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Many problems in elastocapillary fluid mechanics involve the study of elastic structures
interacting with thin fluid films in various configurations. In this work, we study the
canonical problem of the steady-state configuration of a finite-length pinned and flexible
elastic plate lying on the free surface of a thin film of viscous fluid. The film lies on
a moving horizontal substrate that drives the flow. The competing effects of elasticity,
viscosity, surface tension and fluid pressure are included in a mathematical model
consisting of a third-order Landau–Levich equation for the height of the fluid film and a
fifth-order Landau–Levich-like beam equation for the height of the plate coupled together
by appropriate matching conditions at the downstream end of the plate. The properties of
the model are explored numerically and asymptotically in appropriate limits. In particular,
we demonstrate the occurrence of boundary-layer effects near the ends of the plate,
which are expected to be a generic phenomenon for singularly perturbed elastocapillary
problems.

Key words: elastocapillary flows, fluid–structure interaction, thin-film flows

1. Introduction
We study the steady-state configuration of a finite-length flexible elastic plate lying on
the free surface of a thin film of viscous fluid which is itself lying on top of a horizontal
substrate that is moving with constant speed. The upstream end of the plate is pinned at a
fixed location and is in contact with a fluid reservoir. A typical configuration is shown in
figure 1. We are particularly interested in the behaviour in the asymptotic limits of large
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Figure 1. The numerically calculated heights of the elastic plate H(x) (shown with the thick line) and the fluid
film h(x) (shown with the thin line). The horizontal axes correspond to x . The configuration corresponds to
the case of the elasticity number B = 0.3, inverse capillary number δ3 = 1, and prescribed pressure p0 = 1.
The heights are shown in (a), and their first and second derivatives are shown in (b) and (c), respectively. The
numerical computation is explained in § 3.

and small dimensionless bending stiffness and of strong and weak surface tension (i.e. of
slow and fast substrate motion, respectively).

As well as being of interest in its own right, this problem is a paradigm for a wide
range of elastocapillary and fluid–structure interaction problems where competing effects
of elasticity, viscosity, surface tension and fluid pressure can all play a role. Other examples
of such problems, which involve elastocapillary and fluid–structure interaction effects,
include the wetting of fibrous material studied, for example, by Bico et al. (2004), Duprat
et al. (2012), Taroni & Vella (2012) and Singh et al. (2014), and recently reviewed by
Duprat (2022). The dynamics of floating elastic sheets has been studied, for example, by
Hosoi & Mahadevan (2004), Audoly (2011), Wagner & Vella (2011), Lister et al. (2013)
and Hewitt et al. (2015). Perhaps closest to the present problem is the elastic drag-out
problem studied, for example, by Pranckh & Scriven (1990), Giacomin et al. (2012), Dixit
& Homsy (2013), Seiwert et al. (2013), and Snoeijer (2016). The authoritative review by
Bico et al. (2018) gives an overview of recent developments in the study of elastocapillary
effects.

We are particularly motivated by the previous work by Moriarty & Terrill (1996)
and Trinh et al. (2014), who showed that even for the apparently simpler problem of
a pinned or free-floating rigid plate, a variety of analytical and numerical challenges
arise. For instance, the governing nonlinear boundary-value problem for the steady-state
configurations can exhibit non-uniqueness, leading to a complicated bifurcation structure
of the solution space. This previous work also demonstrates the challenges in obtaining
accurate numerical solutions of coupled fluid–structure interaction problems of this kind,
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particularly in asymptotic limits of strong and weak surface tension (i.e. of small and large
capillary numbers, respectively). In such cases, asymptotic solutions may be necessary
in order to obtain convergence in certain numerical schemes. In the present contribution,
we build on this previous work to analyse the case of a flexible elastic, rather than rigid,
plate. Again, the properties of the proposed mathematical model are explored numerically
and analytically in appropriate asymptotic limits. In doing so, not only do we face many
of the inherent challenges that appear in the case of a rigid plate, but we also encounter
new difficulties that arise due to the singular effects of elasticity. In the Discussion, we
consider various more complicated variations on the paradigm problem studied in the
present work to which we expect that many of the elements of the present analysis will
also be applicable.

More recently, there has been further investigation of this class of problems by Krapez
et al. (2020) (see also Seiwert et al. 2013), who considered the spreading of a Newtonian
fluid by a deformable, clamped blade. Physical experiments were conducted and scaling
laws analysed in order to derive relationships between the wetted length of the blade and
the downstream height of the film. This work has recently been extended to non-Newtonian
fluids by Krapez et al. (2022). The present work provides a complementary analysis of the
full mathematical model that goes beyond many of the (experimentally motivated) regimes
studied in these works (see § 6 for further discussion).

We briefly introduce the model for the fluid film and the elastic plate; a complete
derivation is given in § 2. The first equation is the well-known third-order Landau–
Levich equation that describes the steady-state height of the fluid film h = h(x). In
non-dimensional form, it is given by

δ3 d3h

dx3 = 3(h∞ − h)

h3 , (1.1)

where h∞ is the uniform film height far downstream of the plate. The non-dimensional
parameter δ3 is an inverse capillary number, defined by

δ3 = ε3γ

μU
= 1

Ca
, (1.2)

which represents the relative strength of the effects of surface tension γ and viscosity μ.
Here, U is the speed of the substrate and ε � 1 is the (small) aspect ratio of the thin film.
Henceforth, for brevity, we use the phrase ‘large and small limits of surface tension’ as
a shorthand for the more precise statement ‘large and small limits of δ’ (or equivalently,
‘small and large limits of Ca’).

The Landau–Levich equation (1.1) is a canonical equation in the study of coating
and draining problems, and describes the steady-state configuration of a thin film of
viscous fluid when the fluid and the substrate are in motion relative to each other. It was
originally derived by Landau & Levich (1942) and Derjaguin (1943) to describe the drag-
out problem, but variants of the equation occur in many other contexts. Examples include
the propagation of long gas bubbles in a channel (see, for example, Bretherton 1961),
coating fibres (see, for example, Quéré 1999), and coating the inside of a rotating cylinder
(see, for example, Ashmore et al. 2003). Perhaps surprisingly, despite its widespread
applicability, the full solution space of the Landau–Levich equation subject to a variety
of different boundary conditions is still not well understood due to the non-uniqueness
of solutions (see, for example, Snoeijer et al. 2008; Benilov et al. 2010; Ren et al. 2015).
For further details of these and related problems, we refer readers to the works by Tuck &
Schwartz (1990), Oron et al. (1997), de Gennes et al. (2004), Craster & Matar (2009) and
Stone (2010).
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The second equation, governing the height of the elastic plate H = H(x), is a fifth-order
Landau–Levich-like equation. In non-dimensional form, it is given by

B5 d5 H

dx5 − δ3 d3 H

dx3 = 6(H − 2h∞)

H3 , (1.3)

and is a beam equation with additional terms incorporating tension and pressure effects
due to the fluid underneath the plate. The non-dimensional parameter B is an elasticity
number, defined by

B5 = ε3 B

μU L2 , (1.4)

which represents the relative strength of bending stiffness B and viscosity effects, where
L is the length of the plate. Similarly to our description of δ mentioned earlier, henceforth
we use the phrase ‘small and large limits of bending stiffness’ as a shorthand for ‘small
and large limits of B’.

