A SHORT NOTE ON ENHANCED DENSITY SETS

SILVANO DELLADIO

Department of Mathematics, University of Trento, via Sommarive 14, Povo, 38123 Trento, Italy e-mail: delladio@science.unitn.it

(Received 5 December 2009; revised 1 July 2010; accepted 11 April 2011)

Abstract. We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to 'some remarks on legendrian rectiable currents', Manuscripta Math. **113**(3) (2004), 397–401) result: 'If Ω is a set of locally finite perimeter in \mathbb{R}^2 , then there is no function $f \in C^1(\mathbb{R}^2)$ such that $\nabla f(x_1, x_2) = (x_2, 0)$ at a.e. $(x_1, x_2) \in \Omega$ '. We also prove that every measurable set can be approximated arbitrarily closely in L^1 by subsets that do not contain enhanced density points. Finally, we provide a new proof of a Poincaré-type lemma for locally finite perimeter sets, which was first stated by Delladio (S. Delladio, Functions of class C^1 subject to a Legendre condition in an enhanced density set, to appear in *Rev. Mat. Iberoamericana*).

2010 Mathematics Subject Classification. Primary 28Axx, 28A75, 49Q15; Secondary 26A45.

1. Introduction. In **[3]** we introduced the notions of enhanced density point and enhanced density set.

DEFINITION 1.1. Let Ω be a measurable subset of \mathbb{R}^n . Then $x \in \mathbb{R}^n$ is said to be a 'point of enhanced density of Ω ' if

$$\lim_{r\downarrow 0}\frac{\mathcal{L}^n(B(x,r)\backslash \Omega)}{r^{n+1}}=0.$$

By Ω_{\bullet} we denote the set of all the points of enhanced density of Ω . We say that ' Ω is an enhanced density set' whenever $\mathcal{L}^{n}(\Omega \setminus \Omega_{\bullet}) = 0$.

The family of enhanced density sets includes locally finite perimeter sets (we refer the reader to [2, Section 3.3] or [5, Definition 7.5.4] for the definition). In fact, even stronger density property proved by Delladio [3] holds.

THEOREM 1.1. Let Ω be a locally finite perimeter subset of \mathbb{R}^n . Then

$$\lim_{r \downarrow 0} \frac{\mathcal{L}^n(B(x,r) \backslash \Omega)}{r^{n + \frac{n}{n-1}}} = 0$$

at a.e. $x \in \Omega$. In particular, Ω is an enhanced density set.

The following result, given in [3], provides a generalisation of the classical Poincare's Lemma.

THEOREM 1.2. Let λ and μ be differential forms of class C^1 in \mathbb{R}^n , respectively, of degree h and h + 1 (with $h \ge 0$). If

$$K := \{ x \in \mathbb{R}^n \, | \, d\lambda(x) = \mu(x) \},\$$

then $K_{\bullet} \subset K$ and $(d\mu)|_{K_{\bullet}} = 0$.

REMARK 1.1. Let $f \in C^1(\mathbb{R}^n)$, $g \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ and

$$K := \{ x \in \mathbb{R}^n \mid \nabla f(x) = g(x) \}.$$

If we apply Theorem 1.2 with

$$\lambda := f, \qquad \mu := \sum_{j=1}^n g_j \, dx_j$$

and observe that

$$K = \{ x \in \mathbb{R}^n \, | \, d\lambda(x) = \mu(x) \}, \quad d\mu = \sum_{\substack{i,j=1\\i < j}}^n \left(\frac{\partial g_j}{\partial x_i} - \frac{\partial g_i}{\partial x_j} \right) dx_i \wedge dx_j,$$

then we obtain $K_{\bullet} \subset K$ and

$$(\operatorname{curl} g)|_{K_{\bullet}} = 0,$$

where curl is defined as in [1].

This note collects the following three independent results related to enhanced density sets.

- The first one extends [4, Corollary 2], which states, 'If Ω is a set of locally finite perimeter in \mathbb{R}^2 , then there is no function $f \in C^1(\mathbb{R}^2)$ such that $\nabla f(x_1, x_2) = (x_2, 0)$ at a.e. $(x_1, x_2) \in \Omega$ '. Observe that this fact, proved by Fu [4] through a quite technical argument based on integral currents, is an immediate and GMT-free consequence of Remark 1.1 and Theorem 1.1.
- The second one states that every measurable set can be approximated arbitrarily closely in L^1 by subsets that do not contain enhanced density points.
- The third one is a direct proof, using nothing but Stokes for Whitney's flat chains, of a Poincaré-type lemma for locally finite perimeter sets.

