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Periodic Steady-state Solutions of a Liquid
Film Model via a Classical Method

Ahmad Alhasanat and Chunhua Ou

Abstract. In this paper, periodic steady-state of a liquid ûlm �owing over a periodic uneven wall
is investigated via a classical method. Speciûcally, we analyze a long-wave model that is valid at
the near-critical Reynolds number. For the periodic wall surface, we construct an iteration scheme
in terms of an integral form of the original steady-state problem. _e uniform convergence of the
scheme is proved so that we can derive the existence and the uniqueness as well as the asymptotic
formula of the periodic solutions.

1 Introduction

Investigations of liquid ûlm �ow over an inclined wall have been of great interest to
many scientiûc researchers, as it arises in applications formany topics; see [1,7,8,11,12].
Many previous works dealt with the problem of a viscous liquid falling down an in-
clined wall with a �at surface, in which theoretical and numerical methods were ap-
plied to study the existence of the steady-state solution and its stability characteristics
(e.g., [2–4]). A change of �atness in the wall surface is more reasonable in practice,
and it aòects the liquid surface behavior. Recently, Tesuilko and Blyth [9] studied the
eòect of inertia on a ûlm �owing on an uneven wall in the presence of an electric ûeld.
Tseluiko et al [10] worked on the model derived in [9], assuming that the �ow varia-
tion as well as the variation in the wall shape in the �ow direction are subtle. Ignoring
the electric eòects, they solved the steady-state problem numerically.

_e purpose of this paper is to study this problem via a classical method. As in
[5], by classical methods in diòerential equations we mean ûnite dimensional meth-
ods derived from what is called classical analysis. Whereas modern applied anal-
ysis is commonly used to cast diòerential equation problems (including boundary
value problems) into inûnite dimensional settings, so that degree theory or inûnite-
dimensional ûxed point theorems can be applied to prove the existence of solutions,
“classical analysis”, in handling the same problems, o�en provides more information
than the abstract approaches. In particular, the “classical analysis” methods used are
more likely to be constructive in some sense and so can form the basis of numerical
methods. _ey are sometimes more global, for instance, giving estimates of the size
of a small parameter.
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4 A. Alhasanat and Chunhua Ou

In this paper, we consider a liquid ûlm�owing over a periodic unevenwall inclined
at an angle θ to the horizontal line. We introduce (x , y)-coordinates so that the �ow
is along the x+-axis direction. Let y = s(x) be the function that describes the wall
surface topography; see Figure 1.
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Figure 1: Liquid ûlm �owing over an inclined uneven wall.

_e �ow is governed by the partial diòerential equation

(1.1) ht + qx = 0;

see [10], where h(x , t) is the dimensionless ûlm thickness at time t and location x,
and q(x , t) is the �ux rate given by

(1.2) q = 2
3
h3 + 8R

15
h6hx −

2 cot(θ)
3

h3(h + s)x +
1

3C
h3(h + s)xxx .

Here, R and C are the Reynolds and capillary numbers, respectively, which are given
in terms of the liquid density, the liquid viscosity, and the surface tension.

_roughout this paper, we assume that the wall surface shape s(x) satisûes

(1.3) ∣s′(x)∣ ≤ a1є and ∣s′′′(x)∣ ≤ a2є
for small positive number є, and constants a1 , a2. In [10], the authors considered
two kinds of wall surface topography, a sinusoidal wall with s(x) = Acos( πx

l ) and
a rectangular wall with s(x) = A tanh(cos( πx

l )/d). Here A is the amplitude, l is the
period, and d is a constant such that the smaller the value of d the steeper the wall is.
_ey assumed that A/l is small, which implies condition (1.3).
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Periodic Steady-state Solutions of a Liquid Film Model via a Classical Method 5

Using an analytical method, we will prove the existence of periodic steady-states to
the partial diòerential equations. We give the details in three cases in terms of integral
equations. _e result not only provides the existence and the uniqueness of a periodic
solution, but also gives a generalized asymptotic formula.

_e rest of the paper is as follows. We prove the existence and the uniqueness
of steady-state solution using the uniform convergence of the iteration scheme in
Section 2. We shall split the proof into three cases, depending on the roots of the
characteristic equation of the homogeneous diòerential equation associated with the
steady-state problem. Conclusions are presented in Section 3.