The model is closed by boundary conditions that couple (1.1) and (1.3) together at the
downstream end of the plate, x = L , through continuity of the heights of the film and
the plate, together with continuity of moment, shear and pressure forces. These will be
described in further detail in § 2, and the numerical method used to solve the model will
be described in § 3.

The subtleties inherent in the study of the coupled boundary-value problem are
illustrated in figure 1, which shows a typical numerically calculated solution at a relatively
small value of the elasticity number (specifically, B = 0.3). In this example, we see that
although the heights of the the plate and the fluid film are themselves well behaved, their
derivatives are not. In particular, figures 1(b) and 1(c) show that there is a discontinuity in
the first derivative at the downstream end of the plate and boundary layers in the second
derivative at both ends of the plate, respectively. In § 4, we present a matched asymptotic
analysis of the limits B → ∞ and B → 0, while in § 5, a similar analysis of the limits
δ → ∞ and δ → 0 is performed. We emphasise that many of the mathematical features of
the present work, notably the occurrence of boundary-layer effects illustrated in figure 1(c),
are expected to be generic for elastocapillary systems in their singular limits. Indeed,
as the present work demonstrates, solving elastocapillary and fluid–structure interaction
problems of this kind can be a delicate affair, and a judicious combination of asymptotic
and numerical techniques is often required in order to obtain the complete description.

2. Mathematical formulation
Let us consider steady, two-dimensional flow of a thin film of Newtonian fluid with
constant density ρ, viscosity μ, and surface tension γ . The film lies on top of a rigid
horizontal substrate, located at z̃ = 0, that is moving to the right, i.e. in the positive
x̃ direction, with constant speed U (see figure 1a). The free boundary of the fluid is
composed of two parts: first, an elastic plate of projected length L located at

z̃ = H̃(x̃) for 0 < x̃ < L , (2.1)

and second, an uncovered free surface located at

z̃ = h̃(x̃) for x̃ > L , (2.2)

the latter of which has (unknown) uniform height h∞ far downstream of the plate (i.e. as
x̃ → ∞). In this work, we will consider the case in which the upstream end of the plate,
located at x̃ = 0, is pinned at a fixed height H̃0, i.e. H̃(0) = H̃0, where it is hinged and free
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to rotate. The downstream end of the plate, located at x̃ = L , is left free and its vertical
position must be determined as part of the solution to the problem. The set-up is shown
in figure 1(a). We note that it is, of course, possible to study other boundary conditions
corresponding to different physical situations (for example, a clamped plate or the presence
of a second free surface upstream of the plate), and these may introduce further subtleties.

The pressure and velocity of the fluid are denoted by p̃ = p̃(x̃) and ũ =
(ũ(x̃, z̃), w̃(x̃, z̃)), respectively. The atmosphere above the film is assumed to be an
inviscid fluid that is held at a uniform atmospheric pressure denoted by p̃a . We non-
dimensionalise and scale the variables according to

x̃ = Lx, z̃ = εLz, H̃ = εL H, h̃ = εLh,

ũ = Uu, w̃ = εUw, p̃ − p̃a = μU

ε2L
p,

(2.3)

where ε = H̃0/L � 1 is the (small) aspect ratio of the film, given by the ratio of the fixed
height of the upstream end of the plate to the length of the plate.

2.1. The equation for the free surface
To derive the equation governing the height of the free surface of the fluid, z = h(x), we
apply boundary conditions on the solid and free surfaces:

no slip or penetration on substrate (u, w) = (1, 0) on z = 0, (2.4a)
no slip or penetration on plate (u, w) = (0, 0) on z = H(x), (2.4b)

normal stress balance on free surface p = −δ3hxx on z = h(x), (2.4c)
tangential stress balance on free surface uz = 0 on z = h(x), (2.4d)

where δ3 = ε3γ /(μU ) = 1/Ca is the non-dimensional inverse capillary number
previously introduced in (1.2), and subscripts denote partial derivatives. Note that due
to the thinness of the film, (2.4c) involves a linearised expression for the curvature of the
free surface.

Classical lubrication (i.e. thin-film) theory now allows us to derive the Reynolds
equation for the pressure gradient,

px = 3(h − h∞)

h3 , (2.5)

where h → h∞ as x → ∞. Substituting this expression for px into the normal stress
condition (2.4c) yields the Landau–Levich equation

δ3hxxx = 3(h∞ − h)

h3 , (2.6)

which governs the height of the free surface.

2.2. The equation for the elastic plate
Equation (2.6) for the height of the free surface must be coupled to an equation governing
the height of the elastic plate, z = H(x), which we now derive. First, let us consider the
dimensional force per unit area exerted by the fluid on the plate, F̃ = (F̃x̃ , F̃z̃). As in § 2.1,
we make the lubrication approximation and assume that the plate is nearly horizontal.
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Then the leading order in ε horizontal and vertical forces on the plate are given by

F̃x̃ = − p̃
dH̃

dx̃
+ μ

∂ ũ

∂ z̃
and F̃z̃ = p̃. (2.7)

Let the dimensional tension in the plate be T̃ = T̃ (x̃). By balancing the horizontal forces
we have dT̃ /dx̃ = F̃x̃ . Consideration of the surface tension at the end of the plate suggests
a re-scaling of T̃ = γ T , so using (2.3), we then have

dT

dx
= ε2

δ3

(
−p

dH

dx
+ ∂u

∂z

)
. (2.8)

We assume that the aspect ratio is such that ε2 � δ3 = 1/Ca. Under this assumption, the
tension is constant at leading order in ε, thus the balance with surface tension at the end
of the plate implies that T ≡ 1.

We let Ñ = Ñ (x̃) be the dimensional transverse shear force and let M̃ = M̃(x̃) be the
dimensional moment. The normal force and moment balances on the elastic plate are
given, respectively, by

dÑ

dx̃
+ T̃

d2 H̃

dx̃2 + p̃ = 0, (2.9a)

dM̃

dx̃
= Ñ (2.9b)

(see, for example, Howell et al. 2009). Furthermore, for small displacements, we assume
the constitutive relation

M̃ = −B
d2 H̃

dx̃2 , (2.10)

where B = E I is the bending stiffness, in which E is the elastic modulus and I is the area
moment of inertia. Recalling that T ≡ 1, we now differentiate (2.4c) with respect to x̃ , and
use (2.3), the Reynolds equation (2.5), the constitutive relation (2.10), and T ≡ 1 to obtain
the equation governing the height of the plate, namely

B5 d5 H

dx5 − δ3 d3 H

dx3 =R(H ; h∞), (2.11)

where, for later convenience, we have defined the function

R(H ; h∞) = 6(H − 2h∞)

H3 , (2.12)

and B5 = ε3 B/(μU L2) is the non-dimensional elasticity number previously introduced in
(1.4).

