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An Explicit Treatment of Cubic Function
Fields with Applications

E. Landquist, P. Rozenhart, R. Scheidler, J. Webster, and Q. Wu

Abstract. We give an explicit treatment of cubic function fields of characteristic at least five. This

includes an efficient technique for converting such a field into standard form, formulae for the field

discriminant and the genus, simple necessary and sufficient criteria for non-singularity of the defin-

ing curve, and a characterization of all triangular integral bases. Our main result is a description of

the signature of any rational place in a cubic extension that involves only the defining curve and the

order of the base field. All these quantities only require simple polynomial arithmetic as well as a few

square-free polynomial factorizations and, in some cases, square and cube root extraction modulo an

irreducible polynomial. We also illustrate why and how signature computation plays an important role

in computing the class number of the function field. This in turn has applications to the study of zeros

of zeta functions of function fields.

1 Introduction

The study of algebraic function fields occupies the intersection between algebraic

geometry, complex analysis, algebraic number theory, and arithmetic geometry. Al-

gebraic geometry studies the underlying curves of algebraic function fields. The con-

nection to complex analysis is through meromorphic functions on compact Riemann

surfaces, which form a function field over the complex numbers. The algebraic ap-

proach to function fields via the study of algebraic functions dates back to the 1800’s

and produced major results in the first half of the twentieth century through the work

of Artin, Schmidt, Weil, and others; in the interest of space, we forego citing individ-

ual references. Arithmetic geometry focuses on the number theory of function fields;

this is the context of this paper.

More recently, algebraic curves and function fields have begun to undergo investi-

gation from a more algorithmic perspective. While algorithmic questions in function

fields are of interest in their own right, they have additional significance due to their

applications to cryptography (particularly elliptic and hyperelliptic curves) and cod-

ing theory, e.g., Goppa codes. For example, efficient arithmetic for divisors on a curve

is the subject of intense study, since it is a necessary ingredient for implementing

curve-based public key cryptography, computing the class number, solving the dis-
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crete logarithm problem in the Jacobian, and other problems. Generally, these types

of algorithms require prior knowledge of such quantities as the genus, the discrim-

inant, an integral basis (describing the coordinate ring as a module over the ring of

polynomials), the set of singular points, or signatures of certain places of the rational

function field in the extension field.

Generic methods for finding some of these quantities certainly exist. For exam-

ple, the well-known Hurwitz formula can be used to find the genus, provided the

signatures of all the ramified primes are known; for the finite primes, this amounts

to knowing the field discriminant. Kummer’s theorem provides signatures, but does

not give conclusive answers for primes corresponding to singular points. Accord-

ing to [5], an integral basis can be computed in polynomial time, and the Round 2

algorithm and its variants [3, 18] will produce such a basis. However, actual imple-

mentations of this method are not very efficient for large fields.

Ideally, one should be able to deduce all these quantities simply and directly from

a defining curve and the order of the base field, without any advanced computations.

This is certainly the case for elliptic and hyperelliptic curves, i.e., quadratic function

fields, but is too much to ask in general. Partial answers in this regard were given

for purely cubic function fields in [20, 23], general cubic extensions in [21], and bi-

quadratic function fields in [36].

This paper continues the work of [21] and provides an explicit treatment of cubic

function fields of characteristic at least 5. We provide a fast technique for convert-

ing the minimal polynomial of such a field to standard form, formulae for the field

discriminant and the genus, a simple characterization for non-singularity of the un-

derlying curve, and an efficient algorithm for finding all triangular integral bases of

the extension. The only algorithmic ingredient beyond simple arithmetic that is re-

quired for any of these results is the square-free factorization of a few polynomials.

Our main contribution is a simple description of the signature of any rational place in

the function field extension, thereby extending the work done for the place at infinity

in [21]. For the finite places, our signature result is new. As desired, the signature

can easily be obtained just from the defining curve and the order of the base field;

in certain cases, it may be necessary to perform square or cube root computations

modulo a prime polynomial.

One of the main applications of this work is the class number algorithm for cubic

function fields given in [24], which has since been extended to arbitrary function

fields [22]. This algorithm requires the computation of the signature of a very large

number of places, so a method for doing this efficiently is of key importance. We give

a brief overview of this class number algorithm, how signature generation fits into its

context, and how it relates to heuristics on zeros of zeta functions.

We begin with a general overview of algebraic function fields in Section 2 and

their signatures in Section 3. The standard form of a cubic function field is explained

in Section 4. Section 5 provides a formula for the discriminant and a simple char-

acterization of non-singularity, and Section 6 gives a straightforward description of

all triangular integral bases. An easy method for determining the signature of every

rational place is presented in Sections 7 and 8. The applications to class numbers and

zeros of zeta functions referred to above are illustrated in Sections 9 and 10, respec-

tively. We conclude with a survey of open problems in Section 11.
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2 Overview of Algebraic Function Fields

For a general introduction to algebraic function fields, we refer the reader to [8, 19,

30]. Much of the material on cubic function fields is taken from [21]. Let Fq be a

finite field, set F
∗
q = Fq \ {0}, and let Fq be some algebraic closure of Fq. Denote by

Fq[x] and Fq(x) the ring of polynomials and the field of rational functions in x over

Fq, respectively. For any non-zero G ∈ Fq[x], we denote by deg(G) the degree, and

by sgn(G) the leading coefficient of G.

A(n) (algebraic) function field is a finite extension K of Fq(x); its degree is the field

extension degree n = [K : Fq(x)]. It is always possible to write a function field as

K = Fq(x, y) where F(x, y) = 0 and F(Y ) is a monic polynomial of degree n with

coefficients in Fq[x] that is irreducible over Fq(x). Note that we do not require the

curve F(x, y) = 0 to be nonsingular1, i.e., there may exist points on the curve such

that the partial derivatives of F with respect to x and Y vanish at those points. We

will always assume that gcd(q, n) = 1, so that K/Fq(x) is separable, i.e., F(Y ) has no

multiple roots. Furthermore, we assume that Fq is the full constant field of K, i.e., Fq

is algebraically closed in K.

The powers yi , 0 ≤ i ≤ n − 1, form an Fq(x)-basis of the Fq(x)-vector space K.

An Fq(x)-basis {α0, α1, . . . , αn−1} is triangular if αi is an Fq(x)-linear combination

of 1, y, . . . , yi for 0 ≤ i ≤ n − 1. The n conjugate mappings map y to the n (distinct)

roots y = y(0), y(1), . . . , y(n−1) of F(Y ). Extending these mappings Fq(x)-linearly to

K now defines for every α ∈ K its n conjugates α = α(0), α(1), . . . , α(n−1).

The discriminant of n elements α0, α1, . . . αn−1 ∈ K is

disc(α0, α1, . . . , αn−1) = det(α
( j)
i )2

0≤i, j≤n−1 ∈ Fq(x).

If αi = αi for some non-zero α ∈ K and 0 ≤ i ≤ n − 1, then disc(α) =

disc(1, α, . . . , αn−1) is simply called the discriminant of α, and

disc(α) =
∏

i< j

(α(i) − α( j))2.

We have disc(y) = disc(F), the discriminant of F as a polynomial in Y .

The maximal order or coordinate ring OK of K/Fq(x) is the integral closure of Fq[x]

in K. It is a free Fq[x]-module of rank n, and an Fq[x]-basis of OK is an integral basis

of K/Fq(x). There always exists a triangular integral basis, and since 1 ∈ OK , one of

the triangular basis elements must be a constant in F
∗
q . The discriminant2 of K/Fq(x)

is disc(K) = disc(α0, α1, . . . , αn−1) where {α0, α1, . . . , αn−1} is any integral basis

of K/Fq(x). The polynomial disc(K) ∈ Fq[x] is independent of the basis chosen and

unique up to square factors in F
∗
q . For every non-zero element α ∈ K, the index

of α, denoted by ind(α) and unique up to square factors, is the rational function in

Fq(x) satisfying disc(α) = ind(α)2 disc(K). If α ∈ OK , then ind(α) ∈ Fq[x], so

disc(α) ∈ Fq[x].

