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Abstract

Formulating a dust-filled spherically symmetric metric utilizing the 3 + 1 formalism for
general relativity, we show that the metric coefficients are completely determined by the
matter distribution throughout the spacetime. Furthermore, the metric describes both
inhomogeneous dust regions and also vacuum regions in a single coordinate patch, thus
alleviating the need for complicated matching schemes at the interfaces. In this way,
the system is established as an initial boundary value problem, which has many benefits
for its numerical evolution. We show the dust part of the metric is equivalent to the
class of Lemaitre-Tolman-Bondi (LTB) metrics under a coordinate transformation. In this
coordinate system, shell crossing singularities (SCS) are exhibited as fluid shock waves,
and we therefore discuss possibilities for the dynamical extension of shell crossings through
the initial point of formation by borrowing methods from classical fluid dynamics. This
paper fills a void in the present literature associated with these collapse models by fully
developing the formalism in great detail. Furthermore, the applications provide examples
of the benefits of the present model.
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1. Introduction

It is well established that naked singularities arise from the gravitational collapse
of inhomogeneous, spherically symmetric dust spheres in general relativity [4,14,
15,23]. One type of these are shell crossing singularities (SCS), which are not
perceived to violate cosmic censorship due to their weak nature (see for example
[20] and references therein). However, difficulties often arise in the interpretation
of the physical nature of SCS due to the four-dimensional construction of spacetime

'Centre for Stellar and Planetary Astrophysics, School of Mathematical Sciences, Monash University,
Wellington Rd, Melbourne 3800, Australia; Paul.Lasky@sci.monash.edu.au
2Max Planck Institute for Solar System Research, 37191 Katlenburg-Lindau, Germany
© Australian Mathematical Society 2007, Serial-fee code 1446-1811/07

53

https://doi.org/10.1017/S1446181100012670 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012670


54 P. D. Lasky, A. W. C. Lun and R. B. Burston [2]

solutions usually having little or no resemblance to our intuitive perception of the
universe. Therefore, we utilize the 3 + 1 formalism for general relativity to model
the spacetime as an initial value problem in a single coordinate patch. In this way
the SCS are akin to shock waves in fluid mechanics, and therefore our perception and
understanding of the solutions are greatly enhanced.

The 3 + 1 formalism involves specifying data on an initial Cauchy hypersurface,
and subsequently evolving through time. The ten Einstein field equations (EFEs) are
decomposed into four constraint equations which must be satisfied on every spacelike
hypersurface, and six evolution equations. Furthermore, they can be supplemented by
the integrability conditions for the EFEs, which are the Bianchi identities. The once
contracted Bianchi identities in four-dimensional spacetimes provide 16 conditions,
whilst the twice contracted provide the remaining four pieces of information, which
are the conservation of energy-momentum equations.

We apply the 3 + 1 formalism for the EFEs and Bianchi identities to the case of a
spherically symmetric sphere of inhomogeneous dust. This article acts to fill a void in
the literature created by [8,9] by deriving the formalism in full detail. Furthermore,
while [8] and [9] used more general fluids, analytic solutions for the equations derived
therein are extremely difficult to find, and hence the equations are awkward to interpret.
It is therefore pertinent to simplify the fluid in order to extract analytic solutions such
that the full strength of the formalism can be displayed. The dust application we
present in this article is solved analytically, and hence a greater understanding of the
structure of the equations is gained. One of our main results from the dust section
is that the metric coefficients are completely determined by the energy-momentum
fields. Furthermore, to determine the matter, and hence the entire spacetime, only the
specification of the matter distribution on the initial hypersurface is required.

We show our solution under a coordinate transformation is equivalent to the class of
Lemaitre-Tolman-Bondi (LTB) solutions [3,11,21]. Furthermore, the line element is
such that an exterior vacuum region, namely the Schwarzschild spacetime expressed
in a generalized form of the Painleve-Gullstrand (PG) coordinates [7,18], is described
using the same coordinate patch. In this way, the work is related to that of [1]
and [6] who, in a single coordinate patch describe the Oppenheimer-Snyder (OS)
collapse [17], that is, a Friedmann-Robertson-Walker (FRW) interior joined to an
exterior Schwarzschild spacetime. As the FRW spacetime belongs to the class of LTB
spacetimes, our work is a generalization of [1] and [6].

The evolution of the system is determined by two first-order equations in the matter
fields. The nature of these equations is such that multi-valued solutions in the mass can
develop given smooth initial data. These are equivalent to the SCS discussed, and we
analyze the initial conditions necessary for these to occur. Furthermore, we discuss
a method for extending these SCS beyond their point of initial formation utilizing
classical fluid dynamics methods. In this way, we show when a globally naked SCS
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forms (that is, beyond the apparent horizon) it will evolve to become a locally naked
singularity, and eventually evolve into a Schwarzschild singularity at r = 0.