Turning now to the boundary conditions at the pinned (x = 0) and free (x = 1) ends of
the plate, we recall that from the constitutive relation (2.10), the moment is proportional
to the second derivative of H , hence

H(0) = 1, (2.13a)
Hxx (0) = 0 = Hxx (1). (2.13b)

In light of the fact that the free surface exerts a tangential force due to surface tension at
the downstream end of the plate, x = 1, the zero moment condition (2.13b) is not obvious.
We will discuss this condition further in § 2.3.
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Figure 2. (a) Quantities defined near the downstream end of the plate. (b) An illustration of the moment arm
due to surface tension forces.

Examining figure 2(a), which shows quantities defined near the downstream end of the
plate, we see that a balance of shear stress at the end of the plate, x = 1, implies the
dimensional balance

Ñ (L) + T̃
[
H̃x̃ (L) − h̃ x̃

] = 0, (2.14)

so using (2.3), (2.9b) and (2.10) gives the shear boundary condition

B5 Hxxx (1) − δ3 [Hx (1) − hx (1)] = 0. (2.15)

Without loss of generality, we take p̃a ≡ 0. Then the upstream fluid pressure must match
the prescribed pressure of the reservoir, p0 ≡ p(0), and similarly, the pressure of the fluid
at the downstream end of the plate must match the capillary pressure −δ3hxx (1). Since
the pressure underneath the plate is given by (2.9a), or alternatively the integral of (2.11),
the non-dimensional pressure under the plate is given by

p =B5 Hxxxx − δ3 Hxx . (2.16)

Then applying the boundary conditions gives

B5 Hxxxx (0) = p0, (2.17a)

B5 Hxxxx (1) = −δ3hxx (1). (2.17b)
Finally, we require additional details of the far-field behaviour, h → h∞ as x → ∞. We
linearise about the uniform downstream height by writing h = h∞ + h, where h � h∞.
The resulting modes of the linear equation for h∞ can be obtained using a standard WKBJ
(Liouville–Green) analysis (see, for example, Tuck & Schwartz 1990) to yield

h ∼ C1 exp
(

−31/3x

δh∞

)
+ C2 exp

(
31/3eπ i/3x

δh∞

)
+ C3 exp

(
31/3e−π i/3x

δh∞

)
(2.18)

as x → ∞, where C1 is real and C2 and C3 are complex conjugates. The two exponentially
growing modes, which represent capillary waves, are ruled out on physical grounds, so
that C2 = 0 and C3 = 0, leaving only C1 to be determined. Thus we see that, as is typical
for problems of this type, the downstream condition h → h∞ effectively provides two
boundary conditions for the third-order Landau–Levich equation (2.6). This completes
our derivation of the governing equations and boundary conditions.

2.3. Summary and remarks on the non-trivial nature of the mathematical formulation
Together, we may consider the system of equations and boundary conditions for the
pinned elastic problem to correspond to a ‘ninth-order’ problem; the relevant expressions

1007 A79-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

11
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.11


P.H. Trinh, S.K. Wilson and H.A. Stone

Unknowns Equations Boundary conditions

h(x), H(x), h∞ δ3hxxx = 3(h∞ − h)/h3 [1] H(0) = 1
B5 Hxxxxx − δ3 Hxxx = 6(H − 2h∞)/H3 [2] Hxx (0) = 0

[3] B5 Hxxxx (0) = p0
[4] H(1) = h(1)

[5] Hxx (1) = 0
[6] B5 Hxxx (1) − δ3[Hx (1) − hx (1)] = 0
[7] B5 Hxxxx (1) = δ3hxx (1)

[8,9] h → h∞ as x → ∞
Table 1. A summary of the ‘ninth-order’ system of equations and boundary conditions for the pinned elastic
problem analysed in the present work, comprising a third-order equation for h, a fifth-order equation for H ,
and an unknown ‘eigenvalue’ h∞.

are given in table 1. In particular, the system consists of the third-order Landau–Levich
equation for h(x), the fifth-order beam equation for H(x), and an unknown eigenvalue
corresponding to the far-field film height h∞. In total, this system requires nine boundary
conditions. These nine boundary conditions consist of: [1, 2, 3] fixed height, zero moment,
and prescribed pressure at x = 0; [4, 5, 6, 7] continuity of height, zero moment, continuity
of shear stress and pressure at x = 1; and [8, 9] far-field conditions as x → ∞.

Although we have chosen to derive the governing equations and boundary conditions
using local force and moment balances, we note that it is also possible to use a variational
approach. Using the small displacement and lubrication approximations, we see that the
equilibrium configuration of the plate should extremise the dimensional energy:

E =
∫ L

0

{
1
2BH̃2

x̃ x̃︸ ︷︷ ︸
bending energy

− p̃ H̃︸︷︷︸
pressure energy

+ T̃

[√
1 + H̃2

x̃ − 1
]

︸ ︷︷ ︸
tension energy

}
dx̃

+
∫ ∞

L

{
γ

[√
1 + h̃2

x̃ − 1
]

︸ ︷︷ ︸
surface tension energy

− p̃h̃︸︷︷︸
pressure energy

}
dx̃ . (2.19)

It can then be verified that the equations and boundary conditions given in table 1 can be
recovered if we require that the first variation of E given by (2.19) is zero.

We make some remarks about the non-trivial nature of the mathematical formulation
just presented. In the statement of the zero moment condition (2.13b), we indicated that
it is not entirely obvious that this condition guarantees that the plate is in rotational
equilibrium. Although the conditions emerge naturally from application of the variational
approach described above, we can directly verify that the dimensional moment about x̃ = 0
is zero, i.e. M̃0 = 0. This moment has a pressure contribution and a contribution from
surface tension forces, and is given by

M̃0 = γ d +
∫ L

0
x̃ p̃(x̃) dx̃, (2.20)

where d is the length of the moment arm due to the surface tension forces (i.e. the
perpendicular distance from (0, H̃0) to the line parallel to the tension force), as shown
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in figure 2(b). For small displacements of the plate, this distance is given by

d ∼ L

[
h̃ x̃ (L) + H̃0 − H̃(L)

L

]
. (2.21)

We may now substitute the dimensional version of the pressure under the plate given by
(2.16) into (2.20), integrate by parts, and simplify using the boundary conditions at x̃ = 0
and x̃ = L , to confirm that M̃0 = 0.

3. Numerical method
We solve the system given in table 1 numerically using finite difference and collocation
methods. The solution space is then explored using numerical continuation techniques. It
is often the case that finding an initial solution (or continuing a solution near a singular
limit) is difficult; thus in order to provide an initial solution, we used either the asymptotic
solutions of Trinh et al. (2014) (for which B = 0) or the asymptotic solutions obtained in
§§ 4 and 5 for large and small values of the parameters B and δ.