2 Existence of Steady-state Solution

In this section, we seek a periodic steady-state solution, h(x , t) = h0(x), to (1.1)–(1.2).
By (1.2), this is equivalent to ûnd h0(x) that solves the ordinary diòerential equation
q′(x) = 0 or q(x) = q0 for a constant q0 that is related to the �ow �ux of the model.
For convenience and without loss of generality, we choose q0 = 2/3, and the steady-
state h0(x) from equation (1.2) satisûes

(2.1)
2
3
h3
0 +

8R
15

h6
0h′0 −

2 cot(θ)
3

h3
0(h0 + s)′ + 1

3C
h3
0(h0 + s)′′′ = 2

3
,

where prime denotes the derivative d/dx. When condition (1.3) holds, h0(x) = 1 is an
approximation solution to (2.1) (for any q0, the approximation is h0(x) = 3

√
3q0/2).

_is suggests that h0(x) = 1+w(x) is the exact steady-state solution to (2.1) for some
periodic small-amplitude function w(x) /= −1. Substitute it into equation (2.1) and
multiply the equation by 3C

h3
0
to get

8RC
5

(3w + 3w2 +w3)w′ + ( 8RC
5

− 2C cot(θ))w′ − 2C cot(θ)s′ +w′′′ + s′′′ =

2C[ 1
(1 +w)3 − 1] ,

which is equivalent to

(2.2) w′′′ + ( 8RC
5

− 2C cot(θ))w′ + 6Cw = F(s′ , s′′′ ,w ,w′),

where

F(s′ , s′′′ ,w ,w′)(x) = 2C cot(θ)s′(x)−s′′′(x)+ 2Cw2(x)
(1 +w(x))3 [6+8w(x)+3w2(x)]

− 8RC
5

(3w(x) + 3w2(x) +w3(x))w′(x).

Deûne

(2.3) a ∶= 8RC
5

− 2C cot(θ) and b ∶= 6C .

_e homogeneous part of the non-homogeneous equation (2.2) becomes

(2.4) w′′′ + aw′ + bw = 0.

https://doi.org/10.4153/CMB-2017-035-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-035-5


6 A. Alhasanat and Chunhua Ou

To ûnd the fundamental set of solutions for the third-order homogeneous equation
(2.4), which has the characteristic equation

(2.5) r3 + ar + b = 0,

we need the following lemma.

Lemma 2.1 (Cardano’s Formula, see [6, formulas (50)–(51), chapter 4]) _e cubic
algebraic equation (2.5) has the roots

r1 = ϕ+ψ, r2 = −
1
2
(ϕ+ψ) +

√
3

2
(ϕ−ψ)i , and r3 = −

1
2
(ϕ+ψ) −

√
3

2
(ϕ−ψ)i ,

where

ϕ =
3

¿
ÁÁÀ−b

2
+
√
b2

4
+ a

3

27
and ψ =

3

¿
ÁÁÀ−b

2
−
√
b2

4
+ a

3

27
.

Moreover, let ∆ = b2
4 + a3

27 . _en we have the following three cases:
● If ∆ = 0, then (2.5) has three real roots, at least two of which are equal. Here if a and
b are not equal to 0, then the number of equal roots is exactly two.

● If ∆ < 0, then (2.5) has three real distinct roots.
● If ∆ > 0, then (2.5) has a real root and two conjugate complex roots.

_e three diòerent possibilities in Lemma 2.1 divide our work into three subsec-
tions. In Subsection 2.1, we will show the existence of the steady-state solution h0(x)
to (2.1) by proving the existence of a periodic solution w(x) to (2.2) when a and b,
deûned in (2.3), satisfy ∆ = 0. A�er that, we will use the same idea in Subsections 2.2
and 2.3 to prove the existence when ∆ < 0 or ∆ > 0 is satisûed.

