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Abstract. We describe the implementation and performance results of our massively parallel
MPI† /OpenMP‡ hybrid TreePM code for large-scale cosmological N-body simulations. For
domain decomposition, a recursive multi-section algorithm is used and the size of domains are
automatically set so that the total calculation time is the same for all processes. We developed
a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for
long-range forces. For two trillion particles benchmark simulation, the average performance on
the fullsystem of K computer (82,944 nodes, the total number of core is 663,552) is 5.8 Pflops,
which corresponds to 55% of the peak speed.
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1. Introduction
According to the recent observation of the cosmic microwave background (e.g., Planck

Collaboration et al. 2014), dark matter exists five times as much as baryonic matter.
Dark matter is dominant as the source of gravity. Structure formation of the Universe
proceeds hierarchically. Smaller-scale dark matter structures formed first from initial
density fluctuations imprinted shortly after the Big Bang, and they then merge into
larger-scale structures (Figure 1). At about 100 million years after the Big Bang, first
stars and galaxies began to form in massive dark matter structures. Therefore, studying
dark matter structures is important to understand not only what dark matter is, but
also origins of galaxies.

Cosmological N -body simulations have been playing a pivotal role to study the non-
linear structure formation in the Universe. Since dark matter structures exist in wide
mass ranges larger than 20 orders of magnitude (earth mass to clusters of galaxies), huge
simulations by supercomputers are demanded. Achieving large simulations efficiently on
modern supercomputers (more than 10,000 CPUs) is challenging work. Innovative nu-
merical algorithm and optimizing simulation codes are necessary.

In cosmological N -body, simulations, a dark matter particle travels under the gravity
from all the other particles in the simulation box. The simplest algorithm to calculate the
force of a particle is to calculate the forces from the other N −1 particles, where N is the
total number of particles in the system. This algorithm is called the direct summation,
which is unpractical for large N , since the cost to calculate the forces is proportional to
the square of N . Therefore, to accelerate the calculation, sophisticated algorithms with
some approximation are commonly adopted in cosmological N -body simulations.

The tree method (Barnes & Hut 1986; Barnes 1990) is the most popular algorithm
for N -body simulations. The concept of the tree method is to employ a hierarchical

† Message Passing Interface
‡ Open Multi-Processing
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Figure 1. Evolution of large scale structures followed by a cosmological N -body simulation.
Brightness is corresponding to dark matter density.

oct-tree structure to represent a system. The force from particles in a tree branch to
one particle can be evaluated by calculating the multipole expansion, if the error is
sufficiently small (if the branch and the particles are separated enough). If not, the force
is evaluated by summing up forces from eight sub-branches. By recursively applying this
procedure, the total calculation cost becomes total force on a particle is O(N log N),
which is drastically reduced from the O(N 2) cost of the direct summation. Thus, the
most codes for cosmological simulations use the tree algorithm.

Yet another way to reduce the calculation cost for cosmological simulations is the PM
(Particle Mesh) algorithm. The PM algorithm can calculate the gravitational potential
on a regular grid. The mass density at a grid point is calculated by assigning the masses
of nearby particles by some kernel function. Then, the Poisson equation is solved using
FFT (Fast Fourier Transform). Finally, the force on a particle position is calculated by
differentiating and interpolating the potential on the mesh. For details, see Hockney &
Eastwood (1981).

In general, the PM algorithm is much faster but less accurate than the tree algorithm
since the spatial force resolution is limited by the size of the mesh. In order to overcome
this problem, hybrid algorithm such as the TreePM (Tree Particle-Mesh) algorithm has
been developed (e.g., Xu 1995; Bode et al. 2000; Bagla 2002; Dubinski et al. 2004; Springel
2005; Yoshikawa & Fukushige 2005; Ishiyama et al. 2009; Ishiyama et al. 2012). In this
algorithm, the gravitational force is split into two components, short- and long-range
forces, which are calculated by the tree and PM algorithm, respectively.

