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Abstract: Rotation laws for the solar convection zone are produced by the yl-effect in 
rotating anisotropic turbulence fields. In this paper we use the structure of the turbu
lence parameters introduced by Rudiger and Kichatinov (1990), based on a simplified 
turbulence model. When we neglect the meridional circulation, for small inverse Rossby 
numbers the angular velocity isolines are spherical, while for increasing inverse Rossby 
number they approach more and more the helioseismologically derived shape. This simple 
picture becomes more complicated if the meridional circulation is allowed to act as an 
angular momentum transporter. 

1. Introduction 

In a rotating turbulence without any preferred direction apart from the angular 
velocity vector, O, angular momentum is transported only according to the well-
known Boussinesq relations 

Qif = -vr r-jr- sin 0, Q9ip = -uT — sin 6 (1) 

for the zonal off-diagonal components of the correlation tensor Q,y 

Qy = (u{(ar, *)«!(«, *))• (2) 

I/T is the eddy viscosity. For anisotropic turbulence, however, with the radial unit 
vector g=r/r as an additional preferred direction, new terms 

Qrv = if { - ^ + V«» + s i n
2 e V^\ s in^/? , 

^ = ^ r ( - | ^ ^ + ^ ( 0 ) + s i n 2 ^ ( 1 ) } c o s ^ 
[ SloB cos# J 

(3) 

appear - known as the yl-effect. They act in a non-diffusive way as they do not 
vanish for Q = const., thus preventing the existence of uniform rotation. For given 
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coefficients V^°\...,H^ a mean-field flow system {«) develops whose azimuthal 
(tp-) component reflects the differential rotation. 

2. The turbulence model 

The general theory of the yl-effect is presented in Riidiger (1989) using the so-
called second-order correlation approximation. It works with the simplest trunca
tion procedure, i.e. the restriction to a basically linear treatment of the coupling 
of all small-scale modes. The interaction of the laminar large-scale modes with 
the random small-scale modes is non-linear. As Vainshtein and Kichatinov (1983) 
have pointed out, the influence of higher-order correlations can be modelled by 

du'i/dt - ((«'V)ti{) + (u'V)«{ = U[/T (4) 

with r as the relaxation time of the correlations (Orszag, 1970). It is tempting to 
apply this model to the general expressions for the turbulent angular momentum 
transport coefficients V ^ , • • • ,H^. One has then simply to use the relations 

q(k, w) = q(k) 6(W)/T, vk2 = 1/r (5) 

for the dependence of the spectral function q on the wave-number fe and the 
frequency w of the turbulence field. 

3. The A-terms 

Riidiger and Kichatinov (1990) presented the A-coefficients V^°\..., H^ for the 
turbulence model (5): 

""-iCs-M/*•«<»>* (6) 

H^ being zero. It is easy to show that 

Jeq(k)dk = ^((u'?)-(u?)), (7) 

which gives the relation for the anisotropy in the turbulence field. Thus, posi
tive q implies dominance of the horizontal motions and v.v. All our micro-scale 
expressions are correct to order Q3. That is a minimal constraint as the inverse 
Rossby number R o _ 1 = 2r/2 is expected to be of order unity at the bottom of the 
convection zone. According to (6), a strongly reduced V^ and maximal values 
of V^ and H^ are the consequence of high R o - 1 values. At the solar surface, 
however, we have the opposite situation: because of the very small R o - 1 , maximal 

https://doi.org/10.1017/S0252921100079586 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100079586


174 G. Rudiger and I. Tuominen 

V(°) occurs with minimal V*1) and H^\ Prom the observations of the horizontal 
motions of sunspots we obtain H^ = 1. If this is correct, Eq. (6) leads directly 
to q < 0, so that a preference for vertical turbulent motions must be assumed. 

With the anisotropy parameter 61, 

6I=—J- [k2q(k)dk, (8) 
2J/T J 

we write 

y(o) = _ 2 ( 8 _ g r 2 ^ 61, V™ = H™ = | | r 2 f l 2 SI. (9) 
\ 1 5 35 / 35 

We consider 61 as depth-independent, while, on the other-hand, the correlation 
time T can be parameterized by 

r = nixilxfl* (10) 

with x = r/R, so that simply 

vi0) - (-if+f&ilx)X R°i_2)w-y(1)=H(1) - i ( x , / x ) A R°r 2*7' (11) 

with the inner rotation parameter 

R o i "
1 = 2 r i / 2 . (12) 

According to its construction, the expression in brackets in Eq. (11) is not allowed 
to change sign. For smaller Rossby numbers only V^ is quenched. In principle, 
three parameters describe the non-diffusive part of the turbulent angular mo
mentum transport: Rossby number, Ro, anisotropy parameter, 61, and the radial 
dependence of the correlation time, A. The observations are the surface profile of 
the angular velocity, Q{6), the surface value of H^ and the surface characteristics 
of the meridional circulation. 