2.1 Existence of Steady-state when ∆ = 0

In the case b2
4 + a3

27 = 0, a must be negative, that is, R < 5
4 cot(θ) ∶= Rc , where Rc

is the critical Reynolds number (see [10]). In particular, R = Rc − 15/4 3
√

4C. By ap-
plying Lemma 2.1, the characteristic equation (2.5) associated with the homogeneous
equation (2.4) has a simple root r = −2α, and a root of multiplicity 2, r = α, where
α = 3

√
3C. _en the fundamental set of solutions to the homogeneous equation (2.4)

is

{w1 ,w2 ,w3} = {e−2αx , eαx , xeαx},

with a constant Wronskian W(w1 ,w2 ,w3) = 9α2. Using the variation-of-parameters
method, the integral form of the non-homogeneous equation (2.2) becomes

w(x) = e−2αx ∫
x

−∞

e2αt

9α2 F(t)dt + e
αx ∫

x

∞

−(3αt + 1)e−αt
9α2 F(t)dt

+ xeαx ∫
x

∞

3αe−αt

9α2 F(t)dt,
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Periodic Steady-state Solutions of a Liquid Film Model via a Classical Method 7

which can be further written as

(2.6) w(x) = 1
9α2 ∫

x

−∞
e2α(t−x)F(t)dt + 1

3α ∫
∞

x
(t − x)e−α(t−x)F(t)dt

+ 1
9α2 ∫

∞

x
e−α(t−x)F(t)dt.

In order to construct a better iteration scheme for w(x) in a simple functional space
so that the estimate of the norm of the integral operator becomes aòordable, we want
to remove the derivative term w′ in the right-hand side of (2.6) and rewrite it as a
functional of w(x) only. To do this, we substitute the formula F(t) and integrate the
w′-term by parts. _e ûrst term in the right-hand side of (2.6) becomes

∫
x

−∞
e2α(t−x)F(t)dt

= ∫
x

−∞
e2α(t−x){2C cot(θ)s′ − s′′′ + 2Cw2

(1 +w)3 (6 + 8w + 3w2)}dt

− 8RC
5 ∫

x

−∞
e2α(t−x)(3w + 3w2 +w3)w′dt

= ∫
x

−∞
e2α(t−x){2C cot(θ)s′ − s′′′ + 2Cw2

(1 +w)3 (6 + 8w + 3w2)}dt

− 2RC
5

(w4 + 4w3 + 6w2) + 4RCα
5 ∫

x

−∞
e2α(t−x)(w4 + 4w3 + 6w2)dt.

Similarly, for the second and last terms, we have

∫
∞

x
(t − x)e−α(t−x)F(t)dt

= ∫
∞

x
(t − x)e−α(t−x){2C cot(θ)s′ − s′′′ + 2Cw2

(1 +w)3 (6 + 8w + 3w2)}dt

+ 2RC
5 ∫

∞

x
(1 − α(t − x))e−α(t−x)(w4 + 4w3 + 6w2)dt

and

∫
∞

x
e−α(t−x)F(t)dt

= ∫
∞

x
e−α(t−x){2C cot(θ)s′ − s′′′ + 2Cw2

(1 +w)3 (6 + 8w + 3w2)}dt

+ 2RC
5

(w4 + 4w3 + 6w2) − 2RCα
5 ∫

∞

x
e−α(t−x)(w4 + 4w3 + 6w2)dt.

Now, we deûne functions G ,H, and Q by

(2.7)

G(s) ∶= 2C cot(θ)s′ − s′′′ ,

H(w) ∶= 2C w2

(1 +w)3 (6 + 8w + 3w2),

Q(w) ∶= 2RC
5

(w4 + 4w3 + 6w2).
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8 A. Alhasanat and Chunhua Ou

_en we re-write the integral equation (2.6) in the form

(2.8) w(x) = T0(G)(x) + T1(H)(x) + T2(Q)(x) ∶= T(w(x)),

where
(2.9)

T0(G)(x) = 1
9α2 ∫

x

−∞
e2α(t−x)G(s(t))dt + 1

3α ∫
∞

x
(t − x)e−α(t−x)G(s(t))dt

+ 1
9α2 ∫

∞

x
e−α(t−x)G(s(t))dt,

T1(H)(x) = 1
9α2 ∫

x

−∞
e2α(t−x)H(w(t))dt + 1

3α ∫
∞

x
(t − x)e−α(t−x)H(w(t))dt

+ 1
9α2 ∫

∞

x
e−α(t−x)H(w(t))dt,

T2(Q)(x) = 2
9α ∫

x

−∞
e2α(t−x)Q(w(t))dt − 1

3 ∫
∞

x
(t − x)e−α(t−x)Q(w(t))dt

+ 2
9α ∫

∞

x
e−α(t−x)Q(w(t))dt.