1Throughout the paper, singularity will always refer to the affine part of a curve, i.e., the curve may be
singular at infinity.

2By abuse of language, we speak of the discriminant of OK and the index of an element in OK , keeping
in mind that these notions are only unique up to a square factor in F

∗

q . They can be made unique by

requiring the index to be monic.

https://doi.org/10.4153/CJM-2010-032-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-032-0


790 E. Landquist, P. Rozenhart, R. Scheidler, J. Webster, and Q. Wu

It is obvious that ind(y) ∈ F
∗
q , i.e., disc(y) = disc(K) up to constant square

factors, if and only if the powers yi , 0 ≤ i ≤ n− 1, form an integral basis of K/Fq(x),

i.e., if and only if OK = Fq[x][y] = Fq[x,Y ]/(F(Y )) where (F(Y )) is the principal

ideal generated by F(Y ) in Fq[x,Y ]. By [17, Corollary 9.10], this is the case if and

only if the curve F(x, y) = 0 is non-singular3.

A common inessential discriminant divisor of K/Fq(x) is a monic irreducible poly-

nomial of Fq(x) that divides ind(α) for every non-zero α ∈ OK . If F(x, y) = 0 is

non-singular, then K/Fq(x) obviously has no such divisors. In an algebraic number

field of degree n over the rationals, every common inessential discriminant divisor

(that is, every prime dividing every index) must be strictly less than n [32]. The

function field analogue states that for every common inessential discriminant divi-

sor P of K/Fq(x), |P| = qdeg(P) < n, so deg(P) < logq(n). It follows that function

field extensions of degree n ≤ q over Fq(x) have no common inessential discriminant

divisors.

3 Signature and Genus of an Algebraic Function Field

The places of Fq(x) consist of the finite places, identified with the monic irreducible

polynomials in Fq[x], and the place at infinity P∞, identified with the rational func-

tion 1/x. If P is any place of Fq(x), let vP denote its associated discrete valuation on

Fq(x) and OP = {G ∈ Fq(x) | vP(G) ≥ 0} the discrete valuation ring of P. In partic-

ular, for any non-zero polynomial G ∈ Fq[x], vP(G) is the exact power of P dividing

G if P is a finite place, and vP∞
(G) = − deg(G).

For any place P of Fq(x), the degree deg(P) is the degree of the polynomial P if

P is finite, and deg(P∞) is set to be 1. The completion of Fq(x) with respect to any

place P is the field of Laurent series Fqd〈P〉 in P over Fqd , where d = deg(P). Non-zero

elements in this field have the form
∑

i≥m aiP
i where m ∈ Z, ai ∈ Fqd for i ≥ m,

and am 6= 0. The valuation vP on Fq(x) extends uniquely to Fqd〈P〉 via vP(α) = m.

For P = P∞, we have Fqd〈P〉 = Fq〈x−1〉, and we write deg(α) = −vP∞
(α) for

α ∈ Fq〈x−1〉.
The places of K consist of the finite places, i.e., the non-zero prime ideals in OK ,

and the infinite places, i.e., the non-zero prime ideals in the integral closure of OP∞

in K. Fix any place p of K and let vp be its associated discrete valuation on K. Then

Op = {α ∈ K | vp(α) ≥ 0} is the discrete valuation ring of p. There exists a

unique place P of Fq(x) with vp(P) > 0; we say that p lies above P and write p | P.

The positive integer e(p|P) = vp(P) is the ramification index of p. The place P is

said to be ramified if e(p|P) > 1 for some p | P and unramified otherwise. It is well

known that a finite place P of Fq(x) is ramified if and only if P | disc(K). If P is finite

and (P) is the principal ideal generated by P in OP, then the field extension degree

f (p|P) = [Op/p :OP/(P)] is the residue degree of p. The residue degree of the infinite

place P∞ is f (p|P∞) = [Op/p : Fq].

A ramified place P of Fq(x) is tamely ramified if gcd(e(p|P), q) = 1 for all places

p of K lying above P. Henceforth, we assume that K/Fq(x) is a tamely ramified ex-

3In [17], this corollary is stated over an algebraically closed base field. However, an analogous result
holds when the base field is not algebraically closed, as is the case here.
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tension, i.e., all places of Fq(x) are tamely ramified in K. If the characteristic of Fq

exceeds the extension degree n = [K : Fq(x)], then K/Fq(x) is tamely ramified.

Every place P of Fq(x) has a unique factorization (P) =
∏

p|P p
e(p|P) into the places

of K lying above P; here
∑

p|P e(p|P) f (p|P) = n. The tuple of pairs (e(p|P), f (p|P))

with p|P, usually sorted in lexicographical order, is the P-signature of K/Fq(x). In

most, but not all cases, it is possible to completely determine the P-signature from

the prime factorization of the minimal polynomial F(Y ) of K/Fq(x) in OP/(P) as

described in [30, Theorem III.3.7]. Alternatively, it may be possible to find the P-sig-

nature of K/Fq(x) by considering the roots of F(Y ).

Theorem 3.1 Let K = Fq(x, y) be an algebraic function field, where F(x, y) = 0

and F(Y ) ∈ Fq[x][Y ] is a monic polynomial that is irreducible over Fq(x). Let P be

any place of Fq(x), p1, p2, . . . , pr the places of K lying above P, and write ei = e(pi |P),

fi = f (pi |P), and ni = ei fi for 1 ≤ i ≤ r. Then there exists an enumeration of the

roots y(0), y(1), . . . , y(n−1) of F(Y ) as

(y(0), y(1), . . . , y(n−1)) = (y1,1, . . . , y1,n1
, y2,1, . . . , y2,n2

, . . . , yr,1, . . . , yr,nr
)

so that yi, j lies in an extension E of Fq〈P〉 of degree ei , but in no proper subfield of E, for

1 ≤ j ≤ ni and 1 ≤ i ≤ r. If ei = 1 for some i ∈ {1, 2, . . . , r}, then yi, j ∈ F〈P〉 for

1 ≤ j ≤ ni , where F is an extension of degree at most fi of Fqdeg(P) .

Finally, set

(3.1) ǫP(K) =

∑

p|P

(e(p|P) − 1) f (p|P) = n −
∑

p|P

f (p|P)

for any place P of Fq(x). Note that ǫP(K) ≤ n − 1. We have vP(disc(K)) = ǫP(K) for

all finite places P of Fq(x). By the Hurwitz genus formula (see [30, Theorem II.4.12]),

the genus of K is

(3.2) g =
1

2

∑

P

deg(P)ǫP(K) − n + 1 =
1

2
(deg(disc(K)) + ǫP∞

(K)) − n + 1,

where the sum in (3.2) runs over all places of Fq(x).

4 Standard Form of a Cubic Function Field

A cubic function field is a separable algebraic function field K = Fq(x, y) of degree

3 over Fq(x), where for our purposes, we assume that the characteristic of Fq is at

least 5. Note that K/Fq(x) is tamely ramified. By applying a suitable translation by

a polynomial in Fq[x] to y, it is always possible to write a cubic function field as

K = Fq(x, y), where F(x, y) = 0 and F(Y ) = Y 3 − AY + B ∈ Fq[x][Y ] is irreducible

over Fq(x). Note that this transformation maps singular points to singular points,

leaving their multiplicities unchanged. Moreover, it preserves ind(y) as well as the

P-signature in K/Fq(x) of every place P of Fq(x).
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Since Fq is assumed to be the full constant field of K, at least one of A, B is non-

constant. A cubic function field is said to be purely cubic if it is a radical extension,

that is, it can be written as K = Fq(x, y) with y3 ∈ Fq[x]\Fq (this corresponds to the

case A = 0). The discriminant of F is

(4.1) D = 4A3 − 27B2
= I2

∆ with I = ind(y) and ∆ = disc(K).

