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Introduction» In his Geometric Algebra (New York, 1957) 
E. Artin poses the problem of co-ordinatizing an affine plane in 
the following t e r m s . 

How little do we have to assume, from a geometric point 
of view, about an affine plane, in order to be able to describe 
its points by pairs of elements of a field, and its lines by l inear 
equations? 

This suggests a more general question. 

(Q) What axioms for affine geometry will give a structure 
that is equivalent to that of a vector space (of a rb i t ra ry dimension) 
in such a way that the lines of the vector space (i. e. the one-
dimensional linear variet ies) correspond to the lines of the 
geometry? 

Artin gives five axioms concerning points., l ines, and a 
certain group of transformations called dilatations; L e. (intuit­
ively) the group consisting of magnifications from points and of 
translat ions (magnifications from infinity). These axioms en­
able him to introduce coordinates. What we are going to do here 
is to concentrate on the transformations alone. We s tar t out with 
a set and a group of transformations on the set. Straight lines 
and para l le l i snvare defined in t e rms of the action of the group 
on the set. The affine structure is then determined by two geo­
metr ic axioms, (resembling Artin1 s axioms 4b and 3), which 
are really assumptions about the transitivity propert ies of the 
group. 

It turns out that these assumptions provide an answer to (Q). 
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Although the basic approach and final resul ts here a re 
different, the development is taken from Artin; proofs of several 
of the theorems a r e included only so that the exposition may be 
self-contained. 

The end of a proof is indicated, where necessary , by / / / . 

NOTE: It is well known that given any group of t ransform­
ations, t ransi t ive on a set, one can identify the points of the set 
with the left cosets of a certain subgroup, [cf. N. Bourbaki: 
Structures Algébriques, p. 106.] Therefore, one could dispense 
with the set, and, taking the point of view of F . Bachmann 
[Aufbau der Géométrie aus dem Spiegelungsbegriff, Springer, 
1959], in terpret the present paper as a development within 
group theory of affine geometry over a skew field. 

1. Terminology. 

DEFINITION 1. A geometry is a set G together with a 
group of t ransformations of G into itself. 

For convenience, we call the t ransformations dilatations. 

A dilatation has an inverse , and hence is 1-1 onto, 

DEFINITION 2. A, B = C, D (for points A, B, C, D 
of G) means that there is a dilatation g such that gA = C, 
gB = D. 

= is obviously an equivalence relation. 

DEFINITION 3. We write "[ABC]" and say "A, B,"C are 
col l inear" if A = B or A = C, or if there is a dilatation which 
leaves A fixed and sends B into C ( i . e . A, B = A, G). 

THEOREM 1. u[ACB]n is implied by any one of: 
a) B = C 
b) [ABC] 
c) [ACE], [AEB], A i E. 

Proof. The dilatations form a group. 
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DEFINITION 4. If A ^ B, then A + B denotes the set 
consisting of A and of all images of B under dilatations leaving 
A fixed. Thus 

A + B = {C | [ABCJ} . 
Any set A + B is called a line. 

Note that this definition is not symmetric in A and B; 
and that A + A is left undefined. 

COROLLARY. A dilatation g takes the line A +. B • onto 
the line gA + gB. 

Proof. Clearly [ABC] iff [gA, gB, gC]. 

2. Straight l ines. 

THEOREM 2. (i) The following statements a re equivalent: 
a) A + B = B -f- A (where A, B are any two distinct points). 
b) The truth or falsity of r ,[ABC]n does not depend on the order 

of the arguments (where A, B, C a re any three points). 
c) If C 4 D and C, D € A + B, then A + B C C + D. 
d) If A 4 B, there is one and only one line containing A, B, 

namely A + B. 
(ii) Statements a), b), c), d) a re all im­

plied by: 
e) The group of dilatations is doubly transit ive on l ines; that is 
to say: if A, B, C, D all belong to a line, and A 4 B, C ^ D, 
then A, B = C, D. 