To ûnd a periodic functionw(x) that satisûes equation (2.8), we deûne an iteration
scheme with the initial periodic function w0(x) as

(2.10)
w0(x) = T0(G)(x),

wn+1(x) = T(wn)(x), for n ≥ 0.

Obviously, the operator T maps a periodic function into a periodic function with the
sameprime period. Wewill show that the series∑∞n=1(wn−wn−1) converges uniformly
for x in (−∞,∞). _en the required periodic solution w(x) can be obtained by the
limit

w(x) = lim
n→∞

wn(x) = w0(x) +
∞

∑
i=1

(w i(x) −w i−1(x)) .

First of all, we want to estimate the initial function w0(x). Note that

∣w0(x)∣ ≤ ∥G(s(x))∥{ 1
9α2 ∣∫

x

−∞
e2α(t−x)dt∣ + 1

3α
∣∫

∞

x
(t − x)e−α(t−t)dt∣

+ 1
9α2 ∣∫

∞

x
e−α(t−x)dt∣ }

= 1
2α3 ∥G(s(x))∥,

where ∥ ⋅ ∥ is themaximumnorm. _ismeans that we can determine the bound of the
periodic function w0(x) by the bound of s(x), that is, for s(x) satisfying inequalities
in (1.3) and using the deûnition of G(s), we have

(2.11) ∣w0(x)∣ ≤ ∥w0(x)∥ ≤ Bє <
1
2
,

where B = 1
2α3 (2C cot(θ)a1 + a2), and є is suõciently small (less than є0 below).
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Periodic Steady-state Solutions of a Liquid Film Model via a Classical Method 9

Nowwe are ready to show the uniform convergence of the series∑∞n=1(wn−wn−1).
To this end, we deûne the constants

M1 ∶= sup
∣w∣≤ 1

2

∣H′′(w)∣, M2 ∶= sup
∣w∣≤ 1

2

∣Q′′(w)∣,(2.12)

M ∶= 1
2α3 M1 +

2
3α2 M2 , β ∶= 2MB.

We will show that there exists a constant є0 such that for 0 < є < є0, we have

∣wn −w0∣ ≤ βє∥w0∥, n = 1, 2, 3, . . . ,(2.13)

and

∣wn −wn−1∣ ≤ (2βє)n∥w0∥, n = 1, 2, 3, . . . .(2.14)

Indeed, for n = 1, we use the iteration deûnition (2.10) and (2.8) to have

(2.15) ∣w1 −w0∣ = ∣T(w0) −w0∣ ≤ ∣T1(H(w0))∣ + ∣T2(Q(w0))∣.

Using Taylor expansion, Q(w) = Q′′(ν)w2 for ν ∈ (0,w) and ∣w∣ < 1
2 . _is implies

(2.16) ∥Q(w0)∥ ≤ M2∥w0∥2 .

Similarly,

(2.17) ∥H(w0)∥ ≤ M1∥w0∥2 .

By using (2.9), (2.16), and (2.17) in (2.15) yields

(2.18) ∣w1 −w0∣ ≤ M∥w0∥2 .

Hence, from inequality (2.11), we have

∣w1 −w0∣ ≤ MBє∥w0∥ ≤ βє∥w0∥,

which proves that inequalities (2.13) and (2.14) hold for n = 1. To complete our argu-
ment, we assume, by induction, that inequalities (2.13) and (2.14) are true for n = k.
_is gives ∣wk ∣ ≤ (1 + βє)Bє ≤ 1

2 as long as є < є0 for a given small є0. We need to
show that both of (2.13) and (2.14) hold true for n = k + 1. Actually, we have

∣wk+1 −w0∣ = ∣T(wk) −w0∣
≤ ∣T1(H(wk))∣ + ∣T2(Q(wk))∣
≤ M∥wk∥2 similar to (2.18)

≤ M(1 + βє)2∥w0∥2 from our assumption

≤ BM(1 + βє)2є∥w0∥ using (2.11)
≤ βє∥w0∥.