Furthermore, we may assume that F is in standard form, i.e., there is no non-constant

polynomial Q ∈ Fq[x] with Q2 |A and Q3 |B. Note that conversion to standard form

eliminates some, but not necessarily all, singular points from the curve F(x, y) = 0.

The following algorithm is the cubic analogue to [36, Algorithm 3.1] and efficiently

converts a cubic function field to an Fq(x)-isomorphic one in standard form. Here,

we recall that the square-free factorization of a polynomial G ∈ Fq[x] is the unique

factorization of G of the form G = sgn(G)
∏

i Gi
i , where all the Gi ∈ Fq[x] are monic,

square-free, and pairwise coprime. The square-free factorization of G can be found

using at worst O(deg(G)2 max{deg(G), log(q)}) operations in Fq (see [6, Algorithm

3.4.2]); this asymptotic complexity can be considerably improved in many cases.

Algorithm 4.1 (Standard Form)

Input A, B ∈ Fq[x] where F(Y ) = Y 3 − AY + B is irreducible over Fq(x).

Output A0, B0 ∈ Fq[x] so that the polynomial F0(Y ) = Y 3 − A0Y + B0 is in standard

form and the two cubic function fields defined by F(Y ) and F0(Y ) are Fq(x)-isomor-

phic.

Algorithm

(i) Compute the square-free factorizations of A and B, say A = sgn(A)
∏

i Ai
i , B =

sgn(B)
∏

j B
j
j .

(ii) Compute G =
∏

i A
⌊i/2⌋
i and H =

∏

j B
⌊ j/3⌋
j . Set Q = gcd(G, H), A0 = A/Q2,

B0 = B/Q3. Output A0, B0.

For the remainder of this paper, we assume that K = Fq(x, y) is a cubic function

field given by an irreducible equation

(4.2) F(y) = y3 − Ay + B = 0 (A, B ∈ Fq[x])

in standard form.

5 Field Discriminant and Non-Singularity

We begin by computing the field discriminant ∆ = disc(K) from the polynomial

discriminant D = disc(y). According to [21, Lemma 2.3], we have the following.

Lemma 5.1 Let K = Fq(x, y) be a cubic function field in standard form given by (4.2).

Let ∆ = disc(K) and D be given by (4.1). Then for any finite place P of Fq(x),

(i) vP(∆) = 2 if and only if vP(A) ≥ vP(B) ≥ 1;

(ii) vP(∆) = 1 if and only if vP(D) is odd;
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(iii) vP(∆) = 0 otherwise, i.e., if and only if vP(D) is even and4 vP(A)vP(B) = 0.

Note that the characterization of the “otherwise” case is correct, since it requires

vP(D) even and vP(B) = 0 or vP(A) < vP(B). But 1 = vP(A) < vP(B) implies vP(D)

odd and 2 ≤ vP(A) < vP(B) violates our standard form assumption. So vP(D) is even

and vP(A) < vP(B) forces vP(A) = 0.

Corollary 5.2 Let K = Fq(x, y) be a cubic function field in standard form given by

(4.2). Let ∆ = disc(K) and D be given by (4.1). If D = sgn(D)
∏

i Di
i is the square-free

factorization of D, then up to square factors in F
∗
q

∆ = sgn(D)G · gcd(D2D4, B)2 with G =
∏

i odd

Di .

Proof We have vP(∆) ≤ 2 for all finite places P of Fq(x). So let ∆ = sgn(∆)∆1∆
2
2

be the square-free factorization of ∆. By normalizing so that ind(y) is monic, we see

that sgn(∆) = sgn(D). We need to show that ∆1 = G and ∆2 = gcd(D2D4, B). To

that end, let P be any finite place of K. Then P |∆1 if and only if vP(∆) = 1, which

by Lemma 5.1 holds if and only if vP(D) is odd. This in turn is the case if and only

if there exists an odd index i ∈ N with P |Di , and since all Di are square-free and

pairwise coprime, this holds if and only if vP(G) = 1.

We next observe that gcd(D2D4, B) is square-free and coprime to G, since all the

Di are square-free and pairwise coprime. Hence vP(G · gcd(D2D4, B)2) ≤ 2 for all

finite places P of Fq(x). So by Lemma 5.1, it suffices to show that a finite place P

divides gcd(D2D4, B) if and only if vP(A) ≥ vP(B) ≥ 1.

Suppose first that P | gcd(D2D4, B). Then vP(D) = 2 or 4. Also, since P |D and

P |B, we see that P |A. If vP(D) = 2, then the strict triangle inequality for degrees

applied to (4.1) implies vP(B) = 1, and if vP(D) = 4, then similar reasoning forces

vP(B) = 2 and vP(A) ≥ 2. In either case vP(A) ≥ vP(B) ≥ 1. Conversely, suppose

that vP(A) ≥ vP(B) ≥ 1. Then vP(D) = 2vP(B). By our standard form assumption

vP(B) = 1 or 2. If vP(B) = 1, then vP(D) = 2, so P |D2, and if vP(B) = 2, then P |D4.

In either case, P | gcd(D2D4, B). This concludes the proof.

We can now characterize non-singularity of (4.2) as follows (this is a corrected ver-

sion of [21, Corollary 2.2]). We denote by D ′ and D ′ ′ the first and second derivative

of D with respect to x, respectively.

Lemma 5.3 Let K = Fq(x, y) be a cubic function field in standard form given by (4.2)

and D given by (4.1). Set H = gcd(D, D ′). Then the curve F(x, y) = 0 is non-singular

if and only if any one of the following equivalent properties holds:

(i) gcd(H, D ′ ′) = 1 and H |B;

(ii) gcd(H, D ′ ′) = 1 and H = gcd(D, B);

(iii) the square-free factorization of D is D = sgn(D)D1D2
2 and D2 |B.

Proof We first show that the above three properties are equivalent. We have

gcd(H, D ′ ′) = 1 if and only if D has no cube factors, which holds if and only if

4[21, Lemma 2.3] incorrectly stated vP(A) = vP(B) = 0 here.
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the square-free factorization of D is D = sgn(D)D1D2
2. In this case, H = D2, so parts

(i) and (iii) above are equivalent. To prove that (i) and (ii) are equivalent, suppose

that D = sgn(D)D1D2
2 is cube-free and set G = gcd(D, B). Then G |A and hence

G2 |D, implying G |D2 = H. Now H |B if and only if H | gcd(D, B) = G, which in

turn holds if and only if H = G.

Next, we prove that non-singularity is equivalent to property (iii) above. We

recall that the curve (4.2) is non-singular if and only if D = ∆ up to square fac-

tors in F
∗
q . If this holds, then since ∆ is cube-free, the square-free factorization of

D is D = sgn(D) D1D2
2. In addition, Corollary 5.2 implies D2 = gcd(D2, B), so

D2 |B. Conversely, if D = sgn(D)D1D2
2 with D2 |B, then by Corollary 5.2, ∆ =

sgn(D)D1 · gcd(D2, B)2
= sgn(D)D1D2

2 = D.