We ask whether there is a range for these parameters and the Taylor number Ta 
for which the helioseismologically derived smooth rotation law in the convection 
zone appears and whether these values are in agreement with usual estimates for 
the Sun. Using a representation 

n = naY^Un-iPl{cos9)lsm6, (13) 

the "observed rotation law" corresponds to 

u>0(l) = l , «a(l) = -0.033, uo(xi)*l, wj(x0 * 0. (14) 

The Taylor number, Ta= Q2RA/v\ (with \*x = CVL2 /r), can be rewritten as 

m RO; ,, _, 
T a = - ^ , (15) 
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so that additionally the (normalized) mixing length & = Li/R at the base of the 
convection zone enters our formulation. With £ = 0.1 

Ta£*10 5 - 6 Ro- 2 . (16) 

It remains to determine the rotationally created terms in the eddy heat transport 
tensor. Again we restrict ourselves to the isotropic part of the turbulence and find 

VV(l) =HV(1) = Q/XT, (18) 

with Q taken from Rvidigerand Tuominen (1989), so that 

VV^ = HV^ = l(xi/x)xRor2. (19) 
5 

4. Models 

The aim of our calculations is to explain the results for the angular velocity in 
the solar convection zone presented by Stenflo (these Proceedings, Fig. 8), derived 
from helioseismology and from the surface pattern of magnetic fields. The given 
isolines (strictly surfaces) of the angular velocity, Q = const., are cylindrical or 
radial in the equatorial region, and rather disk-like in the polar region, while the 
isolines are radially directed in middle latitudes. 

Fig. 1. J?-contours for models in which the meridional circulation has been set to zero. 
a) Uniform A-effect (A = 0). b) A-effect concentrated to the base of the convection zone 
(A = 5). 

Let us first focus on the angular momentum balance. Neglect of the meridional 
flow gives the simplest possible model. The yl-effect alone then produces a char
acteristic profile of the angular velocity Q{r, 6). We present here models with the 
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Fig. 2. /2-contours for models in which the meridional circulation acts. The cases a) and 
b) as in Fig. 1. 

parameter values Ta = 105 and Pr = 0.33, and with a uniform yl-effect (A = 0) 
and with yl-effect more concentrated to the base of the convection zone (A = 5). 

Fig. 1 describes the consequences of the pure yl-effect. We find already here 
essential differences. With increasing Ro" 1 , the /2-contours change from spherical 
to cylindrical, being close to the observations with Roj-1 = 0.90 (Fig. la) . The case 
of non-uniform A differs drastically (Fig. lb) . If the A-effect is concentrated at the 
bottom of the convection zone, then any differential rotation at the surface can only 
follow from a strong pole-equator difference of Q deep in the SCZ. The observed 
radially aligned isolines in middle latitudes are then always missing. If this result 
is of some generality then the .A-effect must be depth-independent which, however, 
is not compatible with the mixing-length theory. 

Let us now consider the effects of a meridional flow. Its inclusion requires the 
simultaneous solution of the temperature equation. It is, of course, formulated for 
a stratified medium, but simplifying the behaviour of the eddies, the medium is 
assumed to be adiabatic. Fig. 2 gives the solutions. For the uniform jl-effect the an
gular velocity contours are less modified. The particular turbulence model adopted 
here does not give a reasonable solution for the non-uniform yl-effect: there is an 
equatorial deceleration. The two circulation drivers - non-conservative centrifugal 
force and buoyancy - change the simple picture, given in Fig. 1. Clearly a proper 
turbulence model and the appropriate ^[-parameters may be sought, combining the 
"inverse" method, attempted in Tuominen and Rudiger (1989), and their deriva
tion by a direct numerical simulation, as in Pulkkinen et al. (these Proceedings). 
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5. The key question 

Our numerical results look convincing despite the relatively simple turbulence 
model used. The free parameters are Prandtl number and Taylor number. It is, 
of course, an interesting task to study their influence on the resulting flow pat
tern. Doing so, we find a very unexpected behaviour of the solutions since they do 
not depend continuously on Ta or Pr. The pole-equator differences of the angular 
velocity and/or the temperature do not remain finite for all values of the dimen-
sionless parameters. If one of them is fixed, critical values of the other exist for 
which the solution loses its relevance. 

Mathematically speaking we have established an inhomogeneous system as a 
natural description of the over-all problem. That is in contrast to the dynamo the
ory, which essentially deals with a self-excitation problem. We are here confronted 
with the numerical fact that for certain values of Pr or Ta the characteristic de
terminant vanishes so that at these points self-excitation occurs. 

Similar results have already been obtained by Gierasch (1974), Schmidt (1982) 
and Chan tt al. (1987). It simply means that the full system of equations, in 
which the influence of the turbulence only enters via the eddy diffusivities, pos
sesses an eigensolution for certain eigenvalues. Chan tt al. (1987) propose that 
these solutions - which already appear for very simplified equations - give the de
sired answer for the problem of the maintenance of the solar differential rotation. 
Nonlinear calculations are necesssary to clarify the reality of this important phe
nomenon. Without the answer to this "key question of the theory of differential 
rotation", all results presented from linearized equations must be considered with 
care. 
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