_is implies that the inequality (2.13) is satisûed for all n. Here, we have assumed that
є is suõciently small so that (1 + βє)2 ≤ 2 for є < є0. For inequality (2.14), we have

(2.19)
∣wk+1 −wk ∣ = ∣T(wk) − T(wk−1)∣

≤ ∣T1(H(wk) −H(wk−1))∣ + ∣T2(Q(wk) − Q(wk−1))∣.
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10 A. Alhasanat and Chunhua Ou

By the Mean Value _eorem, for 0 ≤ θ ≤ 1, we get

∥Q(wk) − Q(wk−1)∥ ≤ ∥Q′(θwk + (1 − θ)wk−1)∥ ⋅ ∥wk −wk−1∥
= ∥Q′′(ν)∥ ⋅ ∥θwk + (1 − θ)wk−1∥ ⋅ ∥wk −wk−1∥ for some ν
≤ M2(1 + βє)∥w0∥ ⋅ ∥wk −wk−1∥,

and similarly,

∥H(wk) −H(wk−1)∥ ≤ M1(1 + βє)∥w0∥ ⋅ ∥wk −wk−1∥.
Hence, inequality (2.19) implies

∣wk+1 −wk ∣ ≤ M(1 + βє)∥w0∥∥wk −wk−1∥ ≤ M(1 + βє)(2βє)k∥w0∥2

≤ MBє(1 + βє)(2βє)k∥w0∥ ≤ (2βє)k+1∥w0∥,
which proves that inequality (2.14) is true for all n. By the well-known Weierstrass
M-test, series

w0(x) +
∞

∑
n=1

(wn(x) −wn−1(x))

is uniformly convergent for x ∈ (−∞,∞). Consequently, we have the following the-
orem.

_eorem 2.1 Assume that a and b, deûned in (2.3), satisfy b2
4 + a3

27 = 0. _ere exists
a small є0 such that for є < є0, (2.1) has a solution h0(x) = 1 + w(x), where w(x) is a
solution of the diòerential equation (2.2) with the asymptotic expansion

w(x) = w0(x) +
∞

∑
n=1

(wn(x) −wn−1(x)) ,

and wn(x), n = 0, 1, 2, . . . , are deûned in (2.10).

Remark 2.1 Based on (2.13) and (2.14), _eorem 2.1 also provides a generalized
asymptotic expansion to the periodic steady-state solution.

2.2 Existence of Steady-state when ∆ < 0

In this subsection, we study the existence of periodic steady-state in the case b
2

4 +
a3
27 <

0. _e fundamental set of solutions to the homogeneous equation (2.4), in this case,
is {w1 ,w2 ,w3} = {er1x , er2x , er3x}, where r1 , r2 , and r3 are the real distinct roots of
the characteristic equation (2.5) deûned in Lemma 2.1, with a constant Wronskian

Ŵ ∶=W(w1 ,w2 ,w3) = r2r3(r3 − r2) − r1r3(r3 − r1) + r1r2(r2 − r1).
Note that, when ∆ < 0, we have r1 < 0 and r2 , r3 > 0. _en using the variation-of-
parameters method, we have the following integral form of the non-homogeneous
diòerential equation (2.2):

(2.20) w(x) = C1 ∫
x

−∞
e−r1(t−x)F(t)dt + C2 ∫

∞

x
e−r2(t−x)F(t)dt

+ C3 ∫
∞

x
e−r3(t−x)F(t)dt,
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where

C1 =
r3 − r2
Ŵ

, C2 =
r3 − r1
Ŵ

, and C3 =
−(r2 − r1)

Ŵ
.

Substitute F(t) and integrate the w′-term by parts to get

∫
x

−∞
e−r1(t−x)F(t)dt

= ∫
x

−∞
e−r1(t−x){2C cot(θ)s′ − s′′′ + 2Cw2

(1 +w)3 (6 + 8w + 3w2)}dt

− 2RC
5

(w4 + 4w3 + 6w2) − 2RCr1
5 ∫

x

−∞
e−r1(t−x)(w4 + 4w3 + 6w2)dt

and

∫
∞

x
e−r i(t−x)F(t)dt

= ∫
∞

x
e−r i(t−x){2C cot(θ)s′ − s′′′ + 2Cw2

(1 +w)3 (6 + 8w + 3w2)}dt

+ 2RC
5

(w4 + 4w3 + 6w2) − 2RCr i
5 ∫

∞

x
e−r i(t−x)(w4 + 4w3 + 6w2)dt,

for i = 2, 3. In terms of G(s),H(w), and Q(w) deûned in (2.7), the integral equation
(2.20) can be written in the form