For given values of B, δ and p0, the fifth-order boundary-value problem for H(x) is
solved with h∞ as an unknown eigenvalue. However, imposition of the six boundary
conditions [1–3, 5–7] given in table 1 requires values of hx (1) and hxx (1). Thus for each
iteration of the boundary-value problem, we must solve the Landau–Levich equation (2.6).
The procedure is as follows.

(i) Set fixed values of the parameters B, δ and p0.
(ii) Given an approximate value for H(1) (set to Ĥ(1)).

(a) Solve the Landau–Levich equation (2.6) for h(x) as an initial-value problem from
xmax � 1 backwards to x = 1. Stop once h(1) = Ĥ(1) is reached. Collect the
values of hx (1) and hxx (1).

(b) Solve the beam equation (2.11) as a boundary-value problem for H(x) and h∞.
Collect the (incorrect) value of H(1) (set to H̃(1)).

(iii) Set R = Ĥ(1) − H̃(1). Iterate a Newton-type solver for R = 0 in order to determine
the correct value of H(1).

In step (ii,a) we begin from an initial height h = h∞ + ε, where ε is a small number
(specifically, ε = 10−12 in most computations). The far-field behaviour (2.18) (with C2 =
C3 = 0) provides values of the first and second derivatives, thus the Landau–Levich
equation can be solved in the negative x direction as an initial-value problem, stopping
once h = Ĥ(1) is reached. Once the Landau–Levich equation has been solved, the
approximate values of hx (1) and hxx (1) are known (for an, in general, incorrect value of
H(1)), and the system is closed. Hence there are six boundary conditions for the fifth-order
beam equation, with H(1) serving as an unknown eigenvalue.

An example solution with positive prescribed pressure p0 = 1 has already been shown
in figure 1. An example with negative prescribed pressure p0 = −0.5 is shown in figure 3.

4. Asymptotic analysis of large and small bending stiffness B
In this section, we study the system given in table 1 in the limits of large (B → ∞)
and small (B → 0) bending stiffness. Although the limit B → 0 has no analogue in our
previous work, we would anticipate that in the limit B → ∞ we will recover the behaviour
of a rigid plate described by Trinh et al. (2014). While this turns out to be the case, the
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Figure 3. The heights of the elastic plate H(x) (shown with the thick line) and the fluid film h(x) (shown
with the thin line) in the case B = 0.3, δ = 0.5 and p0 = −0.5.

more interesting phenomenon is how the addition of small but non-zero elasticity affects
the equilibrium configuration.

4.1. The limit of a rigid plate, B → ∞
In the limit of a rigid plate, B → ∞, we assume that there are no boundary layers (notably
no boundary layers at x = 0 and/or x = 1), and expand the free surface and plate heights
and the far-field film height as

h(x) =
∞∑

n=0

hn(x)

B5n
, H(x) =

∞∑
n=0

Hn(x)

B5n
and h∞ =

∞∑
n=0

h∞n

B5n
. (4.1)

At leading order, the beam equation (2.11), together with the boundary conditions
H0(0) = 1 and H0xx (0) = 0, yields a solution for H0 = H0(x) corresponding to a straight
(but not, in general, horizontal) rigid plate, namely

H0 = 1 + αx, (4.2)

where the constant α is the unknown tilt angle. What is noteworthy about this solution
is that in order to obtain the values of α and h∞, the moment and force balances must
be applied at O(1/B5). This occurs because while for a rigid plate, the curvature (and all
higher-order derivatives) of H are identically zero, for an elastic plate, these higher-order
derivatives are non-zero and are essential in order to satisfy the boundary conditions.

At O(1/B5), (2.11) yields

H1xxxxx − δ3 H0xxx = 6
H3

0
(H0 − 2h∞0). (4.3)

Integrating (4.3) from x = 0 to x = 1, and using the zero moment (2.13b) and pressure
(2.17) boundary conditions yields the leading-order shear condition

F (0)
z = p0 + δ3 hxx (1) + [6 I2(1) − 12h∞0 I3(1)] = 0, (4.4)

where we have introduced the notation

Ik(x) ≡
∫ x

0

1
Hk

0 (x ′)
dx ′. (4.5)
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In fact, the shear condition (4.4) was obtained by Trinh et al. (2014) for a rigid plate (their
(2.15)), but with our leading-order H0 replaced by their full expression for H(x). Thus
(4.4) is a leading-order shear condition, Fz ∼ F (0)

z , valid in the limit B → ∞. Since there
are two remaining unknowns, namely α and h∞0, to be determined at O(1), we expect to
complement (4.4) with an additional equation expressing a moment balance. Integrating
(4.3) three times and using the zero moment conditions (2.13b) yields

H1xx (x) − H1xxxx (0)

[
x2

2
− x

]
− x H1xxx (1) + δ3 [H0x (1) − {H0(x) − H0(0)}]

=
∫ x

0

∫ x2

1
[6 I2(x1) − 12h∞0 I3(x1)] dx1dx2. (4.6)

Setting x = 1 in (4.6), reversing the order of integration, and applying the boundary
conditions (2.15), (2.17) and the expression for the height of a rigid plate (4.2), we obtain
a leading-order zero moment condition,

M (0)
0 = p0

2
+ δ3 [h0x (1) − α] +

∫ 1

0
[6x I2(x1) − 12h∞0x1 I3(x1)] dx1 = 0, (4.7)

which coincides with the corresponding expression obtained by Trinh et al. (2014) (their
(3.5)). Our (4.7), however, is a leading-order moment condition M0 ∼ M (0)

0 , valid in the
limit B → ∞.

In summary, we have demonstrated that the behaviour in the limit of a rigid plate
B → ∞ is nearly the same as that when elasticity is entirely ignored. However, when
elasticity is included and B is large but finite, the plate is not quite flat, but is gently
curved with O(1/B5) curvature. The determination of the final two unknowns requires
the solution of the third-order Landau–Levich equation (2.6), subject to two far-field
conditions ([8, 9] given in table 1), the continuity condition h0(1) = H0(1) = 1 + α,
the shear condition (4.4), and the moment condition (4.7). Although this can be done
numerically, asymptotic formulae in the limits δ → 0 and δ → ∞ were derived by Trinh
et al. (2014). For instance, in the limit δ → ∞,

α ∼ p0 − 6
31/3δ2 and h∞0 ∼ 1 + p0 − 6

32/3δ
, (4.8)

while the limit of δ → 0 is more complicated because of the existence of possibly more
than one solution due to the effects of the prescribed pressure, p0.

In figure 4, we present the far-field film height h∞ as a function of δ for values of
B ranging from B = 0.1 to B = 1. In particular, figure 4 shows that by B = 1, the far-field
film height is nearly identical to the leading-order asymptotic solution in the limit B → ∞,
obtained from numerical solutions of the problem for a rigid plate.