In the TreePM algorithms, the periodic boundary condition is naturally satisfied
and high spatial resolution can be achieved. Since the calculation cost of TreePM is
O(N log N), this algorithm is becoming popular and is used in a number of recent large
cosmological N -body simulations (Figure 2).
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Figure 2. Mass resolution versus simulation volume of recent large cosmological N -body sim-
ulations. The mass resolution of each simulation is corrected as the cosmological parameters of
all simulations are the same as those we chose in the ν2GC simulations (Ishiyama et al. 2015),
indicated as six filled circles (Ω0 = 0.31, Λ0 = 0.69, h0 = 0.68). The number of particles along the
five dashed lines is constant from 20483 to 327683 . Circles show simulations based on the Planck
cosmology (Planck Collaboration et al. 2014). The four thin open circles denote four of the five
Dark Sky Simulations (DSS; Skillman et al. (2014)). The mass resolution of the rest of the DSS
simulations is below the range of this figure. The three thick black circles are the BolshoiP,
MDPL and SMDPL simulations (Klypin et al. 2014). Gray open triangles show simulations
based on the WMAP cosmology (e.g., Komatsu et al. 2009) by other groups, Millennium simu-
lation (Springel et al. 2005), Horizon (Teyssier et al. 2009), Millennium-II (Boylan-Kolchin et al.
2009), White+10 (White et al. 2010), Bolshoi (Klypin et al. 2011), Millennium-XXL (Angulo
et al. 2012).

We introduce our MPI/OpenMP hybrid TreePM implementation GreeM (Ishiyama
et al. 2009; Ishiyama et al. 2012), which is a massively parallel TreePM code based on
the implementation of Yoshikawa & Fukushige (2005) for large cosmological N -body
simulations, and present performance results up to two trillion particles. The numerical
simulations were carried out on K computer at the RIKEN Advanced Institute for Com-
putational Science. It consists of 82,944 SPARC64 VIIIfx oct-core processors with the
clock speed of 2.0 GHz (the total number of core is 663,552) and 1.3PB of memory. The
peak performance is 10.6 Pflops.

2. Massively Parallel TreePM Code, GreeM
In this section, we briefly introduce three features that enable to achieve high parallel

scalability and performance, namely, our domain decomposition algorithm, optimized
particle-particle force loop, and relay mesh method. The more details of GreeM are
described in Ishiyama et al. (2009); Ishiyama et al. (2012).
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2.1. Domain Decomposition
In the cosmological N -body simulations, it is difficult to achieve good load balance for the
following reason. In cosmological N -body simulations, the particles initially distribute
nearly uniformly. The small density fluctuations gradually grow by gravity and form
numerous dense structures everywhere. The density of such structures are typically much
higher than the average. As a result, the calculation cost of the short-range part becomes
highly imbalanced, if the domain decomposition is static, in other words, its geometry of
each domain is time invariable and is the same for all domains.

We use a 3-D recursive multi-section domain decomposition (Makino 2004) to over-
come this problem. In this method, the shape of a domain is rectangular. To determine
the geometries of domains. we use the sampling method (Blackston & Suel 1997), which
can drastically reduce the amount of communication needed for performing domain de-
composition.

In our method, we adjust the geometries of the domains assigned to individual pro-
cesses, so that the total calculation time of the force (sum of the short-range and long-
range forces) becomes the same for all MPI processes. We achieve good load balance by
adjusting the sampling rate of particles in one domain so that it is proportional to the
measured calculation time of the short-range and long-range forces. Thus, if the calcula-
tion time of a process is larger than the average value, the number of sampled particles of
the process becomes relatively larger. After the root process gathers all sampled particles
from the others, the new domain decomposition is created so that all domains have the
same number of sampled particles. Therefore, the size of the domain for this process
automatically becomes somewhat smaller, and the calculation time for the next timestep
is expected to become smaller.

2.2. Optimized Particle-Particle Force Loop
The calculation of the pairwise force is the highest cost part. We can optimize this part
by utilizing Phantom-GRAPE (Nitadori et al. 2006; Tanikawa et al. 2012a,b) software ac-
celerator, which is originally developed for the x86 architecture with the SSE (Streaming
SIMD† Extensions) instruction set. We have extended Phantom-GRAPE with support
for the short-range force of TreePM to the HPC-ACE (High Performance Computing
Arithmetic Computational Extension) architecture of K computer using SIMD built-in
functions provided by the Fujitsu C++ compiler. To get the maximum performance, the
force loop was unrolled eight times by hand so that 16 pairwise interactions, forces from
4-particles to 4-particles are evaluated in one iteration.

The LINPACK peak per core of SPARC64 XIIIfx is 16 Gflops [4 FMA (Fused Multiply
Add) units running at 2.0 GHz]. However, the theoretical upper limit of our force loop
is 12 Gflops because it consists of 17 FMA and 17 non-FMA operations (51× 2 floating-
point operations in total) for two (one SIMD) interactions. Our force loop reaches 11.65
Gflops on a simple O(N 2) kernel benchmark, which is 97% of the theoretical limit.

