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0. Introduction. All groups G considered in this paper are finite and all representations
of G are defined over the field of complex numbers. The reader unfamiliar with projective
representations is referred to [9] for basic definitions and elementary results.

Let Proj (G, a) denote the set of irreducible projective characters of a group G with
cocyle a. In previous papers (for exampe [2], [4], and [6]) numerous authors have considered
the situation when |Proj(G, a)\ = 1 or 2; such groups are said to be of a-central type or of la-
central type, respectively. In particular in [4, Theorem A] the author showed that if
Proj(G,a) = {£i,£2l, then fi(l) = £2(l)- This result has recently been independently con-
firmed in [8, Corollary C].

The aim of this short paper is to provide some positive evidence about the following
conjecture, of which the result mentioned above is just a special case.

CONJECTURE. Let G be a group and a be a cocycle of G. Then either G is of a-central type
or Proj(G, a) contains at least two elements of the same degree.

The reader will discover that groups of a-central type play an important part in our
investigation of the conjecture, which we are able to verify in a number of cases; most nota-
bly when G is supersoluble or has odd order.

1. Characters of the smallest degree. We start by considering the situation when a is
trivial.

LEMMA 1.1. Let G be a non-trivial group. Then Irr(G) do not all have different degrees.

Proof. Let G be a counterexample of minimal order. Suppose N is a proper normal
subgroup of G. Then Irr(G/7V) contains two elements of the same degree, which lift irre-
ducibly to G. So G must be a non-abelian simple group, and moreover all of its irreducible
charcaters must be rational valued. Thus G = Sp6 (2) or O%(2)' from [3, Corollary B.I], but
from [1] both these groups do possess irreducible characters of the same degree. •

As a consequence of Lemma 1.1, we can assume henceforward where necessary that
o([a]) > 1 in M(G), the Schur multiplier of G. We now proceed to verify the conjecture in a
number of easy cases, these cases have in common the fact that we need only to consider
irreducible projective characters of the smallest degree. To avoid repetition a will always
denote a cocycle of the group G under consideration in the following results.

LEMMA 1.2. Let G be a p-group. Then either G is of a-central type or Proj(G, a) contains n
elements of the smallest degree where n = 0(mod/?).

Glasgow Math. J. 40 (1998) 431-434.

https://doi.org/10.1017/S0017089500032766 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032766


432 R. J. HIGGS

Proof. Let Proj (G, a) = [%\,..., £,}, with £1 being an element of the smallest degree.
Then,

t

(I))2-

Now G is of a-central type if and only if t = 1. If t > 1 the left hand side of the above
equation is congruent to 0 modulo p, so there must be n elements §,• e Proj (G, a) with
n = 0(mod/?) such that |,(1) = £i(l). •

COROLLARY 1.3. Let G be a nilpotent group and {/>, : 1 < i < r] be the distinct prime divi-
sors of\G\. Then either G is of a-central type or Proj (G, a) contains n elements of the smallest
degree where n = 0 (mod/?,) for some i with 1 < i < r.

Proof. Let 5, be the Sylow />,-subgroup of G. Then it follows from either Corollary 5.1.3
or Theorem 7.1.13 of [9] that there exist cocycles a, of 5, such that
Proj (G, a) = {A(£i x • • • x fr) : £,- e Proj (5,, a,-)}, where X is a function from G into the non-
zero complex numbers with X(\) = 1. The result is now immediate from Lemma 1.2. •

Our next result covers the case of a metacyclic group.

LEMMA 1.4. Let G be a group, and suppose G contains a normal abelian subgroup N such
that [OIN] = [1] and G/N is cyclic. Then either G is of a-central type or Proj (G, a) contains at
least two elements of the smallest degree.

Proof. Let £ e Proj (G, a), then £(1) divides [G : N] by [11, Theorem 2]. Now assume f is
of the smallest degree, let X be an irreducible constituent of £#, and / denote the inertia sub-
group /cW- Then 1(X) = 1, since N is abelian and [<*#] is trivial. Also since G/N is cyclic, the
elements of Proj (I/N, /3) all have degree one for any cocycle fi of I/N. It follows from the
bijections of Clifford's theorem (described in the proof of Theorem 2.1 below), that the
[/: N] distinct elements of Proj (G, a) which are the constituents of XG all have degree £(1).
We have thus constructed at least two elements of the smallest degree unless I = N, and
XG = £. In this case £(1) = [G : N], and consequently every element of Proj (G, a) has this

degree. Once again we have at least two elements of the only degree unless f is unique and
[G : N] = \N\. •

Our final result in this section has an almost identical proof to Lemma 1.4, and so the
proof is omitted.

COROLLARY 1.5. Let G be a group, and suppose G contains a normal subgroup N with
? e Proj (./V, a^) such that IG(0/N is a non-trivial cyclic group. Then there are at least two
elements o/Proj(G, a) of the same degree which are constituents of^G.