6 Triangular Integral Bases and Some Index Computations

For cubic number fields, the computation of the field discriminant and integral bases

goes back to [1]. Here, we characterize all triangular integral bases of a cubic function

field extension K/Fq(x) given in standard form (4.2) with D, ∆, and I given by (4.1).

The index I can be determined from (4.1) using Corollary 5.2. Once I and ∆ are

known, it is possible to efficiently compute any triangular integral basis of K/Fq(x).

All triangular integral bases of K/Fq(x) are essentially determined by a solution

T ∈ Fq[x] of the higher order congruence pair

(6.1)
3T2 − A ≡ 0 (mod I),

T3 − AT + B ≡ 0 (mod I2).

The key idea will be to reduce (6.1) to an equivalent pair of linear congruences,

namely (6.2) below, so that the problem of finding all integral triangular bases re-

duces to a simple application of the Chinese Remainder Theorem.

Lemma 6.1 Let K = Fq(x, y) be a cubic function field in standard form given by (4.2).

Let ∆ = disc(K), D and I as specified in (4.1), and P any finite place of Fq(x). If

P | gcd(I, A), then vP(B) ≥ 2 and vP(I) = 1 ≤ vP(∆), so vP(D) = 3 or 4.

Proof Assume P | gcd(I, A). Then P |D, so P |B. Assume by way of contradiction

that vP(B) = 1. Then vP(D) = 2vP(B) = 2. Now P |A implies vP(A) ≥ vP(B) = 1,

so Lemma 5.1 yields vP(∆) = 2. But then 2 = vP(D) = 2vP(I) + vP(∆) ≥ 4, a

contradiction. So vP(B) ≥ 2.

If vP(A) = 1, then vP(D) = 3, so vP(I) = vP(∆) = 1. If vP(A) ≥ 2, then the

standard form assumption forces vP(B) = 2, so vP(A) ≥ vP(B) ≥ 1. By Lemma 5.1,

vP(∆) = 2. Also, vP(D) = 2vP(B) = 4, so vP(I) = 1.

Corollary 6.2 Let K = Fq(x, y) be a cubic function field in standard form given

by (4.2), with D and I given by (4.1). Set G = gcd(I, A). Then the following hold:

(i) G is square-free;

(ii) G3 |D;

(iii) I/G is coprime to A, and hence to G.
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Proof Let P be any finite place of Fq(x). If P |G, then 1 ≤ vP(G) ≤ vP(I) = 1, where

the last equality follows from Lemma 6.1. Hence vP(G) = 1, so G is square-free. By

the same lemma, vP(D) ≥ 3, so since G is square-free, G3 |D.

By way of contradiction, suppose that P divides both I/G and A. Then P | I and

P |A, hence P |G. As in the previous paragraph, we infer that vP(G) = 1. But this

contradicts P | I/G. It follows that I/G is coprime to A. Since G divides A, I/G must

also be coprime to G.

Part (iii) of the above corollary implies that there exists T ∈ Fq[x] such that

(6.2) T ≡
{

3B/2A (mod I/ gcd(I, A)),

0 (mod gcd(I, A)),

and T is unique modulo I. We will see that any solution to (6.2) is in fact a solution

of (6.1) and vice versa.

Lemma 6.3 Let T ∈ Fq[x]. Then T satisfies (6.2) if and only if T satisfies (6.1).

Proof For brevity, we again set G = gcd(I, A). Suppose T satisfies (6.2). By part (iii)

of Corollary 6.2, it suffices to prove the first congruence of (6.1) modulo both G and

I/G, and the second congruence of (6.1) modulo both G2 and (I/G)2.

Clearly, the second congruence of (6.2) implies 3T2 − A ≡ 0 (mod G). Part (ii)

of Corollary 6.2 implies G3 |B2, so G2 |B by part (i) of the same corollary. Thus,

T3 − AT + B ≡ 0 (mod G2).

Now 2AT ≡ 3B (mod I/G) implies (2A)2(3T2 − A) ≡ −D ≡ 0 (mod I/G).

Writing 2AT = 3B + U I/G for suitable U ∈ Fq[x], it is also easy to verify that

(2A)3(T3 − AT + B) ≡ −D(B + U I/G) ≡ 0 (mod I2/G2). The desired result now

follows from part (iii) of Corollary 6.2.

Conversely, suppose T satisfies (6.1). Then the first congruence of (6.1) implies

3T2 ≡ 0 (mod G). Since G is square-free by part (i) of Corollary 6.2, we see that

T ≡ 0 (mod G). Furthermore, 3B ≡ T(3A − 3T2) ≡ 2TA (mod I). Again invoking

part (iii) of Corollary 6.2, we obtain T ≡ 3B/2A (mod I/G).

Theorem 6.4 Let K = Fq(x, y) be a cubic function field in standard form given

by (4.2), with I given by (4.1). Then a triangular basis of K/Fq(x) is an integral ba-

sis if and only if up to order and constant factors of basis elements, it is of the form

{1, α, β} where α = y + U , β = (y2 + Ty + V )/I} with T,U ,V ∈ Fq[x], T is a

solution of (6.2), and V ≡ −2T2 ≡ −2A/3 (mod I).

Proof By Lemma 6.3, we may replace (6.2) in the statement of the theorem by (6.1).

By [21, Corollary 3.2], the set {1, ρ, ω}, with ρ = α−(U +T) and ω = β +(T2−A−
V )/I, is an integral basis of K/Fq(x). Since V ≡ T2 − A (mod I) by (6.1), {1, α, β}
is also an integral basis of K/Fq(x), and every integral basis has the desired form.

We point out that if T is given as in (6.1), or equivalently, (6.2), then the factor-

ization of F(Y ) modulo I is easily seen to be F(Y ) ≡ (Y − T)2(Y + 2T) (mod I).

We conclude this section with a note on common inessential discriminant divi-

sors. In a cubic number field, the only possible common inessential discriminant
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divisor is the prime 2 (see [7, p. 120], and there exist fields where this occurs. The

first such example was given by Dedekind and is the cubic number field with mini-

mal polynomial F(Y ) = Y 3 − Y 2 − 2Y − 8. Furthermore, there exist cubic number

fields that have no common inessential discriminant divisors, but still do not have an

integral basis of the form {1, y, y2}; for details, see [8, pp. 457–462]. We also refer

to the treatment of index divisors of cubic number fields in [31]; interestingly, the

author normalizes the minimal polynomial of the cubic extension so that the Y term,

rather than the Y 2 term, vanishes.

We saw earlier that by the function field analogue of [32], a cubic function field

of characteristic at least 5 cannot have common inessential discriminant divisors.

However, this result can also be proved in an elementary way by computing some

simple indices ind(α) for certain α ∈ OK as follows.

Lemma 6.5 Let T be defined as in (6.1), and write 3T2−A = EI, T3−AT +B = CI2

with E,C ∈ Fq[x]. Let α, β be given as in Theorem 6.4, and for any S ∈ Fq[x], set

βS = β + Sα. Then ind(α) = I and ind(βS) = CS, where CS = C + S(E + 3TS + IS2).

Furthermore, gcd(I, C0, C1, C2) = 1.

Proof Let y(0)
= y, y(1), y(2) denote the roots of F(Y ), where F(Y ) is given by (4.2).

Since α(i) − α( j)
= y(i) − y( j) for 0 ≤ i, j ≤ 2, we see that disc(α) = disc(y), so

ind(α) = ind(y) = I. Now note that

β(i)
S − β

( j)
S =

1

I
(y(i) − y( j))(y(i) + y( j) + T + IS) =

1

I
(y(i) − y( j))(T + IS − y(k))

for {i, j, k} = {0, 1, 2}, and

(T + IS − y(i))(T + IS − y( j))(T + IS − y(k)) = F(T + IS).

