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ABSTRACT 
Cognitive assistants such as IBM Watson and Siri are at the forefront of social and technological 
innovation and have the potential to solve many unique problems. However, the lack of standardization 
and classification within the field impedes critical analysis of existing cognitive assistants and may 
further inhibit their growth into more useful applications. This paper discusses the development of an 
ontology, its classes, and subclasses that may serve as a foundation for defining and differentiating CAs. 
Specifically, the four suggested classes include: learning, intelligence, autonomy, and communication. 
Various assistants are described and categorized using the proposed system. Our novel ontological 
framework is the first step towards a classification system for this burgeoning field. 
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1 INTRODUCTION 

Cognitive assistants (CAs), like Apple’s Siri or Amazon’s Alexa, are members of a revolutionary class 

of technologies that provide humans with a new way to interact with technology and information. 

However, developers are only just beginning to explore what these assistants are capable of. Currently, 

20% of all US households with Wi-Fi have a smart speaker (Bernard, 2018), a common embodiment 

for a CA. Moving forward, CAs will likely become even more popular and pervasive due to an 

increase in consumer trust in the product, expansion of the industry, and a rise in disposable income 

(Kumar and Rasal, 2018). Moreover, the development of this technology is outpacing the research and 

regulation of its own field. CAs are being turned to for solutions in many fields, from health care 

(Ferguson et al., 2010) to education (Coronado et al., 2018). This technology has grown to a capacity 

which requires regulation and governing organizational bodies, especially as CAs are used to address 

issues for sensitive populations, such as the elderly or disabled. However, regulatory bodies require 

clarity and classification of the domain to develop adequate policies. To aid in the standardization and 

classification of CAs, a novel ontology is proposed in this paper. 

Design is a complex activity and thus designers often rely on experience rather than defined tools with 

narrow uses. However, artificial intelligence (AI) may one day provide broadly applicable tools that 

would be useful to designers. The divide between AI and engineering design could be bridged by CAs, 

which can be used in shared design spaces to enable the cooperation and communication of human 

designers (Wu et al., 2006). There have already been several attempts at using CAs in engineering 

design (Shen, Norrie and Barthès, 2010). For example, ARDECO captures design episodes to be 

adapted and reused in related computer-aided design activities (Champin, 2003). 

To design efficiently, designers need goals and constraints to narrow the possible solution space. An 

overly broad solution space may take too much time and resources to solve to be worth the return. The 

proposed ontology provides designers with a road map of which level of learning, intelligence, 

autonomy, and communication they should expect to design for to solve certain problems. We further 

situate our understanding of CA research in engineering design using Concept-Knowledge (C-K) theory 

(Hatchuel and Weil, 2009), which frames the dynamic process of knowledge transformation in design. 

We posit that most research to date has generated specific instantiations of CAs, or propositions that can 

be modelled in the C-Space (concept space). We argue that the current work develops new information 

regarding the design of CAs and thus extends the K-Space (knowledge space) of the design problem. 

The roots of current cognitive assistants can be traced back more than eight decades. In 1945 

Vannevar Bush envisioned a device that would store all communication and printed work (Bush, 

1966). This device was named the Memex; it influenced the design of future hypertext and expert 

systems (for example, the World Wide Web). Five years later, Alan Turing developed a test of “a 

machine’s ability to exhibit intelligent behaviour,” recognized today as the Turing Test. In 1956, 

Arthur Samuel developed the first self-learning program and an early example of artificial intelligence, 

“The Samuel Checkers-playing Program,” and coined the term “machine learning” (Samuel, 1959). In 

the early 1960s, MIT’s Artificial Intelligence Laboratories developed the first natural language 

processing computer program or chatbot, as we call them today, named Eliza (Weizenbaum, 1966). 