2. Supersoluble groups and groups of odd order.

THEOREM 2.1. Let G be a supersoluble group. Then either G is of a-central type or
Proj (G, a) contains at least two elements of the same degree.
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Proof. Let G be a counterexample of minimal order. Let N be a non-trivial normal sub-
group of G, and f e Proj (TV, aN). Let / = /c(C), and Proj (/|f, a/) denote the set of irreducible
constituents of t}'. Then by [9, Theorem 7.8.10] there exists a cocycle ft of I/N and bijections
Pw](I/N, £)-> Proj(/|£, a / ) - • Proj(G|£, a) defined by yi-»y*:i-»()//c)G, where KN = t, and
K € Proj (/,/3~'a/). The cocycle fi~x is called an obstruction cocycle, since it obstructs the
extension of f to an element of Proj (/, a/). Now since \I/N\ < \G\, either Pro)(I/N, ft) con-
tains at least two elements of the same degree or I/N is of /3-central type. In the former case
the bijections above yield at least two elements of Proj (G|£, a) of the same degree, contrary
to the assumption that G is a counterexample. So we must assume I/N is of /3-central type.
Consequently £(x) = 0 for all £ e Proj(G, a), and all x f[ N. Since G is not of a-central type,
it must contain a unique minimal normal subgroup K — (x : x is a-regular).

Since \K\ = p for some prime p, K consists of the a-regular elements of G. Let S be a
Sylow p-subgroup of G. Then K < Z(S), so that S < IG(X) for all X e Proj (K, aK). Let H be a
Hall //-subgroup of G. Then # < IG{X) for some A 6 Proj (K, aK) by [5, Proposition 1.5 and
Corollary 2.4]. It follows from the bijections above that exactly one element S of Proj (K, a*-)
is G-invariant, and there is a unique | e Proj (G\S, a) with %K = eS and e2 = [G : A]. Now
Proj(A^,C*K) = |<Sv : v e Irr(/Q}. Let v be a non-trivial element of Irr(X), so that v is faithful.
Then IG(Sv) = IG(v) - CG(K) < G. Thus the G-orbits on {Sv : v ̂  1} all have the same length,
and for each such orbit we obtain from the bijections above § e Proj (G, a) with
£(1)2= [G : AT|[G : Cc(/Q]. Thus there must be a unique such orbit. This implies that G is of
2a-central type, contrary to [4, Theorem A]. •

THEOREM 2.2. Let G be a group of odd order. Then either G is of a-central type or
Proj (G, a) contains at least two elements of the same degree.

Proof. Let G be a counterexample of minimal order. Then the results of the first para-
graph of the proof of Theorem 2.1 still hold, and in particular G must contain a unique
minimal normal subgroup K= (x : x is a-regular). Moreover K is abelian since G has odd order.
Now if A"< Z(G), then Proj (G, a) consists of \K\ elements of degree [G: K\1'2, a contra-
diction. It follows from [7, Theorem 2.7(b)] that either A îs of a/f-central type or [a/c] = [1].
In the former case we obtain that G is of a-central type, a contradiction. So [aK] = [1].

Our argument now follows that of the proof of Theorem A of [4]. Let C = CG(K), and
V = hr(K). Let R = R/C be a chief factor of G. Then R acts faithfully on V and Cv{k) is
trivial, so that R has order coprime to p. Thus we may use the arguments in the proofs of
Lemmas 2.4 and 2.5 of [10] to show that some S e Proj (G, a) is G-invariant. Let v be a non-
trivial element of V, then IG(Sv) = IQ(V) = Ia(v~l) = IG(SV~1). However since G has odd
order v and v~' are not conjugate, and so Sv and <5v~' lie in two different orbits of the same
length. It follows from the bijections in the proof of Theorem 2.1 that if | i is an irreducible
constituent of (Sv)G and £2 is an irreducible constituent of (<5v~') , then fi(l) = f20), a
contradiction. •

If the conjecture is true in general then it has the following immediate application to
ordinary character theory.

PROPOSITION 2.3 (Modulo Conjecture). Let G be a group, N be a normal sub group of G,
and # e \xx{N). Then either #G has at least two irreducible constituents of the same degree, or
each irreducible constituent of$G vanishes on G — N.
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Proof. Let / = Ia($) and /T1 denote the cocycle of I/N which obstructs the extension of
i? to an element of Irr (I). Then assuming the conjecture holds either Proj (I/N, ft) contains at
least two elements of the same degree or I/N is of ^-central type. In the former case the
bijections in the proof of Theorem 2.1 yield at least two elements of Irr(G|#) of the same
degree. In the latter case using the notation of Theorem 2.1, Irr(G|#) = {(yK)G}, where y is
the unique element of Proj (I/N, p). Consequently (YK)G(X) = 0 for all x g N. •
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