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A MAXIMUM PRINCIPLE FOR SUBHARMONIC AND 
PLURISUBHARMONIC FUNCTIONS 

CHEN HUAIHUI AND P. M. GAUTHIER 

ABSTRACT. We give a simple description of boundary sets which may be ignored 
in calculating the maximum of subharmonic or plurisubharmonic functions. 

Let Rn = Rn U { oo} denote the one-point compactification of Rn and let £1 be an 
open subset of Rn. If s is a function defined on £1 and p G d£l, we write 

(1) s(p) = \im s(q). 

In [4] we find the following characterization of those £1 for which the supremum of a 
subharmonic function is always equal to its supremum on the (finite) boundary of £1. 

THEOREM GGH. In order that 

sup s = sup s, 
Q aQ\{oo} 

for each subharmonic function s on £1, it is necessary and sufficient that oo not be ac
cessible from £1. 

Sahakian [5] independently obtained a more precise result in the case ofR2 by show
ing that not only the point at infinity, but indeed, any closed inaccessible portion of the 
boundary, may be ignored when calculating the supremum. 

THEOREM S. Let £1 C R2 and let E be a closed subset ofd£l. In order that 

sups = sup s, 
O dQ\E 

for each subharmonic function s on £1, it is necessary and sufficient that E is not acces
sible from £1. 

Actually, Theorem GGH was stated in a more general form on manifolds which, as 
was pointed out in [4], implies Theorem S. Our purpose in this note is to generalize 
Theorem S sufficiently to have the reverse implication. Moreover, our method will be 
very simple and different from that employed in [4]. 
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Let Q, be a manifold and Q a compactification of Q. That is, Û is a compact Hausdorff 
space containing (a homeomorphic copy of) Q as a dense open subset; the set dQ = Û\ Q, 
is called the ideal boundary of Q (relative to Ù). The compactification Ù is said to be 
second countable if it has a countable basis. A subset E of the ideal boundary is said to be 
accessible (from Q) if there is a path in Q, which is eventually in each neighbourhood of E, 
that is, there is a continuous mapping a : [0, oo) —• Q, such that for each neighbourhood V 
of £, there is a i G [0, oo) such that a(t) G V, for each t > t'. A function s, defined on Q 
and taking its values in the extended-reals is said to satisfy the local maximum principle 
if s is constant in a neighbourhood of each point at which s attains a local maximum. For 
p G d£l, s(p) will be defined by formula (1). If s is upper semicontinuous on Q, then the 
function defined as s on Q and s on 3Q is the least upper semicontinuous extension of s 
toQ. 

THEOREM. Let Ûbe a second countable compactification of a manifold Q,. Suppose 
E C dQ is not accessible from O. Then, for each upper semicontinuous function s on £1, 
satisfying the local maximum principle, we have 

(0 sup s = sup s 
n dn\E 

and 

(ii) sup s = lim s(p) 
E P^E 

PedQ\E 

COROLLARY. Let Ci be a Riemannian (respectively complex) manifold and let Û 
and E be as in the theorem. Then, (i) and (ii) hold for each function s subharmonic 
(respectively plurisubharmonic) on £X 

REMARK 1. Maximum principles on certain unbounded domains also follow from 
Phragmén-Lindelof-type theorems. In such theorems the functions under consideration 
are always assumed to be of restriced growth, however, in our theorem, there is no such 
restriction. In certain special situations, conclusions similar to the corollary can be easily 
obtained using arguments employing harmonic measure. Such arguments work only for 
bounded functions. Again, we do not assume that our functions are bounded. Rather, we 
infer that they are bounded, given that they are bounded along a certain portion of the 
boundary. Actually the maximum principle for upper semicontinuous functions satisfy
ing the local maximum principle is equivalent to the maximum principle for bounded 
such functions. However, such is not the case for subharmonic or plurisubharmonic func
tions. 
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REMARK 2. Our theorem has a converse. Namely, if E is closed and accessible from 
Q, then it is trivial to construct an upper semicontinuous function satisfying the local 
maximum principle for which (i) and, consequently, (ii) fails. Thus, we have, in fact 
a complete characterization of closed boundary sets which can be disregarded in the 
maximum principle. If, moreover, Q, is a Riemannian manifold, then using recent results 
on extension and approximation [3], one can obtain such a function which is subharmonic 
and even [1] harmonic. 

REMARK 3. The hypothesis of our theorem is more general than in Theorem GGH, 
in which 3Q, except oo, is embedded in a manifold. Therefore, our theorem implies 
Theorem GGH, but the reverse implication is not valid and the method employed in [4] 
does not work for our case. 

Proof of Theorem. Since (i) is an immediate consequence of (ii), we shall prove (ii) 
only. Set 

M = lim s(p) 
p—>E 

p<EdQ\E 

We may assume that M is finite. Fix E > 0. We shall show that 

(2) sups<M + e. 
E 

We shall assume, at first, that E is closed. In order to study the behaviour of s near £, it 
is natural to construct a convenient neighbourhood system of E. 

LEMMA 1. The compact set Ehas a countable neighbourhood system V\ D V2 D • • • 
such that Vn D Vn+\,for n — 1,2,..., and there is a locally finite family (3 of open sets 
in £1 such that for each n — 1,2,..., Q D Vn is a union of sets in (3. 