4.2. The limit of a very flexible plate, B → 0
We now study the limit of a very flexible plate, B → 0. In fact, the asymptotic solution
in this limit turns out to be very useful because the numerical solution of the governing
boundary-value problem becomes increasingly (mathematically) stiff as the plate becomes
increasing (physically) flexible. We expand the (outer) solution as

H(x) ∼ Houter (x) =
∞∑

n=0

Bn Hn, (4.9)
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Figure 4. The far-field film height h∞ plotted as a function of δ for various values of B in the case p0 = 0.
From top to bottom, the curves correspond to B = 0.1, 0.2, 0.5 and 1.0. The leading-order asymptotic solution
in the limit of a rigid plate B → ∞ described in § 4.1 is shown with the dashed line.

with similar expansions for h(x) ∼ h0(x) and h∞ ∼ h∞0. From (2.11), the equation for the
leading-order (outer) plate height is

− δ3 H0xxx ∼R(H0; h∞), (4.10)

so we need to provide four boundary conditions at x = 0 and x = 1.
We find a rather complicated boundary-layer structure in this singular limit. We will

begin by considering the simpler case of zero prescribed pressure p0 = 0, and then return
to the case of general values of p0 in § 4.2.5. When p0 = 0, numerically calculated
solutions of the problem for small values of B indicate that there is no boundary layer near
x = 0, thus we can apply the conditions H(0) = 1 and Hxx (0) = 0 there. The remaining
three conditions must be selected from amongst the four conditions [3, 5, 6, 7] given in
table 1, and the challenge is to determine which ones. As it turns out, the outer solution,
valid away from x = 1, is coupled to inner solutions near x = 1 via three nested boundary
layers.

The full beam equation involves contributions from the elasticity, surface tension and
pressure. We write

B5 Hxxxxx︸ ︷︷ ︸
1

− δ3 Hxxxx︸ ︷︷ ︸
2

=R(H ; h∞)︸ ︷︷ ︸
3

, (4.11)

and define the following regions and asymptotic balances.

Outer x − 1 =O(1) where 2 ∼ 3 , (4.12a)

Region I x − 1 =O(Bα) for α < 5/2 where 1 � 2 , (4.12b)

Region II x − 1 =O(B5/2) where 1 ∼ 2 , (4.12c)

Region III x − 1 =O(Bα) for α > 5/2 where 1 � 2 . (4.12d)

In the outer region, surface tension balances the contribution from pressure forces.
Moving towards the inner region near x = 1, first the outermost boundary layer (region I) in
which surface tension dominates elasticity is encountered, then the intermediate boundary
layer (region II) in which surface tension and elasticity balance, and finally the innermost
boundary layer (region III) in which elasticity dominates.
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Figure 5. The curvature of the plate Hxx plotted as a function of x for various values of B in the case δ = 1
and p0 = 1. From top to bottom on the right, the curves correspond to B = 0.05, 0.1, 0.2, 0.3 and 0.4. The
asymptotic solution in region II given by (4.23b) is shown with the dashed line. Plot (b) is an enlargement of
plot (a) near x = 1.

Before we present the analysis of this inner region, we display in figure 5 typical profiles
of the curvature of the plate, Hxx (x), calculated from the numerical solutions of the full
system in the case p0 = 1. The reason for examining Hxx (rather than H or Hx ) is that
the boundary layers appear only in the second and higher derivatives of the leading-order
terms. Crucially, the numerical solutions indicate that

H(x), Hx (x) and Hxx (x) are all bounded and non-zero as B → 0 (4.13)

for fixed values of δ and fixed x ∈ (0, 1).
Based on figure 5, we see that although the zero moment condition (2.13b) requires

Hxx (1) = 0, the leading-order solution in the outer region has a curvature that approaches
a non-zero value as x → 1. Our principal task is to determine this effective value of the
curvature, shown with the dashed line in figure 5, which provides a boundary condition on
the outer solution.

4.2.1. Region II: elasticity and surface tension balance
We begin in region II, where elasticity 1 balances surface tension 2 . Solving the leading-
order equation B5 Hxxxxx ∼ δ3 Hxxx gives

H II
xxx ∼ A exp

[
− δ3/2

B5/2 (1 − x)

]
+ Â exp

[
δ3/2

B5/2 (1 − x)

]
, (4.14)

where A and Â are constants (possibly dependent on B and δ). We assume that Â = 0,
as this suppresses the otherwise unmatchable exponential growth. Integrating (4.14) once
yields

H II
xx ∼ AB5/2

δ3/2 exp
[
− δ3/2

B5/2 (1 − x)

]
+ C, (4.15)

where C is constant. However, note from the assumption (4.13) that the curvature
is bounded and non-zero, so A =O(B−5/2) and C =O(1). We therefore re-scale the
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constants A and C and write (4.15) as

H II
xx ∼ Ã

δ3/2 exp
[
− δ3/2

B5/2 (1 − x)

]
+ C̃, (4.16)

where Ã and C̃ are O(1).
In region III, we assume the scaling 1 − x =Bαs for α > 5/2 and s =O(1). Thus if we

take x from region II to region III, then within the exponential argument, (1 − x)/B5/2 =
B−(5/2−α)s, and this quantity must be small. Consequently, we may expand

H II → III
xx ∼ Ã

δ3/2 − Ã(1 − x)

B5/2 +O
(

(1 − x)2

B10/2

)
+ C̃ . (4.17)

From the zero moment condition (2.13b), we require Hxx (1) = 0. We make the
assumption (which can be verified a posteriori) that this applies even for the inner limit of
the region II solution, thus

C̃ = − Ã

δ3/2 . (4.18)

Proceeding now in the other direction, and studying the transition from region II to
region I, we find that

H II → I
xx ∼ − Ã

δ3/2 + exponentially small terms in
δ3/2(1 − x)

B5/2 , (4.19)

once we have made the substitution (4.18). Thus the curvature is effectively constant to all
algebraic orders, and it is precisely this constant, namely C̃ = − Ã/δ3/2, that is shown with
the dashed line in figure 5.

4.2.2. Region I: surface tension dominates elasticity and pressure
In region I, we have δ3 Hxxx � 1, which gives H I

xx ∼ constant. This solution must match
(4.19), so the constant must be equal to (4.18), thus

H II
xx = − Ã

δ3/2 . (4.20)

4.2.3. Region III: elasticity dominates surface tension and pressure
Let us consider the solution in the innermost region III, where elasticity 1 dominates both
surface tension 2 and pressure 3 . In this case, we have Hxxxxx � 1, so integrating three
times yields

H III
xx ∼ CA

2
(1 − x)2 + CB(1 − x) + CC , (4.21)

for new constants CA, CB and CC . From the zero moment condition (2.13b), Hxx (1) = 0,
thus CC = 0. Based on the H II → III limit of (4.17), we argue that the solution in region III
cannot diverge quadratically as x moves away from x = 1, and consequently CA = 0. Then
we match (4.17) and (4.21) to obtain

CB = − Ã

B5/2 . (4.22)
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4.2.4. Summary and final matching
At this point, we have the following solutions:

H I
xx ∼ − Ã

δ3/2 , (4.23a)

H II
xx ∼ Ã

δ3/2 exp
[
−δ3/2(1 − x)

B5/2

]
− Ã

δ3/2 , (4.23b)

H III
xx ∼ − Ã(1 − x)

B5/2 . (4.23c)

We now apply the remaining boundary conditions. Since B5 Hxxx (1) =O(B5/2) according
to the solution in region III (or region II), the shear condition (2.15) reduces to Hx (1) ∼
hx (1) at leading order. Thus in the limit B → 0 the plate and free surface contact
tangentially. The pressure condition (2.17b) applied to the inner limit of the solution in
region II (4.23b) indicates that

B5 Hxxxx (1) ∼B5 Ã

δ3/2

(
δ3/2

B5/2

)2

= Ãδ3/2 = −δ3 hxx (1), (4.24)

thus we have determined the final constant to be

Ã = −δ3/2 hxx (1). (4.25)

Substitution of this value of Ã into (4.23a) gives the effective value of the curvature to be
applied as a boundary condition on the outer solution, namely Hxx (1) = hxx (1).