Eliza used rules and scripts to respond to participants with nondirectional questions. DENDRAL was 

one of the first expert systems, developed in the 1960s to aid organic chemists to identify unknown 

organic molecules (Buchanan, Sutherland and Feigenbaum, 1966). MYCIN was developed based on 

DENDRAL; it used backward chaining and artificial intelligence to identify bacteria causing infection 

and advise antibiotics (Shortliffe, 1975). In 1994, Wildfire communications developed a speech based 

electronic secretary that could route calls and handle messages which pioneered the fields of 

intelligent software assistance and voice user interfaces. In the early 2000’s DARPA developed the 

Personalized Assistant that Learns (PAL) program. This program led to many advances in machine 

learning and reasoning technologies; most notably, the Cognitive Assistant that Learns and Organizes 

(CALO) (Berry et al., 2017). CALO has the following six functions: organizing and prioritizing 

information, preparing information artifacts, mediating human communications, task management, 

scheduling and reasoning in time, and resource allocation. 

Fast forward to 2011, when Apple released Siri, a mobile natural language interface for their iOS and 

macOS operating systems. Today, Siri is the most popular mobile virtual assistant with roughly 40 

million monthly unique users (as of May 2017) (Perez, 2018). Although not the first, Siri kicked off an 
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arms race of mobile virtual assistants. Samsung (S-Voice, Bixby), Amazon (Alexa), Windows 

(Cortana), and Google (the Google Assistant) all responded in turn with their own versions. All these 

assistants provide similar features that aid in daily life. Additionally, smaller competing companies 

have emerged with niche products. These include Djingo (a smart speaker like the Google Home 

Mini), Duer (an assistant with a screen like the Amazon Echo Show), and Clova (a smart speaker 

company specializing in speakers for kids). 

CA platforms enable both web developers and computer/mobile application developers to easily 

create, deploy, and use CAs (Kuznar et al., 2014). This foundation is provided by companies such as 

James, a CA platform with modules in banking, telecom, human resources, and insurance, to name a 

few (Boost, 2018). CA platforms can be used for a variety of services ranging from call centers to 

quick-service restaurants. James processes user input (though web-based chat windows) using natural 

language processing. Then it predicts the user’s intent through deep learning methodologies including 

convolutional neural networks and recurring neural networks. Finally, it dynamically responds based 

on pre-defined text and external application programming interfaces. 

To date, a standard schema to structure information and domain knowledge relevant to CAs has not been 

developed in academia or industry. It is imperative that this class of technologies be studied to develop a 

schema that can be used to structure ongoing and future research. Current CA research growth has not 

matched the growth of CA products being developed in industry. This is especially concerning for 

products directed at sensitive populations where the impact on mental health and social well-being are 

not studied and understood. As organized governing bodies begin to regulate these products, they will 

require a clear picture of the differing categories and properties that make up CAs. To begin this process, 

this paper proposes the first classes and subclasses of an ontology and applies them to current CAs. 

The rest of this paper is organized as follows. Section 3 discusses the ontological approach, the 

definition of CAs, and the identification of classes. Section 4 further defines the classes and subclasses 

of the ontology. Section 5 classifies current CAs using the proposed ontological framework. Section 6 

identifies future work and limitations. 

2 SCOPE AND CLASS IDENTIFICATION 

Ontologies have multiple advantages, such as 1) a shared understanding of the structure of information 

2) the creation of reusable domain knowledge 3) explicitly stated domain assumptions and 4) separate 

domain and operational knowledge (Chang and Rai, 2010). According to Chang et al. (2010), 

ontology development proceeds through four characteristic stages: 1) definition of scope and domain 

knowledge; 2) development of classes, relations, and subclasses based on similar ontologies; 3) 

definition of slot relations; and 4) generation and iteration using instances. Ontologies can either be 

developed top-down, bottom-up, or mixed. In top-down, the most general classifications are identified 

first, subclasses of classes and subclasses are then generated from existing entries. In bottom-up, 

instances are collected and grouped into similar subclasses. These subclasses are then grouped into 

further subclasses or classes. For the purposes of this paper, a top-down strategy is applied. 