Proofs, a) -*• b): a) can be restated as ,fif [ABC] then 
[BAG]". In conjunction with theorem 1(b) this clearly gives 
statement b). 

b) -*• c): Let E c A + B and assume E 4 A 
(if E = A, then E 4 B and the proof is s imilar) . 

In view of statement b), theorem 1(c) may be applied 
three t imes as follows: 

[ABC], [ABE] -» [ACE] 
[ABD], [ABE] -> [ADE] 
[ACE], [ADE] -* [CDE] 

i. e. E c C + D. 
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c) -* d): c) says that if A, B e C + D then 
C + D C A + B . But then C, D € A + B , so that A + B C 
C + D. 

d) -* a): Obvious. 
e) -* a): Let C c A + B . If C = B , then [BAC]. 

O t h e r w i s e , by e) B , A = B , C , i . e . [BAC]. In e i t h e r c a s e , 
C e B + A. S t a t e m e n t a) now fo l lows . / / / 

The g e o m e t r y i s p r o v i d e d wi th a s t r u c t u r e by the adopt ion 
of s t a t e m e n t e) a s o u r f i r s t a s s u m p t i o n . S t a t e m e n t e) w:l l be 
r e f e r r e d to h e n c e f o r t h a s AXIOM 1. 

a ) , b ) , c ) , d) can , then , be c o n s i d e r e d to be e s t a b l i s h e d 
t h e o r e m s . A l s o , we deduce e a s i l y 

COROLLARY A l . F o r any A, B , t h e r e e x i s t s a d i l a t a t ion 
i n t e r c h a n g i n g A and B . 

A p r o p o s , we p r o v e 

T H E O R E M 3. If s o m e d i l a t a t ion o t h e r than the ident i ty 
h a s a fixed poin t , then a ) , b ) , c ) , d) , and a x i o m 1 a r e a l l 
equ iva len t . 

Proof . It i s enough to show tha t d) i m p l i e s a x i o m 1. 

Since s o m e d i l a t a t ion o t h e r than the ident i ty h a s a fixed 
poin t , s o m e l ine c o n t a i n s a t l e a s t t h r e e p o i n t s . It fol lows tha t 
e v e r y l ine c o n t a i n s a t l e a s t t h r e e po in t s . 

O t h e r w i s e , t h e r e i s a l ine A + B con ta in ing p r e c i s e l y 
two p o i n t s , v i z . A, B . T h i s m e a n s tha t e v e r y d i l a t a t ion leav ing 
A fixed a l s o l e a v e s B fixed. If s o m e l ine t h r o u g h A con t a in s 
t h r e e d i s t i n c t p o i n t s , A, C, D, then , by d), [ACD]; and by the 
p r e c e d i n g r e m a r k , th i s i m p l i e s tha t [BCD]. T h u s , by d), both 
A and B be long to C + D and so aga in by d), C, D c A + B 
which i s a b s u r d . In o t h e r w o r d s , e v e r y l ine t h r o u g h A con t a in s 
exac t l y two p o i n t s . But any point E in G l i e s on a l ine t h r o u g h 
A, v i z . E + A; and so , r e p e a t i n g the a r g u m e n t , we conc lude 
tha t any l ine t h r o u g h any point c o n t a i n s exac t ly two p o i n t s , which 
i s a c o n t r a d i c t i o n . 

268 

https://doi.org/10.4153/CMB-1961-030-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1961-030-1


Axiom 1 is now deduced as follows: 

If A 4 D then hg(A) = C, hg(B) = D where g is such 
that gA = A, gB = D; and h is such that hD = D, hA = C. 

If B ^ C a similar procedure applies. 

Finally, if A = D, B = C, choose E ^ A or B, 
E € A + B, Then, by the preceding two paragraphs, 
A, B = C, E = C, D. / / / 

Note that the assumption in theorem 3 is necessary , as 
can be seen by considering a group of dilatations consisting of 
the identity alone. 