w(x) = T̂0(G)(x) + T̂1(H)(x) + T̂2(Q)(x) ∶= T̂(w(x)),
where

T̂0(G)(x) = C1 ∫
x

−∞
e−r1(t−x)G(s(t))dt +

3

∑
i=2
C i ∫

∞

x
e−r i(t−x)G(s(t))dt,

T̂1(H)(x) = C1 ∫
x

−∞
e−r1(t−x)H(w(t))dt +

3

∑
i=2
C i ∫

∞

x
e−r i(t−x)H(w(t))dt,

and

T̂2(Q)(x) = −C1r1 ∫
x

−∞
e−r1(t−x)Q(w(t))dt −

3

∑
i=2
C ir i ∫

∞

x
e−r i(t−x)Q(w(t))dt.

Similar to the previous subsection, we deûne an iteration scheme

(2.21)
ŵ0(x) = T̂0(G)(x),

ŵn+1(x) = T̂(ŵn)(x), for n ≥ 0,

and later use the following constants:

B̂ ∶= (2C cot(θ)a1 + a2)
3

∑
i=1

∣ C i

r i
∣ ,

M̂ ∶= M1

3

∑
i=1

∣ C i

r i
∣ +M2

3

∑
i=1

∣C i ∣,

β̂ ∶= 2M̂B̂,
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12 A. Alhasanat and Chunhua Ou

where M1 and M2 are the same as those in (2.12). _e operator T̂ maps periodic
functions into periodic functions. _en we can apply the same technique used in the
previous subsection to show that there exists an є0 > 0 such that for suõciently small
є < є0, the inequalities

∣ŵ0∣ ≤ ∥ŵ0∥ ≤ B̂є,
∣ŵn − ŵ0∣ ≤ β̂є∥ŵ0∥, n = 1, 2, 3, . . . ,

∣ŵn − ŵn−1∣ ≤ (2β̂є)n∥ŵ0∥, n = 1, 2, 3, . . . ,

hold. Hence, the Weierstrass M-test implies that series

ŵ0(x) +
∞

∑
n=1

( ŵn(x) − ŵn−1(x))

is uniformly convergent for x ∈ (−∞,∞). _en the following result is valid.

_eorem 2.2 Assume that a and b, deûned in (2.3), satisfy b2
4 + a3

27 < 0. _ere exists
a constant є0 > 0 such that for є < є0, (2.1) has a periodic solution h0(x) = 1 + w(x),
where w(x) is a solution of the diòerential equation (2.2)with the asymptotic expansion

w(x) = ŵ0(x) +
∞

∑
n=1

( ŵn(x) − ŵn−1(x)) ,

and ŵn(x), n = 0, 1, 2, . . . , are deûned in (2.21).

2.3 Existence of Steady-state when ∆ > 0

When ∆ > 0, Lemma 2.1 implies that the characteristic equation (2.5), associated
with the homogeneous equation (2.4), has a real root r and two complex conjugate
roots u ± iv, where r, u, and v can be deûned in terms of ϕ and ψ in Lemma 2.1. _e
fundamental set of solutions is {w1 ,w2 ,w3} = {erx , eux cos(vx), eux sin(vx)}, with
a constant Wronskian

W ∶=W(w1 ,w2 ,w3) = v(2r2 + u2 + v2).
Note that, since b > 0, we have r < 0 and u > 0, with r + 2u = 0. Hence, the integral
form of the diòerential equation (2.2), in this case, is

w(x) = erx ∫
x

−∞

W1(t)
W

F(t)dt + eux cos(vx)∫
x

∞

W2(t)
W

F(t)dt

+ eux sin(vx)∫
x

∞

W3(t)
W

F(t)dt,

where

W1(t) = ve−r t , W2(t) = −[(u − r) sin(vt) + v cos(vt)] e−ut ,

W3(t) = [(u − r) cos(vt) − v sin(vt)] e−ut .

_is integral form can be written as

(2.22) w(x) = v
W ∫

x

−∞
e−r(t−x)F(t)dt + ∫

∞

x
g(x , t)e−u(t−x)F(t)dt,
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where g(x , t) is given by

g(x , t) = 1
W

[(u − r) sin(v(t − x)) + v cos(v(t − x))] .