There is no single, unifying definition for “cognitive assistant,” which provides a distinct barrier to the 

development of an ontology. One of the earliest relevant definitions was offered by Engelbart (1962) 

when they defined a framework for amplifying human intelligence through assisted decision making and 

actions. Since then, CAs have been referred to as intelligent agents, intelligent personal assistants, virtual 

assistants, conversational agents, and software agents. Some researchers define CAs based on their 

technical capabilities (NSF, 2015; Herron, 2017). For example, Herron defined intelligent agents as “a 

form of artificial intelligence that operate on user commands” (p. 139). Other researchers have defined 

agents based on their ability to provide services, information, or work to humans (Santos and Rodrigues, 

2013; Lodhi et al., 2018), for example, Lodhi defined virtual assistants as “software that can provide 

required information or perform work for human(s)” (p. 1). These definitions are broad and can thus be 

applied to a wide range of different software-based artifacts. For instance, type-ahead-search behaviour 

is used by a variety of companies (most notably, Google) to autocomplete users search text with the most 

likely following text. Type-ahead-search behaviour is a form of artificial intelligence that autocompletes 

based on user commands and performs work for the human user. However, this type of software varies 

greatly from most common CA archetypes, such as the Amazon Alexa. 

Other groups have identified the core components of a CA. The NSF Workshop on Intelligent CAs in 

2016 list the following elements of CAs: enhance human capabilities, adapt to dynamic environments, 
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cultivate trust within the human-machine relationship, interact naturally, and include multi-disciplinary 

views. Many of the definitions and descriptions above share similar trends. For example, natural 

interaction, collaborating, communicative ability, and sociality are all synonymous. Similarly, 

autonomy/planning and learning/adapting are shared themes throughout the literature. Finally, there is a 

strong pattern of intelligence-based components, such as, intelligence, reasoning, pro-action, decision-

making, problem solving, and proactivity. These four components (learning, intelligence, autonomy, and 

communication) are widely agreed upon throughout the literature. Therefore, these components will be 

leveraged to generate the class structure of the ontology proposed here. Table 1 offers a graphical 

representation of these trends and links to literature. 

Table 1. Patterns in component definitions 

 

In the development of a CA ontology, we subscribe to Le and Watschinski’s (2018) definition, that 

“cognitive assistants offer computational capabilities typically based on Natural Language Processing, 

Machine Learning, as well as reasoning chains operating on large amounts of data, enabling them to 

assist humans in cognitive processes” (p. 45). This definition identifies the most common techniques 

used to accomplish the previously identified components and adheres to the axiom that CAs should 

enhance and not replace human capabilities. This definition was used to identify the scope and 

requirements of the ontology. 

3 CLASSES AND SUBCLASSES 

Four classes were identified in the previous section from a review of the literature: learning (White, 

1973; Kazanas and Chawhan, 1975; Gatti-Petito et al., 2013), intelligence (Roberts, 1976; Schwark, 

2015; Goksu and Gulcu, 2016; Nkhoma et al., 2017), autonomy (Dorais et al., 1999; Goodrich et al., 

2001; Wiest, 2012), and communication (Bateman et al., 1990; Jäger and Rogers, 2012). We have 

chosen to base the learning subclasses on Gagne’s Hierarchical Theory of Learning (Soulsby, 2006), a 

common hierarchy for learning. Many strong parallels can be drawn between how humans and 

computers learn using Gagne’s Hierarchy (for example, forward and backward chaining). Bloom’s 

Taxonomy (Anderson et al., 2001) is a well cited and commonly used structure for intelligence and is 

employed here to provide a schema for defining the intelligence subclasses. The Society of 

Automotive Engineers’ Five Level Classification Scale for Autonomous Vehicles (NHTSA, no date) 

is a current standard for defining autonomous vehicles and was generalized to apply to autonomous 

assistants. Finally, Richard’s Hierarchy of Natural Language Processing Skills (Richard, 2001) is an 

existing hierarchy for natural language interfaces and was used to define communication subclasses. 

The following sections describe these classes and their subclasses in further detail. 