So

disc(β) =
(

(β(0) − β(1))(β(1) − β(2))(β(2) − β(0))
) 2

=
F(T + IS)2 disc(y)

I6
=

( F(T + IS)

I2

) 2

∆,

yielding ind(βS) = F(T + IS)/I2. By Taylor expansion,

F(T + IS) = F(T) + F ′(T)IS +
F ′ ′(T)

2
(IS)2 +

F ′ ′ ′(T)

6
(IS)3

= CI2 + EI2S + 3TI2S2 + I3S3,

implying that ind(βS) = C + S(E + 3TS + IS2) = CS.

To prove that gcd(I, C0, C1, C2) = 1, let Q be any divisor of I,C0,C1,C2. Then

Q divides both C1 − C0 − I = E + 3T and (C2 − C0)/2 − 4I = E + 6T. It follows

that Q |T and Q | E. Then Q2 | 3T3 − EI = A and Q3 |CI2 − T3 + AT = B. By our

standard form assumption Q ∈ F
∗
q , proving our claim.

Corollary 6.6 A cubic function field of characteristic at least 5 has no common inessen-

tial discriminant divisors.
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7 Signatures of Cubic Function Fields: Preliminaries

Before we can compute P-signatures, we require a simple lemma, which is a general-

ization of [21, Lemma 4.1] (with a minor error corrected).

Lemma 7.1 Let P be any place of Fq(x) of degree d, p a rational prime not dividing q,

and α =
∑

i≥m aiP
i ∈ Fqd〈P〉 with am 6= 0. Then the following hold.

• α has a p-th root in Fqd〈P〉 if p |m and am has a p-th root in Fqd .
• α has a p-th root in Fqd (b)〈P〉 \ Fqd〈P〉, where b ∈ Fq \ Fqd is any p-th root of am, if

p |m and am does not have any p-th roots in Fqd .
• All the p-th roots of α lie in a degree p extension of Fq〈P〉, but not in Fq〈P〉 itself, if

p ∤ m.

Proof Let β =
∑

i≥n biP
i ∈ Fq〈P〉 with bn 6= 0. Then β p

=
∑

i≥pn ciP
i where

cpn = b
p
n and for i ∈ N, cpn+i = pb

p−1
n bn+i + gi , with gi a homogeneous polynomial of

degree p in bn, bn+1, . . . , bn+i−1 with coefficients in Fq. In particular, if β p ∈ Fqd〈P〉,
i.e., ci ∈ Fqd for i ≥ pn, then inductively bi ∈ Fqd (bn) for i ≥ n.

Now let α =
∑

i≥m aiP
i ∈ Fqd〈P〉 with am 6= 0, and write m = pn + r with 0 ≤

r < p. Then γ = a−1
m αP−r

=
∑

i≥pn ciP
i ∈ Fqd〈P〉 with cpn = 1 and ci = a−1

m ar+i

for i > pn. Recursively define bn = 1 and bn+i = (cpn+i − gi)/p for i ∈ N, where gi

is the polynomial in bn, bn+1, . . . , bn+i−1 described above. If we set β =
∑

i≥n biP
i ,

then β ∈ Fqd〈P〉 and β p
= γ.

If p |m, then r = 0, so α = amγ = amβ p. Thus, α has a p-th root in Fqd〈P〉 if am

is a p-th power in Fqd〈P〉; otherwise, α has a p-th root in F〈P〉 \ Fqd〈P〉 where F is an

extension of Fqd obtained by adjoining a p-th root of am to Fqd .

Assume now that p ∤ m. Then any p-th root of α lies in a field of the form

L = Fq〈P〉(π) with πp
= Pr, but not in Fq〈P〉. Since π /∈ Fq〈P〉 and p is coprime to r,

L is a degree p extension of Fq〈P〉, and α has no p-th root in Fq〈P〉.
We will also require Cardano’s well-known formulae for the roots of a cubic equa-

tion:

Lemma 7.2 (Cardano’s formulae) Let F be any field of characteristic not equal to 2

or 3, and let A, B ∈ F. Then the roots t0, t1, t2 of the equation t3 − At + B = 0 are given

by

(7.1) ti =
1

3
(uiδ+ + u−iδ−) (i = 0, 1, 2),

where u is a primitive cube root of unity in some extension of F,

δ+ =
3

√

−3

2
(9B +

√
−3D), δ− =

3

√

−3

2
(9B −

√
−3D),

with D = 4A3 − 27B3, and where the cube roots are taken so that δ+δ− = 3A. We also

have

(7.2) δ+ = t0 + u2t1 + ut2, δ− = t0 + ut1 + u2t2.
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Note that the choice of cube roots so that δ+δ− = 3A leaves three choices for

the cube root of δ+, but different choices for this cube root only lead to a different

ordering of the roots t0, t1, t2.

For any place P of Fq(x), the possible P-signatures of a cubic extension K/Fq(x)

are (1, 1; 1, 1; 1, 1), (1, 1; 1, 2), (1, 1; 2, 1), (1, 3), and (3, 1). We can characterize these

five signatures using the polynomial discriminant and the Lagrange resolvent.

Lemma 7.3 Let K = Fq(x, y) be a cubic function field in standard form given by

(4.2), D given by (4.1), u a primitive cube root of unity, δ+ as given in Lemma 7.2, and

P any place of K/Fq(x) of degree d. Then the following hold.

• If P is unramified in K, then δ+ ∈ Fq〈P〉. In this case, if K/Fq(x) has P-signature

◦ (1, 1; 1, 1; 1, 1), then D is a square in Fqd〈P〉 and δ+ ∈ Fqd (u)〈P〉;
◦ (1, 1; 1, 2), then D is not a square in Fqd〈P〉;
◦ (1, 3), then D is a square in Fqd〈P〉 and [Fqd (u)〈P〉(δ+) : Fqd (u)〈P〉] = 3.

• If P is ramified, then δ+ /∈ Fq〈P〉. In this case, if K/Fq(x) has P-signature

◦ (1, 1; 2, 1), then D is not a square in Fq〈P〉;
◦ (3, 1), then D is a square in Fq〈P〉 and [Fq〈P〉(δ+) : Fq〈P〉] = 3.

Proof Let y(0), y(1), y(2) denote the three roots of (4.2). By Theorem 3.1, P is unram-

ified if and only if y(0), y(1), y(2) ∈ Fq〈P〉, which holds if and only if δ+ ∈ Fq〈P〉 by

(7.1) and (7.2).

Suppose first that P is unramified, and set L = Fqd〈P〉, N = L(y(0), y(1), y(2)) for

brevity. Then N ⊂ Fq〈P〉 and [N :L] ≤ 3 by Theorem 3.1. Note also that

(7.3)
√

D = ±(y(0) − y(1))(y(1) − y(2))(y(2) − y(0)).

If K/Fq(x) has P-signature (1, 1; 1, 1; 1, 1), then y(0), y(1), y(2) ∈ L by Theorem 3.1,

so
√

D ∈ L by (7.3). By (7.2), δ+ ∈ L(u).

If K/Fq(x) has P-signature (1, 1; 1, 2), then [N :L] = 2, and one of the roots,

say y(0), belongs to L by Theorem 3.1. Then N/L is a Galois extension with minimal

polynomial G(Y ) = (Y−y(1))(Y−y(2)) ∈ L[Y ]; in particular, G(y(0)) ∈ L. Now since

y(1) + y(2)
= −y(0) ∈ L, we cannot have y(1) − y(2) ∈ L, as otherwise y(1), y(2) ∈ L,

contradicting [N :L] = 2. It follows that
√

D = (y(1) − y(2))G(y(0)) /∈ L.

