [10]. A convergence space (S, q) is 
connected, if the topological modification (S,top(g)) is, i.e. if all continuous maps 
from (S,q) to the two-point discrete space are constant maps. A set in a given 
convergence space is a connected set, if the corresponding subspace is a connected 
convergence space. In general, a convergence space possesses fewer connected sets 
than its topological modification does. The maximal connected sets in (S, q) are called 
the (connected) components of the space; they coincide with the components of (S, 
top (q)). Finally, (S, q) is locally connected, if for every x G S every filter 8F G q(x) 
has a subfilter <S G q(x) possessing a filter base of connected sets. It can be shown that 
if a convergence space is locally connected, then so is its topological modification. 

1.2 Convergences on posets and lattices Partially ordered sets (posets) will be 
indicated by the letter P, lattices by the letter L. For a subset A Ç P, the set of all upper 
(lower) bounds is denoted by A* (A+). If A Ç P has a least upper bound (l.u.b.), then 
this is denoted by V^- Dually, a greatest lower bound (g.l.b.) is indicated by AA. In 
a lattice L, the notation x \/ y (x A y) is used instead of \j{x,y} (A{x,y}). For S a 
subset of L and x G L, x V S denotes the set {x \J s : s G S}. The set x A S is defined 
dually. 

Interesting convergences on a poset P are for instance the interval topology t(P) and 
the order convergence o(P). The former is the coarsest topology on P for which all rays 
[<z,—],[—,a] are closed sets and the latter is defined through (cf. Kent [7]) 

3? G o(P) (x) O x = A ^ * = \J^\ 

<$* = (u/r* : f e ^ r - (UF+ : F G 9?). 

For F a poset and JC G P, every filter in o(P) (JC) is bounded, i.e. contains a bounded 
set. Hence, if L is a conditionally complete lattice, i.e. a lattice in which every 
non-empty subset with an upper bound has a l.u.b., and dually, then order convergence 
on L can be described through 

9 G o(L) (x) O x = A{\/F :F £ ? } = \j{AF : F 6 f } . 

It is known that in an arbitrary lattice L, the classical order topology of G. Birkhoff can 
be characterized as the finest topology coarser than o(L), i.e. as top (o(L)). It is always 
true that 
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t(L) < top(o(L)) < o(L), 

and hence all structures above yield lattice convergence spaces. Concerning order 
convergence, reference is made to Erné and Week [5], and Kent [7]. 

2. The compact maximal chain condition. The compact maximal chain (c.m.c.) 
condition was explained in Ward [11], which deals with i.a. compactness and con
nectedness properties of chains contained in quasi ordered spaces. However, no one 
seems to have noticed that for lattice convergences (topologies) finer than interval 
topology, the c.m.c. condition implies conditional completeness of the lattice. This is 
a direct consequence of the following two lemmata, the first of which is due to Rennie 
[8]. 

LEMMA 1. A lattice is conditionally complete, if every non-empty chain with an upper 
bound has a lowest upper bound. 

LEMMA 2. A lattice with complete maximal chains (i.e. complete as lattices in their 
own right) is conditionally complete. 

PROOF. Let L be a lattice with complete maximal chains and let S be any subchain 
of L. Below is proved that the l.u.b. of S taken along any maximal chain containing 
S yields the same element of L. 

Therefore, let / and J be maximal chains in L containing S and write JCI = V/S, 
*2 = \/JS, the indices telling in which lattice the l.u.b. is formed. The L-infimum 
i i A i 2 is related to every element in I (J). To see this, take an arbitrary element 
m E I (J). If m is an upper bound of S, then m > i , > i , Ax 2 . In other case, there 
is an element s E S for which s > m, and xx A x2 ^ s > m follows. Since I(J) is a 
maximal chain, xx A x 2 E I (J), and thus x} = x2. 

Now, Lemma 1 is used to close the proof. Let S be a chain in L and I a maximal chain 
in L containing S. Assume that s E L is a lower upper bound of S than the element \JiS. 
There exists a maximal chain J containing S and s, and \JjS < V/S, which contradicts 
the result at the beginning of the proof. The lemma follows. • 

Finally, the following related result is proved. 