3.1 Learning 

Artificial neural networks, discriminative models, and machine learning techniques (such as deep 

learning) have improved the ability of CAs to learn about user’s intentions. New features such as image 

recognition and improved natural language processing are possible with these learning techniques. 

However, not all CAs learn at the same level. Classifying these distinctions will make it possible to 

explicitly state specific assumptions. The proposed subclasses of learning are based on Gagne’s 

Hierarchical Theory of Learning (Soulsby, 2006). Gagne’s Hierarchy has the following levels: signal 

learning, stimulus-response learning, chaining, verbal association, discrimination learning, concept 

learning, principle learning, and problem solving. The adapted hierarchy for CAs consolidates signal 

learning and stimulus-response learning into stimulus learning and removes verbal association. 
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The lowest levels of Gagne’s Hierarchy are signal learning and stimulus-response learning. Both refer to 

learning a single function for transforming a single input. Signal learning is the ability to learn to respond to 

a single signal. A classic example of signal learning is Pavlov’s dog or “classical conditioning”. Stimulus-

response learning is often also referred to as operant conditioning. The primary difference between classical 

and operant conditioning is the timing of the reinforcing agent (i.e. the reward or punishment). In classical 

conditioning, the reinforcing agent is presented with the unconditioned stimulus. In operant conditioning, 

the reinforcing agent is presented after the unconditioned stimulus. This differentiation is not applicable in 

CAs. Verbal association, while part of Gagne’s original hierarchy, is omitted from the set of subclasses 

because it is assumed that the CA relies on a voice-user interface and requires verbal association at all 

levels of learning. CAs using machine learning fall within the discrimination and concept learning levels. 

Table 2 defines the learning levels and provides an example of how it might apply to a CA. 

Table 2. Learning hierarchy 

 

3.2 Intelligence 

While Learning classifies how CAs parse inputs, we use the concept of intelligence in our framework 

to classify how CA’s construct outputs. Bloom’s Taxonomy is a common hierarchy that has been 

employed in learning and intelligence for decades. Since CAs are often expected to display human-

type intelligence, Bloom’s Taxonomy is well-suited for described a CA’s intellectual output. Prior 

studies have tied Bloom’s Taxonomy to Web Based Expert Systems and emotionally intelligent 

machines (Schwark, 2015; Goksu and Gulcu, 2016). Bloom’s Taxonomy has the following levels: 

remember, understand, apply, analyse, evaluate, and create (Anderson et al., 2001). 

Table 3. Intelligence hierarchy 

 

3.3 Autonomy 

Autonomy refers to the ability of the assistant to decide on the sequence of actions required to achieve 

the user’s requested task (Reddy, 2000). The Society of Automotive Engineers (SAE) have developed a 

5-Level Classification Scale for Autonomous Vehicles (NHTSA, no date) that has been modified here to 

apply to autonomous virtual assistants. While the SAE’s scale identifies specific levels based on the 

automation of braking, steering, and the combination thereof, these definitions have been generalized to 
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functions, subsystems, and systems. This change allows for a general classification scale that can be used 

for any automated assistant. However, because of these broad classifiers, autonomy is context dependent. 

What constitutes a function, subsystem, and system are defined by the user. For example, within 

Computer-Aided Design (CAD) systems, part generation could be considered the system. However, this 

system could be expanded with part generation, part assembly, and assembly drawings as subsystems in 

a broader system. Table 4 defines the five levels of the autonomous classification scale for CAs and 

provides examples in relation to a CAD system (for example, Inventor or SolidWorks). 

Table 4. 5-Level classification scale for CAs 

 

3.4 Communication 

CAs communicate with users through natural language processing and voice-user interfaces. Since GUIs 

are often not used with CAs, the ability to communicate verbally is crucial to a CA’s success. Richard 

(2001) defines the Hierarchy of Natural Language Processing Skills: labelling, functions, associations, 

categorization, similarities and differences, multiple meanings, idioms, and analogies. Labelling, the 

naming of objects, is the lowest level of the Hierarchy of Natural Language Processing Skills. It is the 

vocabulary of the CA. Once an object has a name, a function can be applied to that object. This is defined 

in the functions level. In the associations level, the CA can associate an object with other objects based on 

similar or corresponding functions. The categorization level of communication allows CAs to group 

objects. To group objects, the properties, functions, and associations of objects must first be understood. 