In summary, in order to determine the leading-order outer solution in the limit B → 0,
we solve the outer boundary-value problem

−δ3 Hxxx =R(H ; h∞), (4.26a)

H(0) = 1, Hxx (0) = 0, (4.26b)

H(1) = h(1), Hx (1) = hx (1), Hxx (1) = hxx (1), (4.26c)

in the following way. First, values of h∞ and H(1) are used as initial guesses. The Landau–
Levich equation (2.6) is solved starting at a large value of x = xmax � 1, with h close
to its far-field value, and stopping once h = H(1). At this point, we solve the third-order
boundary-value problem (4.26a) subject to three of the five conditions (4.26b) and (4.26c).
The shooting algorithm is then repeated to converge to the correct values of h∞ and H(1)

in order to satisfy the remaining two conditions.
It is a curious fact that the effective boundary conditions on the outer problem, namely

(4.26), impose the constraint that the elastic plate, H(x), and the free surface, h(x), are
continuous in their heights, derivatives and curvatures. As a consequence, the plate and
the film behave very similarly to a fluid with an uncovered free surface. However, we
should recall that the equation for H(x) imposes a zero-slip condition on the free surface,
whereas the velocity profiles for h(x) will exhibit slip at the free surface. Additionally,
the interpretation of the elastic plate as continuously attaching to the fluid is true only of
the outer solution, as is shown clearly in figure 5. In particular, there is a rapid variation
in the curvature of the elastic plate from its non-zero effective value (proportional to the
curvature hxx (x)) to the zero value required for the zero moment condition.
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4.2.5. Modification for p0 
= 0
Now that we have understood the nested boundary-layer structure of the inner region, we
see that the introduction of regions I and III is not strictly necessary in order to derive
the effective boundary conditions on the outer problem. This is because the solution in
the intermediate region (region II) contains the information about all three boundary-layer
regions, and in fact, the boundary conditions exactly at x = 1 can be applied directly to the
solution in region II. The crucial quality that allows for this is that the terms that change
balance between regions I, II and III are exponential in nature.

With the introduction of p0 
= 0, another boundary layer (or, more accurately, three new
boundary layers) must be introduced in a new inner region near x = 0. Using the same
naming convention for the three regions, the solution in the intermediate region, where the
dominant balance is B5 Hxxxxx ∼ δ3 Hxxx , has the curvature

H II, left
xx ∼ a1

δ3/2 exp
(

− δ3/2

B5/2 x

)
+ a2, (4.27)

where, as in § 4.2.1, we have scaled the constants a1 and a2 so that the curvature remains
non-zero as in the limit B → 0. Next, matching with the innermost solution, II → III
requires that Hxx (0) = 0 for the hinged plate. Thus a2 = −a1/δ

3/2. The last step is to
apply the pressure condition (2.17a), requiring B5 Hxxxx (0) = p0; this gives a1 = p0/δ

3/2,
so the final intermediate solution is

H II, left
xx ∼ p0

δ3

[
exp

(
− δ3/2

B5/2 x

)
− 1

]
, (4.28)

and we observe that the effective curvature to apply to the outer solution is −p0/δ
3.

This completely determines the problem, and we are left with the effective outer
problem:

−δ3 Hxxx =R(H ; h∞), (4.29a)

H(0) = 1, Hxx (0) = − p0

δ3 , (4.29b)

H(1) = h(1), Hx (1) = hx (1), Hxx (1) = hxx (1), (4.29c)

which is solved similarly to the problem (4.26). Numerical solutions are shown in figure 6,
which shows that the outer curvature Hxx tends to (different) non-zero values at the ends
of the interval.

5. Asymptotic analysis of strong and weak surface tension
We now examine the limits of large and small inverse capillary number, δ3 = ε3γ /μU =
1/Ca. The limit δ → ∞ corresponds to strong surface tension and/or slow motion of the
substrate in which both the plate and the fluid uniformly tend towards a configuration with
uniform height. In contrast, the limit δ → 0 corresponds to weak surface tension and/or
fast motion of the substrate; this causes the film height to be uniform nearly everywhere
except within a boundary layer near x = 0. In this section, we will find that the asymptotic
results are similar to those found for a rigid plate by Trinh et al. (2014); however, when
B 
= 0 we will find that elastic effects introduce additional boundary layers near the edges
of the plate that are crucial for the matching process (and the eventual determination of
the far-field film height h∞).
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Figure 6. The curvature of the plate Hxx plotted as a function of x for various values of B in the case δ = 1
and p0 = 1. From top to bottom on the right, the curves correspond to B = 0.1, 0.2, 0.3 and 0.4.

5.1. The limit of slow substrate motion and/or strong surface tension, δ → ∞
In the limit δ → ∞, it can be verified that both the height of the plate H(x) and the height
of the free surface h(x) uniformly tend to unity. We then expand

H(x) = 1 +
∞∑

n=1

Hn

δn
. (5.1)

As in the corresponding analysis for the bending stiffness B described in § 4, we are
interested in developing a uniformly valid solution for the curvature of the plate Hxx ,
which is expected to be composed of boundary-layer solutions valid in inner regions near
the ends of the plate, H left

xx and H right
xx , and an outer solution valid elsewhere, Houter

xx . Also
as in the previous analysis, if the prescribed pressure is zero, then there is no boundary
layer at the left-hand end of the plate.

First, we consider the general case p0 
= 0. In the outer region H ∼ 1 and h∞ ∼ 1, and
assuming a dominant balance between the surface tension 2 and pressure 3 , we find that
δ3 Hxxx ∼ 6 and hence

Houter
xx ∼ 1

δ3 (6x − d) (5.2)

for constant d. Notice that, unlike in § 4.2, we do not assume that the curvature is O(1) in
this limit.