We write the integrals in (2.22) as

v
W ∫

x

−∞
e−r(t−x)F(t)dt

= v
W ∫

x

−∞
e−r(t−x){2C cot(θ)s′ − s′′′ + 2Cw2

(1 +w)3 (6 + 8w + 3w2)}dt

− 2RCv
5W

(w4 + 4w3 + 6w2) − 2RCrv
5W ∫

x

−∞
e−r(t−x)(w4 + 4w3 + 6w2)dt

and

∫
∞

x
g(x , t)e−u(t−x)F(t)dt

= ∫
∞

x
e−u(t−x)g(x , t){2C cot(θ)s′ − s′′′ + 2Cw2

(1 +w)3 (6 + 8w + 3w2)}dt

+ 2RCv
5W

(w4 + 4w3 + 6w2)

+ 2RC
5 ∫

∞

x
[gt(x , t) − ug(x , t)]e−u(t−x)(w4 + 4w3 + 6w2)dt.

From this, the formula of w(x) in (2.22) can be expressed as

w(x) = T0(G)(x) + T 1(H)(x) + T2(Q)(x) ∶= T(w(x)) ,

where G(s),H(w), and Q(w) are deûned in (2.7), and

T0(G)(x) = v
W ∫

x

−∞
e−r(t−x)G(s(t))dt + ∫

∞

x
g(x , t)e−u(t−x)G(s(t))dt,

T 1(H)(x) = v
W ∫

x

−∞
e−r(t−x)H(w(t))dt + ∫

∞

x
g(x , t)e−u(t−x)H(w(t))dt,

T2(Q)(x) = − vr
W ∫

x

−∞
e−r(t−x)Q(w(t))dt

+ ∫
∞

x
[gt(x , t) − ug(x , t)]e−u(t−x)Q(w(t))dt.

Similar to the previous cases, we deûne an iteration scheme, for this case, as

(2.23)
w0(x) = T0(G)(x),

wn+1(x) = T(wn)(x), for n ≥ 0.

_en we can show that, there exists an є0 > 0 such that for є < є0, the inequalities

∣w0∣ ≤ ∥w0∥ ≤ Bє, ∣wn −wn−1∣ ≤ βє∥w0∥,

and

∣wn −wn−1∣ ≤ (2βє)n∥w0∥, n = 1, 2, 3, . . . ,
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14 A. Alhasanat and Chunhua Ou

hold, where

B = (2C cot(θ)a1 + a2){ ∣ v
rW

∣ + ∣ v
uW

∣ } ,

M ∶= M1{ ∣ v
rW

∣ + ∣ v
uW

∣ } +M2{2∣ v
W

∣ + ∣ v(u − r)
uW

∣ } ,

and
β ∶= 2MB,

with the same constants M1 and M2 deûned in (2.12). Note that g(x , x) and gt(x , x)
are bounded and satisfy

∥g(x , x)∥ ≤ ∣ v
W

∣ , ∥gt(x , x)∥ ≤ ∣ v(u − r)
W

∣ .

_en, the uniform convergence of

w0(x) +
∞

∑
n=1

(wn(x) −wn−1(x))

is conûrmed for x ∈ (−∞,∞). Hence, we obtain the following theorem.

_eorem 2.3 Assume that a and b, deûned in (2.3), satisfy b2
4 + a3

27 > 0. _ere exists
an є0 > 0 such that for є < є0, (2.1) has a periodic solution h0(x) = 1 + w(x), where
w(x) is a solution of the diòerential equation (2.2) with the asymptotic expansion

w(x) = w0(x) +
∞

∑
n=1

(wn(x) −wn−1(x)) ,

and wn(x), n = 0, 1, 2, . . . , are deûned in (2.23).

3 Conclusions

We analytically study the �ow of a liquid ûlm over an inclined periodic uneven wall
governed by a long-wave model. _e existence of a periodic steady-state solution is
proved using asymptotic expansion.

We start by constructing an iteration scheme in terms of integral forms from this
steady-state problem to ûnd periodic solutions in the form h0(x) = 1 +w(x), where
w(x) is the solution to (2.2). _ree distinct cases have been handled in terms of the
values of R,C , and θ. For each case, we prove the existence and ûnd an asymptotic
formula for w(x).
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