Once objects have been grouped, similarities and differences of grouped objects can be identified 

through distinguishing features. The similarities and differences levels allow for the ability to compare 

and contrast. Through the multiple meanings level, CAs can understand multiple meanings of the same 

word based on context and associations. In the idioms level, CAs can understand groups of words 

whose meaning is established through context rather than deducible by their individual meanings. In 

the analogies level, the CA can understand the relationship between different parts of language and 

describe the relationship between multiple concepts. 

Table 5. Hierarchy of natural language processing skills 
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4 CASE STUDIES: CLASSIFICATION OF COGNITIVE ASSISTANTS 

Several institutions have developed CAs to solve problems in fields ranging from education to health 

care. In this section, three assistants are described and classified using the proposed ontology. The 

Pennsylvania State University Libraries Database and Google Scholar were queried using the 

keywords “CA”, “digital assistant”, “intelligent personal assistant”, and “virtual assistant”. 150 articles 

were analysed, of which 9 CAs were selected based on the definition by Le and Watschinski’s (2018). 

These 9 assistants and their classifications can be seen in Table 6. Three of the assistants (StuA, Sirius, 

and Daphne) are explored in further details in the following sections. 

Table 6. CA classifications 

 

4.1 StuA 

StuA is a CA developed at the Jaypee Institute of Information Technology in Noida, India. StuA was 

developed to answer the questions of new students regarding grades, facilities, activities, and more. 

Like many assistants, StuA’s purpose is to connect novice users with domain expertise without 

needing a physical domain expert. The model was validated and shown to have a 99% accuracy. StuA 

uses a graphical interface with constrained natural language inputs. StuA uses forward chaining to 

answer “what will happen” questions and backward chaining to answer “when will this happen” 

questions. Forward chaining was implemented through CLIPS (software used for the construction of 

rule and/or object based expert systems) and backward chaining through a Java extension of CLIPS. 

Chaining is a reasoning method used in inference engines and is the second level of learning. StuA 

retrieves information from a database. StuA does not understand, analyse, apply, evaluate, or create 

information. Thus, StuA is ranked in the “Remember” level of the intelligence class. 

StuA provides only a single function through their inference engine, the retrieval of information 

regarding the student’s question. The system cannot execute commands regarding student inquiries 

such as “schedule an appointment with my advisor.” Due to this limitation, StuA ranks under the 

Single Function subclass in the autonomy class. StuA uses a GUI to interact with students. Students 

create sentence of a fixed structure using drop-down menus and open-ended text fields, further 

constraining their input. Through these constraints, StuA can interact with its database of labelled 

information. The drop-down menu allows students to select from question types which associates with 

a specific function (either direct lookup, forward, or backward chaining). This is the second level of 

the communication class. 

4.2 Sirius 

Sirius is a CA developed by Clarity Lab at the University of Michigan. It was developed to test the 

implications of future large-scale computers on the domain. Sirius is an advanced CA that recognizes 

natural language and images as input. Additionally, Sirius can respond to both questions and action 

requests. Sirius’s question-answering service uses regular-expression matching, word stemming, and 

part-of-speech tagging to classify and understand input. The image matching service uses feature 

extraction to downsample and find/store image key points. Then, the Feature Descriptor orients key 

points and matches them to a database using an approximate nearest neighbour search. These 
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processes allow Sirius to discriminate between various similar stimuli and recognize common classes 

of information. For this reason, Sirius is ranked at the Concept Learning level of the learning class. 