In the left-hand boundary layer near x = 0, we seek a balance between elasticity 1 and
surface tension 2 in (4.11), thus the boundary layer is of width x =O(δ−3/2). Solving
B5 Hxxxxx ∼ δ3 Hxxx , and using the zero moment condition Hxx (0) = 0, we obtain

H left
xx ∼ − D

δ3

[
1 − exp

(
−δ3/2x

B5/2

)]
(5.3)

for a constant D. In order for this curvature to match the outer curvature (5.2), we take
δ3/2x → ∞ and thus require D = d. Moreover, imposing the pressure condition (2.17a)
yields D = p0.
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Figure 7. Plots of the re-scaled curvature of the plate δ3 Hxx as a function of x for various values of δ in the
case B = 0.5 and p0 = 1. From top to bottom on the right in (a), the curves correspond to δ = 500, 100, 10 and
1. The asymptotic solution given by (5.5) for δ = 500 is shown with the dashed line. Plot (b) is an enlargement
of plot (a) near x = 1, including only the curves for δ = 500 for clarity.

It remains to determine the curvature in the right-hand boundary layer near x = 1.
Seeking a balance between elasticity 1 and surface tension 2 in (4.11) yields a boundary
layer of width 1 − x =O(δ−3/2). Imposing the condition Hxx (1) = 0 yields

H right
xx ∼ E

δ3

[
1 − exp

(
−δ3/2(1 − x)

B5/2

)]
, (5.4)

where the constant E is determined to be E = 6 − d = 6 − p0 once H right
xx is matched to

Houter
xx . Thus we conclude that

Hxx ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− p0

δ3

[
1 − exp

(
−δ3/2x

B5/2

)]
for x =O(δ3/2),

1
δ3 (6x − p0) for x ∈ (0, 1),

6 − p0

δ3

[
1 − exp

(
−δ3/2(1 − x)

B5/2

)]
for x = 1 −O(δ−3/2).

(5.5)

Figure 7 shows the re-scaled curvature δ3 Hxx for δ = 1, 10, 100, 500, together with the
nearly visually indistinguishable asymptotic solution given by (5.5) for δ = 500. Note that
we plotted δ3 Hxx rather than Hxx in order to remove the algebraic dependence on δ.

With the curvature of the plate determined, we are now free to proceed similarly to the
study of a rigid plate by Trinh et al. (2014) and investigate the Landau–Levich equation
(2.6) in the limit δ → ∞. In this limit, the deviation from h ∼ 1 for finite x is exponentially
small in δ, so we seek a re-scaling near the the right-hand edge of the plate at x = 1. Setting
x = 1 + δX , we substitute h = 1 + h1(X)/δ +O(1/δ2) and h∞ = 1 + h∞1/δ +O(1/δ2)
into the re-scaled Landau–Levich equation given by hX X X = 3(h∞ − h)/h3. Solving
the equation at O(1/δ), we set the two integration constants to zero to remove the
exponentially growing modes (see [8,9] in table 1), and match the heights of the free
surface and the plate, h1(X = 0) = H1(x = 1), where H1 is from the series expansion (5.1).
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Figure 8. The far-field film height h∞ plotted as a function of δ in the case p0 = 1. From top to bottom, the
curves correspond to B = 0.2, 0.5 and 1. The two-term asymptotic approximation in the limit δ → ∞ given by
(5.7) is shown with the dashed line.

Written in terms of x , this yields

h1 = h∞1 + [H1(1) − h∞1] exp
(

−31/3(x − 1)

δ

)
. (5.6)

From (5.5), we observe that the O(1/δ) contribution to the plate is identically zero,
H1 ≡ 0, thus the free-surface correction in (5.6) depends only on h∞1. Consequently,
(5.6) yields an expression for the leading-order free-surface curvature near the edge of
the plate given by hxx (1) ∼ −32/3h∞1/δ

3. The normal load at the edge of the elastic plate
is B5 Hxxxxx (1) ∼ (p0 − 6)/δ3, which follows from (5.5). Finally, the fluid pressure and
the load on the plate are related through (2.17b). Solving for the far-field film height gives

h∞ = 1 + p0 − 6
32/3δ

, (5.7)

which is verified in figure 8.
The above results, and, in particular, the separation of the curvature Hxx into the three

regions in (5.5), correspond to the situation in which there is a non-zero prescribed
pressure p0 
= 0. If p0 = 0, then the asymptotic structure is simpler and the outer solution
with Hxx ∼ 6x/δ3 applies all the way to x = 0 and satisfies the necessary zero moment
condition. The limit p0 → 0 is regular: the above analysis, now consisting of only a single
boundary layer near x = 1, is otherwise unaltered, and the results are consistent with
setting p0 = 0 in the previously derived formulae.

5.2. The limit of fast substrate motion and/or weak surface tension, δ → 0
In the limit δ → 0, the plate uniformly tends to unit height, H ∼ 1, while the downstream
height of the fluid tends to h ∼ h∞ ∼ 1/2, except near the plate, where the free surface
rises rapidly to match the edge of the plate. In terms of the analysis for the elastic plate,
the principal difference between the limit δ → 0, the limit δ → ∞ of §. 5.1, and the limit
B → 0 of § 4.2 is that for the case here, the δ → 0 limit is regular and there are no boundary
layers. We thus expand as usual as H = 1 + δH1 +O(δ2) and h∞ = 1/2 + δh∞1 +O(δ2).
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Figure 9. (a) The far-field height correction h∞1 defined by h∞ = 1/2 + δh∞1 +O(δ2), plotted as function
of B. From top to bottom, the curves correspond to p0 = 0.1, 0 and −0.1. (b) The full numerical solutions
for h∞ in the case p0 = 0 for δ = 0.1 and δ = 0.01 (shown with the solid lines) and the two-term asymptotic
solution given by 1/2 + δh∞1 (shown with the dashed line) plotted as functions of B. The pair of solid and
dashed curves with the larger deviation from h∞ = 0.5 corresponds to δ = 0.1, and the pair of solid and dashed
curves with the smaller deviation (which are nearly visually indistinguishable) corresponds to δ = 0.01.

At O(δ) in (2.11), we find B5 H1xxxxx = 6(H1 − 2h∞1), which has the general solution

H1(x; h∞1) = 2h∞1 +
4∑

j=0

C j exp
(

61/5e2π ik/5x

B
)

, (5.8a)

with constants C j for j = 0, . . . , 4. The values of the six unknowns C0, . . ., C4 and h∞1
can be determined by imposing the six boundary conditions

H1(0) = 0, H1xx (0) = 0, H1xxx (0) = p0

B5 , (5.8b)

H1xx (1) = 0, H1xxx (1) = 0, H1xxxx (1) = −h0xx (1)

B5 . (5.8c)

The only unknown in the above set of boundary conditions is the value of h0xx (1). This
value can be found by numerically solving the Landau–Levich equation (2.6), starting at
a large value of x and stopping once h(1) ∼ h0(1) = 1 is reached. Based on the results of
Trinh et al. (2014), this value is approximately

h0xx (1) ∼ 1.7639
δ2 . (5.9)

In figure 9(a), we display the values of h∞1 for p0 = 0.1, 0 and −0.1, calculated using
the above approach (i.e. solving (5.8)). In figure 9(b), we compare the two-term asymptotic
solution 1/2 + δh∞1 with the full numerical solution for δ = 0.1 and δ = 0.01 when
p0 = 0. The figure confirms that there is good agreement between the numerical and
asymptotic results; by δ = 0.01 the curves are nearly visually indistinguishable.