We now return to the main development. 

3. Paral le l lines, 

DEFINITION 5. Two lines m , m are parallel (written 
1 2 

m jj m ) if there exists a dilatation mapping m onto m . 

COROLLARY P I . Para l le l i sm is an equivalence relation. 

COROLLARY P2. A dilatation maps any line onto a par ­
allel l ine. 

Proof. Refer to the corollary to definition 4. 

COROLLARY P3 . For any three points A, C, D, with 
A i C, D 4 C, there is a point B such that C + D | | B + A, 
C + A | | B + D. 

Proof. Let h interchange A and D (corollary Al) and 
let B = hC. The required propert ies of B follow from corol­
lary P 2 . / / / 

From axiom i, we get: 

COROLLARY P4. If . m II in and A., B. c m . (i = 1,2) 
1 2 i l l 
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then A . B i 5 A - B . 
i 1 2 2 

With theorem 2(d), this implies: 

COROLLARY P5. Two paral lel l ines a re ei ther coincid­
ent or disjoint. 

Proof. If A + B | | B + C, then A, B = B, C i . e . [ABC]. 

THEOREM 4. For any point A and any line C + D 
there is a unique line which contains A and is paral le l to C + D. 

Proof. (Existence). If A = C this is t r iv ia l . Otherwise 
use corollary P 3 . 

(Uniqueness). Corol lar ies P i , P 5 . 

4. T races . 

DEFINITION 6. A g- t race of A is any line through A 
and gA. 

COROLLARY 4. 1 . If m is a g- t race of A, then 
g(m) = m. 

Proof. g(m) and m are paral le l (corollary P2) and 
both contain g A. 

COROLLARY 4.2 . Two distinct g - t r aces which intersect 
do so in a fixed point of g. 

Proof. Corollary 4. 1$ theorem 2(d). 

COROLLARY 4. 3 . If B is not a fixed point of g, then 
there is one and only one g- t race containing B; viz . B + gB. 

Proof. Corollary 4. 2 . / / / 

If it happens that any three points a r e coll inear , then any 
line C + D contains all points (because [CDP] for all P) 
which means that C + D is the only line. There does not seem 
to be much point in studying incidence if every point is incident 
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with every line. So we res t r ic t our attention to those geometries 
satisfying 

AXIOM 2. There exist three non-collinear points. 

NOTE. In view of axiom 1, an equivalent statement i s : 
The dilatation group is not doubly transitive on G. 

For any two distinct points C, D there will now be a 
point A such that A, C, D are not collinear. Otherwise, as 
in the preceding remark, C + D is the only line, and axiom 2 
is violated. 

THEOREM 5. A dilatation g with two distinct fixed points 
is the identity. 

Proof. Let C and D be fixed points (C ^ D) and choose 
Ai C + D. Then C + A, D + A are distinct g- t races , and 
so their intersection A is a fixed point (corollary 4. 2). Since 
C and A are fixed points, the same argument shows that any 
B e C + D (B 4 C) is a fixed point. Thus, all points are fixed 
points of g, i. e. g i s the identity. 

COROLLARY 5.1 . A dilatation is uniquely determined 
by the images of two distinct points C, D. 

Proof. If gC = hC, gD = hD, then C and D are fixed 
-1 -1 

points of g h, so that g h is the identity, i . e . g = h. 

THEOREM 6. If g is different from the identity, and 
has a fixed point A, then the g- t races a re precisely the lines 
through A. 

Proof. Any line through A is a g- t race . Conversely, 
if B 4 A, then B is not a fixed point; so that B + A = B + gB 
(corollary 4. 3) i. e. every g-trace passes through A. 

THEOREM 7. If g is not the identity, then any two non-
paral lel g- t races m and m have a point in common. 

[This point is a fixed point of g (corollary 4.2)] 
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Proof. Let A € m , C e m where ne i ther A n o r C 
1 2 

i s a fixed point. Then m = A + gA, m = C + gC ( c o r o l l a r y 4 . 3). 