LEMMA 3. Let L be a conditionally complete lattice, I a maximal chain in L and S 
a bounded subset of I. Then 

\/LS = V/S (ALS = A#S), 

the indices telling in which lattice the l.u.b. (g.l.b.) is formed. 
PROOF. The l.u.b. \JLS exists, and is denoted by a. Let x be an arbitrary element 

of /. If x is an upper bound of S, then x > a in L, and if x is not an upper bound of 
S, then there is an element s E S for which x < s < a. Since / is a maximal chain 
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in L, it follows a E / . Clearly, a is the lowest / upper bound of S, and thus \ZJS exists 

and equals a. • 

3. Connectedness properties of lattices with compact maximal chains. As 

known, the interval topology of a chain is connected, if and only if the chain is order 

dense and conditionally complete. We shall use this result together with a compact 

maximal chain reasoning. 

A lattice is order dense if, whenever x < y in the lattice, there exists an element z 

in the lattice such thatx < z < y. In the previous section, conditionally complete lattices 

were defined. Naturally, a lattice is order dense if and only if every maximal chain is 

order dense. Further, every maximal chain in a conditionally complete lattice is condi

tionally complete in its own right (cf. Lemma 3 above). 

In this section, let (L, q) be a lattice convergence space (i.e. q > t(L)) with compact 

maximal chains and continuous lattice translations (i.e. the maps x —» a V x and x —> 

a A x are continuous maps from (L, q) to (L,q) for every a E L). The assumption q 

> t(L) ensures every maximal chain in L to be a closed set. We also note that q > t(L), 

the c m . c . condition and Lemma 2 together imply that L is a conditionally complete 

lattice. 

THEOREM 4. Let (L,q) be as above. Then the connected components of (L,q) can 

be characterized as the maximal conditionally complete and order dense convex sub-

lattices of L. 

PROOF. Let K be a connected component of (L,q). The continuity condition alone 

implies that K is a convex sublattice of L. Namely, for any a E K it is a \J K Ç AT, 

a A K Ç K, and hence AT is a sublattice. To prove the convexity, take a < b in K, and 

take x E L satisfying a < x < fr. The set JC A AT is connected, both a and JC are in 

x AK, and hence JC E A'. Moreover, for any a < b in AT the set [A , /?] is connected (only 

use that the map x-^ (a V JC) A b is continuous), and since every singleton set is closed 

in the subspace AT, there is an element x E K for which a < x < b. Thus K is order 

dense. Every maximal chain of K can be embedded in a compact maximal chain of L, 

and is thus compact. Hence the subspace AT is a lattice convergence space with compact 

maximal chains, which implies that K is conditionally complete (Lemma 2). 

It remains to prove that every conditionally complete and order dense convex sub-

lattice S of L is a connected subset of (L, q). Therefore, take a,x E S and prove that 

JC is in a connected subset Sx of S containing a. Define Sx to be the L-interval [a Ax, 

a V •*]> which is a subset of /S, since S is a convex sublattice of L. All maximal chains 

in Sx are compact, and hence carrying their own interval topologies. Since all maximal 

chains in Sx are order dense and conditionally complete (Lemma 3), they are connected. 

Hence Sx is connected, and the proof is enclosed. • 

COROLLARY 5. Let the lattice convergence space (L,q) be as in the theorem. The 

space (L,q) is connected, if and only if the lattice L is order dense. 

In view of Theorem 6, the following conclusion holds. 
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COROLLARY 6. Let L be a conditionally complete lattice, and let s(L) be a con
vergence on L satisfying t(L) < s(L) < o(L), and for which the lattice translations are 
continuous maps. Then the connected components of(Lys(L)) can be characterized as 
the maximal order dense convex sublattices of L. 

4. Order convergence of conditionally complete lattices. This section investigates 
conditionally complete lattices endowed with order convergence (cf. Section 1.2), and 
specially, the maximal chains of such spaces. The results obtained are used to yield 
sufficient conditions for a lattice to be connected or locally connected in its order 
convergence. 

Let L be a lattice and J a chain in L. Again, let o(L) denote order convergence and 
t(L) interval topology. By t(L)j (o(L)j) is indicated the inherited structure from the 
interval topology (order convergence) of L to the subchain J. Among the standard 
results we note the following: 

t(L)<o(L),o(J) = t(J)<t(L)j. 

LEMMA 7. LetL be a conditionally complete lattice and J a maximal chain in L. Then 
o{L)j = t(J). 

PROOF. In order to prove o(L)j < t(J), take i G J and denote the f (7 ̂ neighbourhood 
filter of x by 8F. Since J is a conditionally complete lattice, 

\JJ{AJF :FE&} = AAVJF : F G ? } - I . 