If K/Fq(x) has P-signature (1, 3), then [N :L] = 3 by Theorem 3.1. Furthermore,

N/L is a Galois extension with minimal polynomial F(Y ). Thus, its discriminant, and

hence also D, must be a square in L. It follows that δ3
+ ∈ L(u). If we had δ+ ∈ L(u),

then N ⊆ L(u) by (7.1), so 3 = [N :L] ≤ [L(u) :L] ≤ 2, a contradiction. Thus,

[L(u)(δ+) :L(u)] = 3.

Now suppose that P is ramified, and set L = Fq〈P〉 and N = L(y(0), y(1), y(2)).

The proof for the case of P-signature (1, 1; 2, 1) applies verbatim to the scenario of

P-signature (1, 1; 1, 2). If K/Fq(x) has P-signature (3, 1), then [N :L] = 3 by The-

orem 3.1. In fact, since N/L is tamely ramified, it is a cyclic Galois extension with

minimal polynomial F(Y ). So
√

D ∈ L. Then δ3
+ ∈ L, and since δ+ /∈ L, we have

[L(δ+) :L] = 3.

Corollary 7.4 Let K, D, u, and δ+ be as in Lemma 7.3. Then K/Fq(x) has P∞-sig-

nature
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• (1, 1; 1, 1; 1, 1) if deg(D) is even, sgn(D) is a square in Fq, deg(δ3
+) ≡ 0 (mod 3),

and sgn(δ3
+) is a cube in Fq(u);

• (1, 1; 1, 2) if deg(D) is even, sgn(D) is not a square in Fq, and deg(δ3
+) ≡ 0 (mod 3);

• (1, 3) if deg(D) is even, sgn(D) is a square in Fq, deg(δ3
+) ≡ 0 (mod 3) and sgn(δ3

+)

is not a cube in Fq(u);
• (1, 1; 2, 1) if deg(D) is odd;
• (3, 1) if deg(D) is even and deg(δ3

+) 6≡ 0 (mod 3).

Proof By Lemma 7.1,
√

D ∈ Fq〈x−1〉 if and only if deg(D) is even, and
√

D ∈
Fq〈x−1〉 if and only if in addition sgn(D) is a square in Fq. Now δ3

+ ∈ Fq(x)(
√
−3D).

So if deg(D) is even, then again by Lemma 7.1, δ+ ∈ Fq〈x−1〉 if and only if deg(δ3
+) ≡

0 (mod 3). If in addition sgn(D) is a square in Fq, then δ+ ∈ Fq(u)〈x−1〉 if and only if

sgn(δ3
+) is a cube in Fq(u). The corollary now follows immediately from Lemma 7.3.

Corollary 7.5 Let K, D, u, and δ+ be as in Lemma 7.3, and let P be a finite place of

Fq(x) of degree d. Then K/Fq(x) has P-signature

• (1, 1; 1, 1; 1, 1) if vP(D) is even, D/PvP(D) is a square modulo P in Fqd , vP(δ3
+) ≡

0 (mod 3), and δ3
+/PvP(δ3

+) is a cube modulo P in Fqd (u);
• (1, 1; 1, 2) if vP(D) is even, D/PvP(D) is not a square modulo P in Fqd , and vP(δ3

+) ≡
0 (mod 3);

• (1, 3) if vP(D) is even, D/PvP(D) is a square modulo P in Fqd , vP(δ3
+) ≡ 0 (mod 3),

and δ3
+/PvP(δ3

+) is not a cube modulo P in Fqd (u);
• (1, 1; 2, 1) if vP(D) is odd;
• (3, 1) if vP(D) is even and vP(δ3

+) 6≡ 0 (mod 3).

Proof This follows analogous to Corollary 7.4. Again by Lemma 7.1,
√

D ∈ Fq〈P〉
if and only if vP(D) is even, and

√
D ∈ Fqd〈P〉 if and only if in addition D/PvP(D)

is a square modulo P in Fq[x]. If vP(D) is even, then δ+ ∈ Fq〈P〉 if and only if

vP(δ3
+) ≡ 0 (mod 3). If in addition D/PvP(D) is a square modulo P in Fq[x], then

δ+ ∈ Fqd (u)〈P〉 if and only if δ3
+/PvP(δ3

+) is a cube modulo P in Fqd (u).

8 Signatures and Genus of a Cubic Function Field

We now have all the ingredients for a straightforward characterization of the P-

signature of a cubic function field K/Fq(x) for any place P of Fq(x).

The signature at infinity of a purely cubic function field was first presented in

[23, Theorem 2.1]. The case of arbitrary cubic function fields was discussed in [21,

Theorem 4.2]; the characterization given below is slightly different from that source.

We also point out that a more algebraic investigation of the unit rank of a cubic

function field, which is one less than the number of places at infinity (see for example

[19, p. 243] or [8, p. 595]), was provided in [13].

Theorem 8.1 Let K = Fq(x, y) be a cubic function field in standard form given by

(4.2), with D given by (4.1), and let u ∈ Fq be a primitive cube root of unity. If deg(D)

is even and sgn(D) is a square in Fq, set s = −3 sgn(9B +
√
−3D)/2 ∈ Fq(u). Then

K/Fq(x) has P∞-signature
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• (1, 1; 1, 1; 1, 1) if

◦ 3 deg(A) > 2 deg(B), deg(A) is even, and sgn(A) is a square in Fq;

◦ 3 deg(A) < 2 deg(B), deg(B) ≡ 0 (mod 3), sgn(B) is a cube in Fq, and q ≡
1 (mod 3);

◦ 3 deg(A) = 2 deg(B), deg(D) is even, sgn(D) is a square in Fq, and s is a cube in

Fq(u).

• (1, 1; 1, 2) if

◦ 3 deg(A) > 2 deg(B), deg(A) is even, and sgn(A) is not a square in Fq;

◦ 3 deg(A) < 2 deg(B), deg(B) ≡ 0 (mod 3), and q ≡ −1 (mod 3);

◦ 3 deg(A) = 2 deg(B), deg(D) is even, and sgn(D) is not a square in Fq;

• (1, 3) if

◦ 3 deg(A) < 2 deg(B), deg(B) ≡ 0 (mod 3), and sgn(B) is not a cube in Fq;

◦ 3 deg(A) = 2 deg(B), deg(D) is even, sgn(D) is a square in Fq, and s is not a cube

in Fq(u).

• (1, 1; 2, 1) if deg(D) is odd;
• (3, 1) if 3 deg(A) < 2 deg(B) and deg(B) 6≡ 0 (mod 3).

Proof Let δ+ and δ− be defined as in Lemma 7.2. If deg(D) is even and sgn(D) is

a square in Fq, then δ3
+ ∈ Fq(u)〈x−1〉 and s = sgn(δ3

+) ∈ Fq(u). In this case, we

have deg(δ3
+), deg(δ3

−) ≤ max{deg(B), deg(
√
−3D)}, and equality must hold for at

least one of δ+ and δ−. Furthermore, deg(δ3
+) ≡ 0 (mod 3) if and only if deg(δ3

−) ≡
0 (mod 3), and sgn(δ3

+) ∈ Fq(u) if and only if sgn(δ3
−) ∈ Fq(u). The theorem now

follows by verifying the conditions of Corollary 7.4 for each of the cases listed above.

Note that it is easy to determine whether or not an element a ∈ F
∗ is a square or a

cube in a finite field F of cardinality r ≡ 1 (mod 6). Namely, a is a square in F if and

only if a(r−1)/2
= 1, and a is a cube in F if and only if a(r−1)/3

= 1.