We m a y a s s u m e A 4 C. 

F ind B such tha t C + gC | | B + A, C + A 11 B + gC 
( c o r o l l a r y P3) . 

Since C + A | j gC + gA, B € gC + gA. M o r e o v e r 
B 4 gA, s ince C + gC | f gA + A. Hence t h e r e i s an h such 
tha t 

h(gA) = gA hB = gC. 

Then hA € A + gA and 
C + gC | | A + B | | hA + hB | | hA + gC 

so tha t hA € C + gC. Thus A l gA m e e t s C + gC in -A, 

COROLLARY 7 . 1 . F o r any d i l a t a t ion g, t h e r e a r e 
t h r e e m u t u a l l y e x c l u s i v e p o s s i b i l i t i e s : 

1) g i s the iden t i ty . 
2) All g - t r a c e s a r e p a r a l l e l . T h e r e i s no fixed point . 
3) g i s not the iden t i ty , and s o m e two g - t r a c e s a r e not 

p a r a l l e l . Then t h e r e i s a fixed point and a l l t r a c e s p a s s t h rough 
i t . 

5. ' T x â n s i a t i o n s . 

DEFINITION 7. In the c a s e s 1) and 2) of c o r o l l a r y 7. 1 
g i s c a l l e d a t r a n s l a t i o n . T h u s a n o n - i d e n t i t y t r a n s l a t i o n is 
c h a r a c t e r i s e d e i t h e r by the a b s e n c e of a fixed point o r by the 
fact tha t s o m e two of (and h e n c e any two of) i t s t r a c e s a r e 
p a r a l l e l . The e q u i v a l e n c e c l a s s of p a r a l l e l s d e t e r m i n e d by the 
t r a c e s i s r e f e r r e d to a s the d i r e c t i o n of g. The ident i ty wi l l 
be sa id to have e v e r y d i r e c t i o n . Two t r a n s l a t i o n s having a c o m ­
m o n d i r e c t i o n wi l l be sa id to be p a r a l l e l . Thus the ident i ty i s 
p a r a l l e l to e v e r y t r a n s l a t i o n . 

T H E O R E M 8. Given any two po in t s C, D t h e r e i s a 
un ique t r a n s l a t i o n t ak ing C to D. 

Proof. If C = D we u s e the identity. Otherwise choose 
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A 4 C + D and find B as in corollary P3 . By corollary P4, 
there is a dilatation h with hA = B, hC = D. Since h has 
two distinct parallel t r aces , (viz. A + B, C + D) h is a 
translat ion. 

Unicity is proved in 

THEOREM 9. A translation t is uniquely determined 
by the image of one point A. 

Proof» If A = tA, t must be the identity. Otherwise the 
image of any B 4 A + tA is determined as the intersection of 
the paral lel to A + tA through B and the paral lel to A + B 
through tA. Then the image of any C € A + tA is determined 
by B and tB. 

COROLLARY. The translat ions form a subgroup of the 
group of dilatations. 

-1 
Proof. Clearly if t is a translation, then so is t y 1 1 

-1 
Moreover if t t A - A, then t A = t A whence t = t 

1 2 2 1 2 1 
"1 . , . . and t t is the identity. 1 2 y 

THEOREM 10. The translat ions having a given direction 
form a normal subgroup of the group of dilatations. 

Proof, a) Let A be any point, and let t and t have 

-1 
a certain direction. Obviously t has the same direction. 

Now, either one of the translat ions t , t , t t is the 
1 2 2 1 

identity, or 
-1 -1 -1 

A l t A | | A + t A || t A + t t A (corollary P2) 
ù A ù ù \ 

-1 -1 -1 

so that [A, t A, t t^A]; i . e . the t t - t r ace of A is 

the same as the t - t r ace , q. e. d. 
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-1 -1 -1 -1 
b) From g A + tg A | | g B + tg B it 

follows that 
-1 -1 

A + gtg A | | B + gtg B (corollaries P2} Pi). 
-1 

Thus gtg is a translation, and since 
-1 -1 -1 

g A + tg. A | | A + gtg A (corollary P2), 
-1 * 

gtg is parallel to t. 