2. Statements and proofs of the results

2.1. Generalisation of [4, Corollary 2]

THEOREM 1.3. Let Ω be an enhanced density set, e.g. a locally finite perimeter subset of \mathbb{R}^n . Let μ be a differential form of class C^1 in \mathbb{R}^n (and degree $h \ge 1$) and assume that

$$\mathcal{L}^n(\Omega \cap E) > 0, \qquad E := \{ x \in \mathbb{R}^n \, | \, d\mu(x) \neq 0 \}.$$

Then there is no differential form of class C^1 in \mathbb{R}^n (and degree h - 1) such that $d\lambda = \mu$ *a.e.* in $\Omega \cap E$. We will obtain Theorem 1.3 as a trivial corollary of Theorem 1.4 below. In order to prove the latter, we state a simple proposition.

PROPOSITION 1.1. The following facts hold:

- (i) Let Ω and Ω' be measurable subsets of \mathbb{R}^n such that ' Ω is a subset of Ω' in measure', *i.e.* $\mathcal{L}^n(\Omega \setminus \Omega') = 0$. Then one has $\Omega_{\bullet} \subset \Omega'_{\bullet}$.
- (ii) Let Ω and A be, respectively, a measurable subset of \mathbb{R}^n and an open subset of \mathbb{R}^n . Then $\Omega_{\bullet} \cap A \subset (\Omega \cap A)_{\bullet}$ holds, while the opposite inclusion is false in general.

Proof. The assertion (i) is obvious. As for (ii), let $x \in \Omega_{\bullet} \cap A$ and observe that since A is open, then

$$B(x,r)\backslash(\Omega \cap A) = (B(x,r)\backslash\Omega) \cup (B(x,r)\backslash A) = B(x,r)\backslash\Omega$$

provided r is small enough. Hence,

$$\lim_{r\downarrow 0} \frac{\mathcal{L}^n(B(x,r)\backslash (\Omega \cap A))}{r^{n+1}} = \lim_{r\downarrow 0} \frac{\mathcal{L}^n(B(x,r)\backslash \Omega)}{r^{n+1}} = 1,$$

namely $x \in (\Omega \cap A)_{\bullet}$. The assertion about the opposite inclusion is proved by the following example, where we assume n = 2. Let

$$\Omega := \mathbb{R}^2 \setminus \{(0, 0)\}, \qquad A := \Omega.$$

Then one has

$$\Omega_{\bullet} \cap A = A, \qquad (\Omega \cap A)_{\bullet} = \mathbb{R}^2.$$

THEOREM 1.4. Let Ω be a measurable subset of \mathbb{R}^n , μ be a differential form of class C^1 in \mathbb{R}^n (and degree $h \ge 1$) and assume that

$$\mathcal{L}^n(\Omega \cap E) > 0, \qquad E := \{ x \in \mathbb{R}^n \mid d\mu(x) \neq 0 \}.$$

If there exists a differential form λ of class C^1 in \mathbb{R}^n (and degree h - 1) such that $d\lambda = \mu$ *a.e.* in $\Omega \cap E$, then Ω is not an enhanced density set.

Proof. Let K be defined as in Theorem 1.2. Since E is open, it follows from Proposition 1.1 that

$$\Omega_{\bullet} \cap E \subset (\Omega \cap E)_{\bullet} \subset K_{\bullet}.$$

Then the set $\Omega_{\bullet} \cap E$ has to be empty, by Theorem 1.2. Hence,

$$\mathcal{L}^{n}(\Omega \setminus \Omega_{\bullet}) \geq \mathcal{L}^{n}((\Omega \cap E) \setminus (\Omega_{\bullet} \cap E)) = \mathcal{L}^{n}(\Omega \cap E) > 0,$$

namely Ω is not an enhanced density set.

2.2. Approximation by sets without enhanced density points

THEOREM 1.5. Let $\varepsilon > 0$ be fixed arbitrarily. Then there exists an open subset A of \mathbb{R}^n such that $\mathcal{L}^n(A) \leq \varepsilon$ and $(\Omega \setminus A)_{\bullet}$ is empty for all measurable subsets Ω of \mathbb{R}^n .

Proof. Let $g \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ be such that $\operatorname{curl} g(x) \neq 0$ at all $x \in \mathbb{R}^n$. Consider the open subsets of \mathbb{R}^n

$$\Gamma_0 := \{ |x| < 1 \}, \qquad \Gamma_j := \{ j < |x| < j+1 \} \quad (j = 1, 2, ...).$$

Then, for all *j* we can find

(i) an open neighbourhood A'_i of $\partial \Gamma_j$ such that

$$\mathcal{L}^n(A'_j) \leq \frac{\varepsilon}{2^{j+2}},$$

(ii) an open subset A''_i of Γ_i and a function $f_i \in C_0^1(\Gamma_i)$ such that

$$\mathcal{L}^n(A_j'') \le \frac{\varepsilon}{2^{j+2}}$$

and

$$(\nabla f_j)|_{\Gamma_j \setminus A_i''} = g|_{\Gamma_j \setminus A_i''} \tag{1.1}$$

by [1, Theorem 1].