According to Lemma 3, the index J in this formula can be replaced by the index L, and 
thus it follows that 2£ is a filter base for a filter in o(L)(x). Thus o(L)j < t(J) 
holds. • 

COROLLARY 8. Let L be a conditionally complete lattice and let J be a maximal chain 
in L. Take x E J and let W be a neighbourhood of x in the order topology ofL. Then 
W contains some J-interval [v, z] containing x. 

Lemma 7 can be strengthened to 

THEOREM 9. Let L be a conditionally complete lattice, J a maximal chain in L and 
I a convex subset of J. Suppose s(L) is a convergence on L with t(L) < s(L) < o(L). 
Then s(L)j = t(J) and s(L), = t(I). 

PROOF. Lemma 7 gives t(L)j < o(L)j = t(J), and thus t(L)j = t(J). Using Lemma 
7 once more, the assumption governing s(L) yields s(L)j = t(J). Furthermore, 
s(L)[ — t(J)i = t(I), where the last equality employs the convexity assumption on /. 
(cf. Erné [2], Lemma 2). • 

Another application of Lemma 7 is the following 
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THEOREM 10. Let X be a set, Y a lattice convergence space, and denote the lattice 
of all functions from X to Y endowed with order convergence structure by F0(X, Y). If 
Y has compact maximal chains, then so has F0(X, Y). 

PROOF. Let M be a maximal chain in F(X, Y). Since Y has compact maximal chains, 
F(X,Y) is conditionally complete, and hence according to Lemma 7 the subspace M 
of F0(X, Y) carries its own interval topology. Since the c.m.c. condition of Y implies 
that M is complete, the theorem follows. • 

REMARK 11. Theorem 10 gives conditions for a totally ordered pointwise convergent 
net of functions to be order convergent. Naturally, the theorem does not hold if F(X, Y) 
is endowed with continuous convergence. (Dini's theorem in Calculus does not work 
without compactness conditions on the space X. ) 

Finally, Lemma 7 and Theorem 9 are applied to connectivity theory of order con
vergence spaces. It is recapitulated that the interval topology of a chain is connected, 
if and only if the chain is conditionally complete and order dense. 

THEOREM 12. If the lattice L is order dense and conditionally complete, then the 
order convergence space (L,o(L)) is connected. The converse statement is not true. 

PROOF. Take a,b E L, let Ja be a maximal chain through a and a\/ b, and Jh a 
maximal chain through b and a\J b. The interval topologies of Ja and Ĵ  are connected, 
and hence a and b belong to the same connected component of the space (L,o(L)). The 
second part of the theorem is proved through a simple counterexample. Both lattices 
below are built up by intervals of the real axis. The direction into which the order 
relation grows is indicated by arrows. Although both lattices are connected in their 
order convergences, the first one is not order dense and the second one is not condi
tionally complete. • 

> '—• • > > —>-*—a a ^ > 
FIGURE. 

COROLLARY 13. Let X be a set and L an order dense and conditionally complete 
lattice. Then the space F0(X,L) is connected. 

REMARK 14. The theorem provides sufficient conditions for the order topology, the 
interval topology and the Lawson topology to be connected. Trivially, the Scott topo
logy of any lattice is connected. 

A lattice convergence space (L,q) is called order connected, if for every order 
related pair x,y the set [x,y] is connected. Order connectedness of q always implies 
order density of L. Theorem 12 is strengthened through 
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THEOREM 15. If the lattice L is order dense and conditionally complete, then the 
space (L,o(L)) is order connected and hence locally connected. 

PROOF. The first part is proved using Theorem 9. According to Theorem 3.8 of Erné 
and Week [5], it holds for arbitrary lattices L that for every x E L and every 2F E 
o(L) (x) there is a subfilter <S E o(L) (x) possessing a base of intervals in L of the form 
[a,b\ Hence the second part follows. • 

In some cases, there is a very close connection between the convergence o(L) and 
the topology t(L). 

REMARK 16. Let L be a lattice. If t(L) is Hausdorff, t(L) = top(o(L)) (cf. Erné and 
Week [5]). Thus it follows from Theorem 15 that Hausdorff interval topologies of order 
dense and conditionally complete lattices always are locally connected. Moreover, in 
this case the connected components of the interval topology coincide with those of the 
order convergence. However, the assumption of Hausdorff interval topology is re
strictive. For such interval topologies in lattices, T2 coincides with T3, and if the lattice 
is complete even with T4 (cf. Erné [3]). 
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