THEOREM 11. The group of translations is Abelian. 

Proof. Let t , t have different directions. By theorem 10, 
1 2 

-1 -1 -1 -1 
t (t^t t ) = (t t t )t is parallel to both t and t so 
1 2 1 2 1 2 1 2 1 2 

-1 -1 
that t t t t^ is the identity i.e. t ,t = t t . 

12 1 2 J 12 2 1 

If t and t are parallel, and t is not parallel to t , 

-1 
then t t is not parallel to t (otherwise t and t (t t ) 

23 r 2 2 2 2 3 
are parallel). By the first paragraph 

Ws = Ws* = Wi = Wi - Wi* = ^VS 
whence t t„ = t t . 

12 2 1 

6. The vector space. Since the group of translations is 
commutative, it may be considered as a unitary left module over 
its ring of endomorphisms. 

(In other words, if a, p are endomorphisms, we write 
the group of translations additively and define a + p, aÇ> by 

(<*"+ P)t = at + pt (o-p)t = a(pt) 
respectively. One sees quickly that a + p, ap are endomorph­
isms; that the endomorphisms form an additive Abelian group, 
(with -a- defined by {-a)t = -at.); that the distributive laws 
#(P + v) = aÇ> + ay, (a -f p)y = ay + Py hold; and that 
1. P = p. 1 = p, where 1 is the identity mapping of the translations 
onto themselves; in short, the endomorphisms form a ring with 
a unit. Finally, by definition, 

a(t + t2) = at + atz l(t) = t 
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so that all the conditions for a left unitary module are fulfilled. ) 

We will be particularly interested in those endomorphisms 
which are direction preserving, i. e. those which take any t r ans ­
lation into a parallel translation. Using theorem 10, one verifies 
easily that these endomorphisms form a sub ring F of the ring 
of endomorphisms. The object of the next few theorems is to 
establish the fact that F is a skew field. The translat ions then 
become a left vector space over the skew field, and, as will be 
seen, this structure can be t ransferred over to the geometry. 

THEOREM 12. Let a € F and let t be a translation 
1 

different from the identity. If at is the identity, then a = 0 
1 

(the 0-endomorphism takes all t ranslat ions into the identity). 

Proof. Let t^ have a different direction than that of t . 
2 1 

-1 
Then t and t t have different directions [otherwise, by 

2 2 1 
- 1 - 1 

theorem 10, t and t are paral lel , since t = (t t ) * ] • 

-1 -1 -1 
But t_t. is parallel to <*(t-t ) = (at).(at) = crt , 

2 1 2 1 2 1 2 

and at is paral lel to t . Thus, there is a contradiction unless 

at is the identity. 
If, now, t has the direction of t , then, as above, 

3 1 
since at is the identity, at is also the identity. 

COROLLARY 12. 1 . Any member of F is uniquely deter­
mined by its effect on one non-identity translation t. 

Proof. If at = pt, then {a - p)t is the identity, so 
a - (3 = 0, i. e. , a = p. 

DEFINITION 8. , !v(g)n denotes the transformation 
-1 

t -* gtg . 
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COROLLARY. v( g) € F . 

Proof. Theorem 10. 

THEOREM 13. Let a € F , a 4 0, and let A be a given 
point. There is a unique dilatation g having A as fixed point 
such that a = y(g). 

Proof. (Existence) Let t be a non-identity translat ion. 
Then otA 4 A ( theorems 9, 12). But A + tA- | | A + atA, 
i. e. [A, tA, at A], so there is a g such that 

gA = A, gtA = [ot]A. 
Then 

[v( g)t]A = gtg" A = gtA = [at]A. 
Hence 
v( g)t = at (theorem 9) and v( g) = a (corollary 12,1). 