Furthermore, consider the case where deg(D) = 3 deg(A) = 2 deg(B) and

sgn(D) = 4 sgn(A)3 − 27 sgn(B)2 is a square in Fq. Then we need to compute a

square root of sgn(D) in Fq (a square root of −3 is u − u2
= 2u + 1). There are a

number of efficient well-known methods for finding square roots in finite fields, see

[15, 25] and the many improvements to these methods. Note that in this case, the

equation t3 − sgn(A)t + sgn(B) has three roots in Fq if s is a cube in Fq(u) and no

roots in Fq otherwise; it has exactly one root in Fq if deg(D) = 3 deg(A) = 2 deg(B)

and sgn(D) = sgn(A)3 − 27 sgn(B)2 is a non-square in Fq. This was used in the

characterization of the P∞-signature of K/Fq(x) given in [21].

We can now easily compute the genus of K. By (3.1) and Theorem 8.1, we have

ǫP∞
(K) =











2 if 3 deg(A) < 2 deg(B) and deg(B) 6≡ 0 (mod 3),

1 if deg(D) is odd,

0 otherwise.

Then by (3.2), the genus of K is g =
1
2
(deg(∆) + ǫP∞

(K)) − 2.
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We now proceed to characterize signatures of finite places. The description of the

signature of any finite place of Fq(x) is analogous to the one for primes different from

2 and 3 in cubic number fields given in [16]. The case of purely cubic function fields

was first presented in [20, Theorem 3.1].

Theorem 8.2 Let K = Fq(x, y) be a cubic function field in standard form given by

(4.2) with D given by (4.1). Let u ∈ Fq be a primitive cube root of unity and P a

finite place of Fq(x). If vP(D) is even and D is a square modulo P, let Q ∈ Fq(u)[x]

be any square root of −3D modulo P. Set R = −3(9B + Q)/2 and S = R/PvP(R)

(R, S ∈ Fq(u)[x]). Then K/Fq(x) has P-signature

• (1, 1; 1, 1; 1, 1) if

◦ vP(A) = 0 < vP(B), and A is a square modulo P;

◦ vP(A) > 0 = vP(B), qdeg(P) ≡ 1 (mod 3), and B is a cube modulo P;

◦ vP(A) = vP(B) = 0, vP(D) is even, D/PvP(D) is a square modulo P, and S is a cube

modulo P in Fq(u)[x];

• (1, 1; 1, 2) if

◦ vP(A) = 0 < vP(B), and A is not a square modulo P;

◦ vP(A) > 0 = vP(B), and qdeg(P) ≡ −1 (mod 3);

◦ vP(A) = vP(B) = 0, vP(D) is even, and D/PvP(D) is not a square modulo P;

• (1, 3) if

◦ vP(A) > 0 = vP(B), qdeg(P) ≡ 1 (mod 3), and B is not a cube modulo P;

◦ vP(A) = vP(B) = 0, and vP(D) is even, D/PvP(D)P is a square modulo P, and S is

not a cube modulo P in Fq(u)[x];

• (1, 1; 2, 1) if vP(D) is odd;
• (3, 1) if 1 ≤ vP(B) ≤ vP(A).

Proof The restriction that K/Fq(x) is in standard form immediately implies the fol-

lowing:

• 3vP(A) < 2vP(B) and vP(A) even if and only if vP(A) = 0 < vP(B);
• 3vP(A) > 2vP(B) and vP(B) ≡ 0 (mod 3) if and only if vP(A) > 0 = vP(B);
• 3vP(A) > 2vP(B) and vP(B) 6≡ 0 (mod 3) if and only if 1 ≤ vP(B) ≤ vP(A);
• 3vP(A) = 2vP(B) if and only if vP(A) = vP(B) = 0.

The proof is now completely analogous to that of Theorem 8.1, if everywhere in that

proof we replace x−1 by P and Fq by Fqd in every field of Laurent series, as well as s by

S, deg(α) by −vP(α), and sgn(α) by G/PvP(α) (mod P) for α ∈ {D, δ+, δ−}.

Once again, if F is a finite extension of Fq of cardinality r ≡ 1 (mod 6), and G, P ∈
F[x] with P irreducible of degree d and P ∤ G, then G is a square modulo P if and

only if G(rd−1)/2 ≡ 1 (mod P), and G is a cube modulo P if and only if G(rd−1)/3 ≡
1 (mod P). Furthermore, if vP(D) is even and D is a square modulo P, then we need

to compute a square root of D modulo P in Fq[x], which amounts to computing a

square root in the field Fqd . Again, if vP(D) is even and vP(A) = vP(B) = 0, then

the congruence t3 − At + B ≡ 0 (mod P) has three solutions in Fq[x] if D/PvP(D) is a

square modulo P in Fq[x] and S is a cube modulo P in Fq(u)[x], no solutions in Fq[x]
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if D/PvP(D) is a square modulo P in Fq[x] and S is not a cube modulo P in Fq(u)[x],

and exactly one solution in Fq[x] if D/PvP(D) is not a square modulo P in Fq[x].

We now provide two applications of the signature computations discussed in the

previous section, namely computing the class number of a function field, and ob-

taining information about the distribution of the zeros of the zeta function. Both are

explained in more detail in [22].

9 Application 1: Class Number Computation

The places of any algebraic function field K/Fq of genus g generate a free Abelian

group DK known as the group of divisors of K/Fq. The notion of degree of a place of

K then extends homomorphically to divisors, i.e., for any divisor a =
∏

p
p

ap ∈ DK ,

the degree of a is deg(a) =
∑

p
ap deg(p). Let D0

K be the subgroup of DK of divisors

of degree zero, and PK the subgroup of D0
K of principal divisors; these are divisors of

the form div(α) =
∏

p
p

vp(α) with α ∈ K∗. Then the factor group Pic0
K = D0

K/PK

is a finite Abelian group, known as the (degree zero) divisor class group (or Jacobian)

of K/Fq, whose order hK is the divisor class number of K. The computation of hK

is an important problem in number theory and arithmetic geometry. It also has

applications to cryptography, since cryptographic schemes based on algebraic curves

require that hK be known.

One way of computing hK can be described at a high level as follows:

(i) Compute an approximation E ∈ N of hK and an error U ∈ N such that

|hK − E| < U .

(ii) Search through the open interval ]E −U , E + U [ to find hK .

While in principle, this idea applies in any algebraic function field [22], it has been

most extensively researched for application to hyperelliptic, i.e., quadratic, function

fields [26–29], and to some extent for cubic function fields [24].

We comment briefly on item (ii) above. The search can be performed using

Shanks’ baby-step giant-step or Pollard’s kangaroo method. This procedure requires

an efficient arithmetic framework on divisors of K. For quadratic extensions, there

is a large volume of literature on the subject, starting with [4]; we simply refer to the

sources cited in the previous paragraph. Arithmetic in purely cubic function fields

was provided in [2, 14, 20, 21]; work on arbitrary cubic function fields as considered

in this paper is in progress. The number of operations required to conduct a search

using baby-step giant-step or Pollard kangaroo is essentially the square root of the

length of the interval. The interval ]E − U , E + U [ has length 2U − 1, so step (ii) of

the above method requires c
√

U operations on divisors of K for some constant c that

depends on the cost of the arithmetic, i.e., on the size q of the base field and the genus

g of K/Fq.