Let A be a countable basis for the topology of Ù. Let A' be the family of sets (J/e/ ca 
which cover E, where { a£- : / G /} are finite families in A. Then A' is a countable neigh
bourhood system of E, from which we can easily construct a nested countable neigh
bourhood system G\ D G2 D • • •. Since Û is compact, we may further assume that 
Gn D G„+i, for n = 1,2,... . 

Since Ù is second countable, so is Q. and since, moreover, Q, is locally Euclidean, it is 
G -compact and hence paracompact (see [2, 425X]). Thus, for n — 2 , 3 , . . . , Gn\ d£l can 
be covered by a locally finite family (3n of parametric balls B such that B C Gn-\. By a 
parametric ball, we mean an open subset of Q whose closure (in Q) is homemorphic to 
a closed ball. Let f3 = [jn (3n and for each n — 1,2,..., set 

Vn = Gn+lU\J{B:Bepn+l}. 

Then, 

nriVn = \J{B:B€l3n+i} 

and the sets V\, V2,... have the properties affirmed in Lemma 1. 
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LEMMA 2. If V is an arbitrary neighbourhood ofE, then there is a smaller neigh
bourhood W ofE, W CV, such that 

sup s <M+E. 
ondw 

Let { Vn} be a neighbourhood system of E as in Lemma 1. We may assume that 
V D V\ and that 

(3) sup s<M + e/2 
donVi\E 

Set H\ — Q n V\ and denote by X\j9 i = 1,2,..., those components of H\ such that 

sup s < M + s, 
andxu 

and by Y\j, j = 1,2,..., the other components. Thus, there exists pjE £1D dY\j with 
s(pj) > M + s. We claim that there are only finitely many Y\j. Indeed, if not, then there 
exists a sequence pj which we may assume converges to some pointp G dV\. Thus/? ^ E 
since E C Vj. Moreover,/? ^ dQ\ £"by (3). Hence/? G Q. From Lemma 1, it follows that 
there is a neighbourhood of/? which meets only finitely many components of H\. This 
contradicts the statement that the sequence {/?/} converges to /?. Hence, there are only 
finitely many Y\j as claimed. Set 

H2 = Hxn v2\[jxu = Qnv2\\Jxu . 
i i 

We redo the same procedure for H2. That is, we divide the components into two classes 
X2,t, 1,2,... and Y2jJ = 1,2,... as above. We set 

H3 = H2n v3\ \jx24 = ̂ nv 3 \ \jx2j. 
i i 

We do this for each « = 2 , 3 , . . . . Each component of Hn is also a component of Q. D Vn 

and so the components of Hn are a locally finite family. Thus, the same argument as at 
the first stage shows that there are at most finitely many Ynj for each n. 

Each Yn+ij is contained in some component of Hn. But the Xnj have been removed. 
Thus, each Yn+\j is contained in some Yn^. We say that Yn+\j is a descendant of Yn^ in 
this case. Let us agree that a descendant of a descendant is also a descendant and so on 
to any number of generations. 

If there are Ynj for each stage ny then since there are only finitely many at the first stage, 
we may pick some Y\j, denote it by Y\ such that Y\ has infinitely many descendants. Now 
Y\ has only finitely many descendants Y2j at the second stage, and so we may choose 
one, denote it by Y2, such that Y2 has infinitely many descendants. Continuing in this 
manner, since at each stage there are at most finitely many Ynj, we construct a sequence 
Y\ D Y2 D • • •, where each Yn is some Ynj. 

https://doi.org/10.4153/CMB-1992-005-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-005-3


38 C. HUAIHUI AND P. M. GAUTHIER 

Now for each n, choose a point qn G Yn and construct a path which starts from q\ and 
goes to #2 within Y\, then goes to q^ within Y2 etc. This path is eventually in each Yn and, 
ipso facto, in each Vn. This contradicts the inaccessibility of E. Thus, at some stage m, 
there are no Ymj. Hence 

Hm — Hm-l H Vm\ l^JXm-ij = [jXmj. 
i i 

Set 

w= vmu (J {jxnJ. 
n<m i 

Then, W is a neighbourhood of E contained in V, 

nnw= {J gxBfI., 
n<m i 

and since Xnj form a locally finite family, 

Q H 3 W = (J |J[Qnax^]. 
«<m i 

From the definition of the Xnj, Lemma 2 follows. 
By combining Lemma 1, Lemma 2, and the definition of M, we may construct a neigh

bourhood system of E : W\ D W2 D • • • such that 

(4) sup s<M + e, 
(WindQ)\E 

and for n — 1,2,... 

and 

(5) sup s < M + £. 
onaw„ 

Since s satisfies the local maximum principle, it follows from (4) and (5) that 

sup s < M + e, 
QD[Wn\Wn+l] 

for n — 1,2,.... This proves (2). 
Suppose now that E is not closed. Let W be an open neighbourhood of E such that 

(6) sup s < M + e, 
(Wn3Q)\£ 

and set 

(7) #(£) = {/?£ WndQ:s(p)>M+e}. 

Then £(£) is a closed subset of E. By the result proved above for a closed set, 

sup s < M + e. 
E(e) 

By (6), (7), and (8), (2) is also proved. 
Let e —• 0 in (2); we obtain (ii). This completes the proof of the theorem. 
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