Sirius can output executable actions provided by the system or answers to questions. However, Sirius 

is not able to analyse component parts, evaluate units, or create novel solutions. Thus, Sirius is ranked 

at the Apply level of the intelligence class. Sirius is currently a platform that is not used in a specific 

application. Because autonomy is context dependent and Sirius’s context is undefined at this time, 

Sirius’s autonomy level cannot be specified. Sirius’s automatic speech recognition process uses either 

a Hidden Markov Model (HMM) with a Gaussian Mixture Model or an HMM with a Deep Neural 

Network. This allows Sirius to understand advanced language patterns. Sirius is ranked in the Multiple 

Meanings subclass of the communication class. 

4.3 Daphne 

Daphne was developed at Cornell University in Ithaca, New York. She is an intelligent assistant that 

aids system architects design Earth-orbiting satellites. Daphne provides useful information, can 

analyse data, and provides feedback on designs. Architects interact with Daphne through a graphical-

user and voice-user interface. 

Daphne’s Brain has two processes: HTTP/WS requests and a Sentence Processor. The HTTP/WS 

requests handle users working through the graphical-interface. The Sentence Processor handles users 

working through the voice-user interface. It classifies the intent of the user through a deep learning 

model based on a Convolutional Neural Network, a type of feed-forward artificial neural networks. Due 

to this, Daphne is classified at the Concept Learning level of the learning class. The voice-user interface 

allows architects to naturally interact with Daphne rather than operating through writing code. 

Daphne does not merely answer questions. She is also able to analyse designs through historical 

information and features shared by multiple design types. Daphne can also criticize proposed designs 

and indicate the strengths and weaknesses. This is part of the Evaluate level of the intelligence class. 

Although Daphne can perform these various tasks individually, she is unable to chain them into a fully 

automated process that designs satellites. This is under the Subsystem classification of the autonomy 

class. Finally, Daphne’s voice recognition system uses the Web Speech Application Program 

Interface, based on Google’s Speech-to-Text system. This is a system that can understand advanced 

language barriers such as multiple meanings. 

5 CONCLUSION 

CAs are a promising technology that hold solutions ranging from daily questions to the design of Earth 

orbiting satellites. They provide designers and engineers with easily accessible knowledge-based 

systems, computational tools, etc. However, CAs currently lack classification and standardization across 

the field. As governing bodies begin to regulate this growing technology, this lack of understanding will 

impede the development of these policies. This may be especially harmful to technologies aimed at 

industries like healthcare, where vulnerable populations are common and increased regulation is 

imperative. This paper has sought to take the first steps in addressing this problem by identifying a 

definition for CAs and defining a class and subclass structure for an ontology of the domain. 

Four classes were identified: learning, intelligence, autonomy, and communication. Learning and 

intelligence were used to parameterize how CAs handle input and output, respectively. Autonomy 

defined how well CAs can generate and execute plans. Finally, the communication class defined the 

CAs ability to interact with users through voice-enabled technology. The ontology provides engineers 

with potential design constraints used to narrow the solution space. It also establishes a common 

domain knowledge for CA creators and users. 

Nine CAs were selected and classified using the ontology. From these classifications, the differences 

in complexity and purpose become more apparent. Simple question-answer services, such as Stu-A, 

were classified in the lower subclasses (chaining, remember, single function, and functions) while 

advanced design aids, like Daphne, were classified in the higher subclasses (concept, evaluation, 

subsystem, multiple meanings). Further CAs, markedly those that exist in industry, should also be 

investigated in future work to ensure the viability of the ontological structure across all fields. 

While this ontology lays the ground work for the classification of a field that currently lacks 

standardization, it is not yet complete. Additional classes and subclasses should be explored and 

expanded. For example, machine learning is often characterized through supervised, unsupervised, 
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semi-supervised, and reinforcement learning (Dunjko et al., 2016). Such existing categorizations 

should be integrated into the proposed CA ontology as a means of linking it to relevant fields. In 

addition, this ontology provides a structure which can be used to guide ongoing research and 

development in CA technologies. The utility of the ontology for guiding future development should be 

evaluated through experimental design studies. 
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