From (1.1) and Remark 1.1, it follows that (for j = 0, 1, ...) there are no points of enhanced density of the set

$$R_j := \Gamma_j \setminus (A'_j \cup A''_j) \subset \Gamma_j \setminus A''_j.$$

Since $R_j \subset \subset \Gamma_j$ for all *j*, there are no points of enhanced density of

$$\bigcup_{j=0}^{\infty} R_j = \bigcup_{j=0}^{\infty} \Gamma_j \backslash (A'_j \cup A''_j) = \mathbb{R}^n \backslash A,$$

where A is the open set defined by

$$A := \bigcup_{j=0}^{\infty} (A'_j \cup A''_j).$$

The conclusion follows from Proposition 1.1(i) and by observing that

$$\mathcal{L}^{n}(A) \leq \sum_{j=0}^{\infty} [\mathcal{L}(A'_{j}) + \mathcal{L}(A''_{j})] \leq \sum_{j=0}^{\infty} \frac{\varepsilon}{2^{j+1}} = \varepsilon.$$

2.3. A Poincaré-type lemma for locally finite perimeter sets. The following fact is an immediate consequence of Theorems 1.1 and 1.2. It has first been stated in [3]. Here we give an alternative short proof using nothing but Stokes for Whitney's flat chains [6]. This new proof is based on a global argument that could reveal to be useful for treating similar issues in the context of integral currents.

THEOREM 1.6. Let λ and μ be C^1 forms of degree h and h + 1, respectively, with $0 \le h \le n - 2$. Assume that $d\lambda = \mu$ almost everywhere in a locally finite perimeter set Ω . Then one also has $d\mu = 0$ almost everywhere in Ω .

634

Proof. Let ω be any smooth form of degree n - h - 2 with compact support. Then one has (adopting the notation of [5, Section 7.2])

$$\begin{split} \int_{\Omega} d\mu \wedge \omega &= \int_{\Omega} d(\mu \wedge \omega) + (-1)^{h} \int_{\Omega} \mu \wedge d\omega \\ &= \partial \llbracket \Omega \rrbracket (\mu \wedge \omega) + (-1)^{h} \int_{\Omega} \mu \wedge d\omega \\ &= \partial \llbracket \Omega \rrbracket (d\lambda \wedge \omega) + (-1)^{h} \int_{\Omega} \mu \wedge d\omega \\ &= \partial \llbracket \Omega \rrbracket (d(\lambda \wedge \omega)) + (-1)^{h+1} \partial \llbracket \Omega \rrbracket (\lambda \wedge d\omega) + (-1)^{h} \int_{\Omega} \mu \wedge d\omega. \end{split}$$

Now, by [5, Remark 7.5.6 and Theorem 7.9.2], a locally finite perimeter set is a flat chain in the sense of Whitney. We get

$$\partial \llbracket \Omega \rrbracket (d(\lambda \wedge \omega)) = 0$$

by [6, Chapter V, Section 3]. Hence,

$$\int_{\Omega} d\mu \wedge \omega = (-1)^{h+1} \int_{\Omega} d(\lambda \wedge d\omega) + (-1)^{h} \int_{\Omega} \mu \wedge d\omega$$
$$= -(-1)^{h} \int_{\Omega} d\lambda \wedge d\omega + (-1)^{h} \int_{\Omega} \mu \wedge d\omega$$
$$= 0.$$

The conclusion follows from the arbitrariness of ω .

REFERENCES

1. G. Alberti, A Lusin-type theorem for gradients, J. Funct. Anal. 100 (1991), 110-118.

2. L. Ambrosio, N. Fusco and D. Pallara, *Functions of bounded variation and free discontinuity problems*, Oxford mathematical monographs (Oxford University Press, Oxford, UK, 2000).

3. S. Delladio, Functions of class C^1 subject to a Legendre condition in an enhanced density set, to appear on Rev. Mat. Iberoamericana.

4. J. H. G. Fu, Erratum to 'some remarks on legendrian rectifiable currents', *Manuscripta Math.* **113**(3) (2004), 397–401.

5. S. G. Krantz and H. R. Parks, *Geometric integration theory* (Birkhäuser, Boston, MA, 2008).

6. H. Whitney, *Geometric integration theory* (Princeton University Press, Princeton, NJ, 1957).