(Uniqueness) If hA = A and a = v(h), then 
-1 

[at]A = [y( h)t]A = hth A = htA 
so that g and h have the same effect on A and on tA. By 
corol lary 5. 1, g = h. 

COROLLARY 13. 1 . The direction preserving endomorph-
i s m s a re 0 and v( g) where g runs through the dilatations 
leaving A fixed. 

THEOREM 14. F is a skew field. 

Proof. It has already been pointed out that F is a ring. 
In view, then, of corol lary 13. 1, it is enough to observe that 

g" (gtg" )g = t . / / / 

If A is a given point, then with any point B one can 
associate the t ranslat ion taking A to B. This correspondence 
is 1-1 onto (theorem. 8), and so it enables us to ca r ry the 
left vector space s t ructure from the t ranslat ions over to the 
geometry G. To endow G with such a s tructure has been our 
main objective, and this is now achieved. 

7. "Equivalences. It is now possible to add ( © ) points 
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and to multiply them by scalar s (i. e. direction preserving 
endomorphisms a, p, v, . . . )• 

In fact, ?t is easily checked that C © B = t C, where 
B 

t is the translation taking A to B ; that for a = v( g) [where 
B 

gA = A] aC ~ gC; and that OC = C - C = A (i. e* A is the 
null-vector of our vector space}» 

THEOREM 15(a). For any a £ 0, B, the transformation 
C -+• aC © B is a dilatation» 

Proof. By theorem 13, a = v( g) where gA = A. As in 
the above paragraph, aC © B = t gC. 

B 

THEOREM 15(b). The resulting correspondence is b i -
ject ive; i . e . for any dilatation h there is a unique pair (a, B), 
a £ 0, such that hC = aC © B for all C. 

Proof. (Existence) Let t be a translation such that thA = A, 

and let g = th. As above, hC = t gC = \(g)C © hA. 

[Note that v(g) = v(t) v( h) = v( h). ] 

(Uniqueness) If aC © B = aC © B for all C, then 

(a - a)C © (B - B) = A for all C. 

By theorem 15(a), this cannot happen unless a - a = 0, in which 

case B ~ B = A,* i. e» or = a, B = B. 

COROLLARY. The straight line D + C is the set of 
points { aC © (1 - ct)D | a c F} . 

Proof. Recall the definition of D + C, and note that 
D = * D © B i £ f B = ( l - o)D. / / / 

Theorem 15 suggests a procedure inverse to the one de­
veloped in the first six sections; namely, given any left vector 
space L of more than one dimension over a skew field (with 
vectors V, W, . . • and scalars x, y, . . . ) consider the group 
of transformations V -* xV + W, x 4 0. For this group, 
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axioms 1 and 2 a re readily checked, which means that L. b e ­
comes a geometry. 

As before, the t ranslat ions can be turned into a vector 

space Li. The m e m b e r s of the group V -*• xV + W which have 
no fixed point a re clearly those for which x = 1. There is then 

a natural map from L onto L; namely to each W € L associate 
the t ranslat ion V -* V + W. 

In theorem 13, take A to be the null-vector of L. The 
dilatations leaving A fixed a re then those of the form V -*• xV, 
x 4 0, and so there is a natural map from the field of L to 

the field of L. 

These two mappings set up an isomorphism between L 

and L; that i s , from the geometry on L, we recover the original 
vector space s t ructure of JL. The details are left to the reader . 

Conversely, if we start .with a geometry G, give it a 
vector space s t ruc ture , and then turn the vector space into a 
new geometry, then theorem 15 says that the new geometry is 
in fact the same as G. 

To sum up 

THEOREM 16. The geometric s t ructure given by axioms 
1 and 2 is equivalent to the s t ructure of a left vector space of 
m o r e than one dimension over a skew field. 

The author is indebted to Professor P . Scherk for his en­
couragement and valuable suggestions. 

Summer Research Institute, 
Queen1 s University. 
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