We now elaborate further on step (i) of the algorithm above as it is a direct ap-

plication of the work on signatures provided here. The zeta function of K/Fq is the

power series

ζK (s) =

∑

a≥0

q− deg(a)s (ℜ(s) > 1),
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where ℜ(s) is the real part of the complex variable s, and the summation is over all

effective divisors a ≥ 0 of K, i.e., divisors a for which vp(a) ≥ 0 for all places p of

K. It is known that ζK (s) is periodic with period 2πi/log q and analytic in the entire

complex plane with the exception of simple poles at s ≡ 0, 1 (mod 2πi/log(q)). We

have

(9.1) ζK (s) =
LK (q−s)

(1 − q−s)(1 − q1−s)
,

where 1/(1 − q−s)(1 − q1−s) = ζFq(x)(s) is the zeta function of the rational function

field Fq(x), and LK (t) ∈ Z[t] is a polynomial of degree 2g in t that is referred to as

the L-polynomial of K/Fq(x). The analytic class number formula connects the class

number with the zeta function and asserts that hK = LK (1). We have

(9.2) LK (t) =

2g
∏

j=1

(1 − ω jt),

where the ω j are algebraic integers of absolute value
√

q. This latter statement is

known as the Riemann hypothesis for function fields and is in fact not a hypothesis,

but a theorem that was first proved in full generality in 1948 by A. Weil [34, 35].

The zeta function has an Euler product representation

ζK (s) =
∏

p

1

1 − q− deg(p)s
,

where the product ranges over all places p of K. A truncated version of this product,

using only finitely many terms, can be used to explicitly compute a value E ′ such

that hK = E ′eB. Here B is determined by the “tail” of the product, and the cut-off

point in the product is large enough such that |B| < ψ for some bound ψ that is

significantly less than one and can be computed explicitly. If we define E ∈ N to

be the nearest integer to E ′, i.e., E ∈ N with −1/2 < |E − E ′| ≤ 1/2, and set

U = ⌈E ′(eψ − 1) + 1/2⌉ ∈ N, then

|hK − E| = |E ′(eB − 1) + (E ′ − E)| ≤ |E ′(eB − 1)| + |E ′ − E| < E ′(eψ − 1) +
1

2
≤ U .

Thus, E and U are the desired parameters for our class number algorithm. If we write

K = Fq(x, y), then

ζK (s) =
∏

p|P∞

1

1 − q− f (p|P∞)s

∏

P 6=P∞

∏

p|P

1

1 − q− f (p|P) deg(P)s
.

The first product requires knowledge of the P∞-signature of K/Fq(x), or at least of

the residue degrees of all the places of K lying above P∞. The second product ranges

over all monic irreducible polynomials in Fq[x]. A truncated version of this product

requires the computation of the signatures of all the finite places of Fq(x) up to a
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certain degree bound λ. Thus, efficient signature computation is an essential tool in

computing the class number of K.

To optimize the algorithm, the running times of the two steps of the class number

algorithm should be balanced, i.e., roughly equal. By our remarks above, the compu-

tation of E and U thus should take time c ′
√

U for some constant c ′. This determines

the cut-off point λ for truncation of the Euler product. The best choice is to let λ be

the nearest integer to (2g − 1)/5, giving an overall running time of O(q(2g−1)/5) for

fixed genus g and q → ∞. Details for cubic function field extensions can be found in

[24]. The case of arbitrary function fields was discussed in [22].

10 Application 2: Distribution of Class Numbers and Zeros of Zeta
Functions

The quantities E and U , and thus the signature computations performed to obtain

them, have further uses in the analysis of the distribution of the zeros of zeta func-

tions. In the interest of space, we can only give an overview of the underlying ideas,

which are rather sophisticated. By (9.1) and (9.2), the values logq(ω j) (1 ≤ j ≤ 2g)

are zeros of the zeta function ζK (s) of K/Fq. Write ω j =
√

qeiϕ j with ϕ j ∈ [0, 2π[.

Since it is well known that ω j = ωg+ j , we have ϕ j+g ≡ −ϕ j (mod 2π) for 1 ≤ j ≤ g,

and we can enumerate the ϕ j such that 0 ≤ ϕ j ≤ π and ϕ j+g ≡ −ϕ j (mod 2π) for

1 ≤ j ≤ g. Now define the quantity

S(n) =

∣

∣

∣

g
∑

j=1

eniϕ j

∣

∣

∣
= 2

∣

∣

∣

g
∑

j=1

cos(niϕ j)
∣

∣

∣
.

The mean of S(n) over all function fields of fixed genus g provides information on

the distribution behavior of the ϕ j , and hence of the zeros of zeta functions ζK (s) of

function fields K/Fq of genus g as q → ∞.

We now relate the quantity S(n) to the results in the previous section. The two are

connected through the question of how good a bound U is on the “error” |hK − E|.
Let α(q, g) be the average of the quotient |hK − E|/U over all function fields K/Fq

of genus g; the quantity α(g, q) measures how well U bounds |hK − E| in general for

function fields K/Fq of genus g. If we let α(g) = limq→∞ α(g, q), then we see that

the bound U on |hK − E| is on average by a factor of α(g)−1 too large.

Recall that et − 1 ≈ t for |t| significantly less than one. Since E ′ ≈ E and |B|, ψ
are much smaller than one for large q, we thus have |hK − E| ≈ E ′|eB − 1| ≈ E|B|;
similarly, U ≈ Eψ. It follows that |hK − E|/U ≈ |B|/ψ, and hence one would expect

that

α(g, q) ≈ Mean
( |B|

ψ

)

.

It can be shown [22] that in many cases, the dominant term in the quotient |B|/ψ
is S(λ + 1) where λ is the nearest integer to (2g − 1)/5 as discussed in the previous

section. For example, this always holds if λ is even and in some other cases as well;

otherwise, a certain correction term needs to be added to obtain the correct limit.

Hence, if we can determine the mean of S(λ + 1), then we can find α(g, q) and thus
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α(g), at least heuristically. Using results by Katz and Sarnak [10, 11], this mean was

numerically computed for hyperelliptic function fields in [26]. Unfortunately, this

mean appears to be very difficult to compute for other types of fields.

However, the above argument could be turned around as follows. If one had access

to a fast class number algorithm, then it would be possible to compute the quotients

|hK − E|/U for a large number of function fields K/Fq for fixed q and g. Taking the

numerical average of all these quotients could give an idea of the value of α(q, g).

Repeating this process for many large prime powers q might ultimately shed light on

the value of the limit α(g). Each of the quotients |hK−E|/U requires the computation

of the residue degrees of a large number of places, so once again, an efficient way of

determining signatures is a necessary ingredient here.

11 Open Problems

A number of open problems arise from this work. For example, it is unclear how

some of the results in this paper can be extended to cubic extensions of characteris-

tic 2 or even 3. An investigation of certain characteristic 3 fields is currently being

undertaken by the fourth author; work on the characteristic 2 case is also in progress.

Our proofs of Theorems 8.1 and 8.2 rely heavily on Cardano’s formulae as given

in Lemma 7.2. While similar techniques may extend to other function fields with

solvable minimal polynomials, they are clearly not generalizable to arbitrary function

fields. Moreover, algorithms for computing the field discriminant and integral bases

of function field extensions of arbitrary degree exist, but they are less efficient than

methods that rely on the simple types of ingredients used here, such as square-free

factorizations or extracting roots over finite fields.

The class number algorithm described above requires efficient arithmetic on di-

visors in any cubic function field K. While such arithmetic was provided for purely

cubic extensions in [2, 14, 20, 21], it has not yet been developed for arbitrary cubic

fields. In contrast to the hyperelliptic case, explicit formulae for divisor addition,

or equivalently, ideal multiplication, in purely cubic function fields as described in

[2, 20] are already quite intricate. The case of arbitrary cubic function fields is even

more complicated. The level of complexity only increases as one considers function

fields of higher degree. There is discussion of divisor arithmetic for arbitrary function

fields in [9, 33], and a more geometric approach was taken in [12], but it remains to

be seen how efficient these methods are when implemented and applied to extensions

of large degree.
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