2.3. Relay Mesh Method
For the parallel FFT of the PM part, we can use the MPI version of the FFTW 3.3
library (http://www.fftw.org/). The parallel FFTW supports the 1-D slab decomposition
only, in which the number of processes that perform FFT is restricted by the number
of grid point of the PM part in one dimension. Since the calculation cost of FFT is
relatively small in most cases, this 1-D parallel FFT may not decrease the performance
significantly. However, in the situation that the number of MPI processes is very large,

† Single Instruction/Multiple Data
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communication becomes problematic since the number of processes that send the local
mesh to an FFT process is proportional to p2/3 , where p is the number of MPI processes.
Thus, the communication time of the conversion of the mesh from 3-D rectangular to
1-D slab can become bottlenecks on modern massively parallel supercomputers such as
the full system of K computer.

To overcome this problem, we developed a novel communication algorithm, Relay Mesh
Method. The basic idea of this method is to split the global all-to-all communication on
the conversion of the mesh structures into two local communication. Processes are divided
into small groups whose sizes are equal or larger than that of the FFT processes. One of
the groups contains the FFT processes, we call this group the root group. For example,
consider a simulation with 2-D decomposed 6× 6 processes and the number of PM grids
in one axis NPM = 83. In this case, the number of FFT processes is eight since the FFT
is parallelized for only one axis. We make four groups that consist of 3×3 = 9 processes.
The eight processes of the root group perform FFT.

The 1-D slab decomposed density mesh is constructed in the following two steps. First,
each group compute the contribution of its particles to the mesh, and then the total mesh
is constructed by adding up the contributions from all groups. Each group constructs the
1-D distributed density mesh that covers the full simulation box. The decomposition of
the density slabs are the same for all groups, however, the density slabs of each group
include the only contributions of particles in the group (partial slab density). Then each
group communicate their slabs so that the root process contain the complete slabs. In
this method, the global communication in the second step (previous page) is replaced
by two local communications, one within groups and the other over groups. The first
communication is done to construct the 1-D distributed density mesh in the same way
as the second step of the original method, but the communication is closed within each
group. In this example, the nine processes of each group send the mass density to eight
processes within the same group. After the first communication, each group has the 1-D
distributed partial density slabs. Then, all groups relay the partial slabs to the root group,
and the root group reduces them to construct the complete slabs. In this example, four
processes in different groups communicate. The more details of this method are described
in Ishiyama et al. (2012).

Using this method, we can avoid network congestion. Here we show the performance
result for 40963 FFT on 12288 nodes. Without this algorithm, ∼10 and ∼3 seconds took
for for the conversion of mesh structures and backward potential conversion, respectively.
With this method using three groups, these are reduced to ∼3 and ∼0.3 seconds. Our
novel communication algorithm could decrease the communication time by a factor of
more than four. On the other hand, the calculation time of FFT itself was ∼4 seconds.
Thus, FFT became a bottleneck after the optimization of these communication parts.
However, we confirmed that the performance is improved for FFT by using a 3-D parallel
FFT library and this novel technique is also applicable for the simplification of the
conversion.

3. Scalability and Performance
Figure 3 shows the strong scaling of our code, namely CPU time per step as a func-

tion of the number of computational nodes. To measure the scalability of our code, we
performed simulations with 20483, 40963, 81923, and 102403 dark matter particles. We
set the number of PM grids in one axis as NPM = N 1/3/2.

Regardless of the number of particles, the parallel speedup is excellent up to the full
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Figure 3. Calculation time per step of our code as a function of the number of nodes on K
computer. The results of 20483 , 40963 , 81923 , and 102403 dark matter simulations are shown.
The dashed lines show the perfect strong scaling.

system of K computer (82,944 nodes). In particular, for the region with less than 10, 000
nodes, parallel speedup is almost perfect.

For two trillion particles benchmark simulation, the average performance on the full-
system of K computer is about 5.8 Pflops , which corresponds to 55% efficiency. If we
focus on the only force calculation cycle, it achieves 71% efficiency, which corresponds to
95% efficiency since the theoretically maximum efficiency is 75%. It is important to keep
in mind that the performance is underestimated since we use only the particle-particle
interaction part to estimate the performance. Actually, we obtained a few percent higher
efficiency by he Fujitsu sampling profiler since it counts all floating-point operations.

4. Conclusion
We present the implementation and performance results of our massively TreePM

code on the full system of K computer. The average performance achieved is 5.8 Pflops.
The efficiency of the entire calculation reaches 55%. The efficiency of the gravity kernel is
71%. These high efficiency is achieved by a highly optimized gravity kernel for short-range
force calculation on the HPC-ACE architecture of K computer and by developing a novel
domain decomposition and communication algorithm for the calculation of long-range
forces. Our implementation enables us to perform huge cosmological N -body simulations
within practical time (e.g., Ishiyama 2014; Ishiyama et al. 2015, 2016).
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