There is, in fact, an additional distinguished limit when both B → 0 and δ → 0
simultaneously, which produces the increasingly rapid oscillations visible in figure 9.
In the analysis leading to the asymptotic solution (5.8), B was assumed to be fixed
while δ → 0. However, we note that the solutions that correspond to (afterwards) setting
B → 0 have H1(1) → −∞, and are thus inadmissible as soon as H1(1) exceeds O(1/δ)
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Figure 10. The height of the plate H(x) plotted as a function of x for various values of B in the case p0 = 0
and δ =B. From left to right, the curves correspond to δ =B = 0.0735, 0.0652, 0.0573 and 0.0500. There are
further minima and maxima at smaller values of x not visible on the scale of the diagram.

in magnitude. Examples of solutions in this limit are given in figure 10. We observe that
as B → 0 and δ → 0, H exhibits a series of maxima and minima in x , for which the
primary maximum moves closer to the boundary at x = 1 in the double singular limits.
The behaviour of these ripples seems to parallel that observed in the analyses of Wilson &
Jones (1983), Snoeijer et al. (2008), Benilov et al. (2010) and McKinlay et al. (2023); we
leave this particular special limit as an open problem.

6. Discussion
We have presented a numerical and asymptotic analysis of a mathematical model for
a pinned elastic plate lying on the surface of a thin film of viscous fluid on a moving
horizontal substrate. The system is governed by a third-order Landau–Levich equation for
the height of the film and a fifth-order Landau–Levich-like beam equation for the height of
the plate. In addition, an unknown eigenvalue (namely the far-field height) must be solved
for. Nine boundary conditions close the system, which models the completing effects of
elasticity, viscosity, surface tension and fluid pressure.

Four asymptotic limits were studied: the limits of large and small plate bending stiffness,
and the limits of strong and weak surface tension. With the exception of the limit of
large bending stiffness, B → ∞, in which the plate becomes rigid, the other three limits
require matched asymptotic expansions in order to capture the singular effects at the
edges of the plate. The occurrence of such boundary-layer effects is often the culprit for
non-convergence of numerical solutions; we expect this to be a generic phenomenon for
singularly perturbed elastocapillary problems.

We note that there are numerous connections between the well-known third-order
Landau–Levich equation (2.6), which is commonly encountered in the modelling of
coating flows, and the fifth-order Landau–Levich-like equation (effectively a beam
equation but with a Reynolds equation embedded within it to provide the fluid flux
and pressure). Thus many of the asymptotic and numerical approaches and results that
arise in the study of the Landau–Levich equation have analogous approaches and results
for the beam equation. For instance, a clear connection exists between the development
of an apparent curvature in the outer solution in the limits B → 0 and δ → ∞ (see
figures 5–7) and the analysis of moving contact lines, where the goal is to develop an
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x = b x = c x = b x = c

(a) (b)

Figure 11. Sketches of two examples of flows with free contact points, x = b and x = c, that must be determined
as part of the solution. (a) A vertically clamped plate and (b) a horizontally clamped plate; in both examples,
the plate is held stationary and the substrate is moved to the right with constant speed.

apparent or macroscopic contact angle (see, for example, Dussan & Davis 1974; Hocking
1981; Ren et al. 2015), related to an inner region near the singularity.

The solutions that we have presented, particularly the variety of different asymptotic
regimes, exhibit a fascinating complexity; it is interesting to consider what other solutions
exist when the physical set-up of the problem is modified, i.e. to consider the global
bifurcation structure of the space of solutions (as controlled by parameters such as B
and δ). As noted in § 1, nonlinearity in the associated differential equations is often
accompanied by non-uniqueness of solutions. The existence or non-existence of solutions,
for the case of a rigid plate lying on a thin fluid film, was discussed by Moriarty & Terrill
(1996) and Trinh et al. (2014). Rigorous results can be established for the case of a rigid
plate (as was done by McLeod 1996), but the analogous theory remains unresolved for
the much more complex boundary-value system that we have presented here. The non-
uniqueness of the fifth-order beam equation (though uncoupled from another thin-film
equation) was also noted by Dixit & Homsy (2013).

There are numerous interesting directions that we can highlight for future work. One
variation of the problem presented here is inspired by the work of Seiwert et al. (2013),
who studied the case of a vertically clamped plate, used within the blade coating system
sketched in figure 11(a). For such geometries, it may not be possible to assume that the
deformation of the plate from the horizontal is small, even though linear plate theory
can still be used as a function of the plate arc length. Alternatively, one could consider
a configuration with a horizontally clamped plate as sketched in figure 11(b), which
will be more similar to the theory that we have presented in the present work. Note
that in order to preserve the applicability of lubrication theory, it must be assumed
that the plate is sufficiently flat during contact. Moreover, a particular challenge in
studying such configurations is a consequence of the upstream connection point being
a priori unknown and having to be determined as part of the solution. It is interesting to
consider the parameter regime involved in these experiments. Specifically, Seiwert et al.
(2013) considered a situation with U ≈ 8.2 mm s−1, μ = 17.4 N m−1 s−1, L = 0.04 m,
γ = 0.02 N m−1, and typical fluid depths of the order of 4 × 10−3 m. In the present
non-dimensional parameters, this corresponds to δ3 = Ca−1 ≈ 10−4 and ε ≈ 0.5 × 10−1.
Typical beam elasticity was B = 4.2 × 10−3 N m, hence B5 ≈ 0.0184. Note that ε2/δ3 ≈
102, so spatial variations in the tension in the plate may be significant, hence a more
detailed mathematical model that includes some or all of the terms on the right-hand side
of (2.8) may be required in order to fully capture the results of these experiments.

Many other more complicated variations of the present elastocapillary problem are
possible, including systems on substrates with non-zero curvature (see, for example, Myers
et al. 2002; Howell 2003; Jensen et al. 2004; Trinh et al. 2014). Following Seiwert et al.
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(2013) there has been recent work by Krapez et al. (2020) (for Newtonian fluids) and
Krapez et al. (2022) (for non-Newtonian fluids) who studied, experimentally, numerically
and theoretically, the vertically clamped situation sketched in figure 11(a). Their analysis
uses the experimental observations to judiciously simplify the mathematical model (see,
in particular, the supplementary materials of Krapez et al. 2020); it would be interesting to
apply the more complete asymptotic treatments that we have developed in the present work
to the more challenging ‘two-fluid’ systems studied in such works. The situation of fully
three-dimensional deflections also presents a fruitful playground for computational and
analytical works. Although we have not considered the scenario here, we refer readers
to the extensive review by Vella (2015) addressing the situation of three-dimensional
interactions between fluids and elastic structures.
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