As all aspects of the solutions we present can be solved explicitly in terms of
the initial data, the authors believe this formulation is of great value for testing
numerical evolution codes. In particular, the evolution of such a system contains
many complications, including the formation of SCS, as well as the interface between
the two regions of the spacetime. Numerical codes are extremely well developed
to handle shock waves from classical fluid dynamics, and the same methods can be
employed in the relativistic regime. However, the evolution of the interface between
the two regions may be of more primary concern. In particular, the advantage of
having both regions in a single coordinate patch implies no extra work in the code is
required at the moving boundary. One simply sets up the initial Cauchy data, with the
matter terms going to zero at some finite radius, and the evolution will naturally take
care of the free boundary.

The structure of the paper is as follows. In Section 2 we derive the general form
of the LTB metric and analyze the solution. In Section 3 we look at the initial and
boundary conditions required for the specification of the spacetime, and in Section 4
we look at the formation of the apparent horizon. In Section 5 we reduce the system to
the marginally bound case and derive the initial conditions that provide shock waves.
Finally, in Section 6 we look at a specific example of the evolution of the system with
a shock wave.

Geometrized units are employed throughout whereby G — c — 1. Greek indices
run from 0 . . . 3 and Latin from 1. . . 3. The Einstein summation convention is used,
index conventions follow [13] and dQ.1 is the line element for the two-sphere.

2. The Metric

Here, we pedagogically derive the spacetime metric to be used for the remainder
of the article. This metric is beneficial as it describes both an interior dust region as
well as an exterior vacuum region without the need for complicated matching schemes
across the interface. In particular, both regions are represented not by two separate
line elements patched together, but as a single, all encompassing, line element. In this
way, the metric we derive is a generalization of the PG vacuum solution to include
dust in any region of the spacetime desired.

The derivation of the metric utilizes the 3 -I- 1 formalism for general relativity.
This is a powerful method that allows the resulting spacetime to be represented as an
initial value problem. In this way, initial Cauchy data is prescribed and the subsequent
evolution depends continuously on the initial data. Although analytic solutions are
provided here, the authors believe the resulting class of spacetimes provides excellent
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test-beds for numerical schemes; in particular for gravitational collapse.

2.1. ADM equations The decomposition of the EFEs into a 3+1 system is otherwise
known as the ADM formalism [2]. Solving the equations in this form establishes a
metric appropriate to an initial value problem.

Consider a four-dimensional spacetime foliated with three-dimensional spacelike
hypersurfaces. We denote the four-coordinates with ;tM := (t, x'), and a spherically
symmetric line element can be reduced for dust, without loss of generality, to

ds2 = - (a2 - <fr2p2) dt2 + l^fidtdr + fy2dr2 + r2dQ.2, (2.1)

where a = a(t, r) is the lapse function, ^ = <3f(t, r) and 0 = fi(t, r) is the radial
component of the shift vector.

The energy-momentum tensor for dust is given by

where p is the energy density, and nM is the normal vector field tangent to the fluid
lines. We demand three properties for the normal vector, given by two equations

nana — -\ and n[l£Vvna] = 0, (2.2)

where VM is the unique four-covariant derivative operator. The first equation in (2.2)
implies the vector nM is both timelike and normalized, and the second equation implies
the normal vector is hypersurface forming. Utilizing the line element (2.1) and both
equations in (2.2), one can show the normal vector in component form is given by

/i" = - ( 1 , - 0 , 0,0). (2.3)
a

Using the normal vector, the EFEs, G^ = SnT^, can be decomposed into four
constraint equations which must be satisfied on each spacelike hypersurface. These
are the Hamiltonian constraint

3R + -K2 - Au Aij = \6np, (2.4)

where 3fl is the three-Riemann scalar, Atj and K are the trace-free part and trace of
the extrinsic curvature respectively. There are three momentum constraints

2

3'
DJAi} = -D,K, (2.5)

https://doi.org/10.1017/S1446181100012670 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012670


[5] Initial value formalism for Lemaitre-Tolman-Bondi collapse 57

where D, is the unique three-covariant derivative operator. The remaining six equa-
tions are the evolution equations,

2i?n K = K2 + -An AiJ + -3R--D' D,a, (2.6)

2 2 a

XnAu = l-KAu - 2AikAjk + 3RU - i l u
 3/? - ^D,D,a + ^ _Ly DkDka,

(2.7)
where j£fn is the Lie derivative operator with respect to the normal vector.

Equations (2.4)-(2.7) are the ADM equations, and these need to be supplemented
with the conservation of energy-momentum equations

These can be decomposed giving the continuity equation which, for dust, reduces to

K=#n(\np), (2.8)

and the Euler equations which, in dust, are

pD, (In a) = 0 . (2.9)

As we are considering systems with non-vanishing energy density, Equation (2.9)
along with the form of the normal vector (2.3), is enough to show the lapse function is
only a function of the time coordinate. Utilizing coordinate freedom, we set the lapse
function to unity without loss of generality,

a = 1.

This physically implies that the dust particles are moving along timelike geodesies of
the spacetime, which is a result of there being zero pressure.

2.2. Governing equations We begin by putting the metric (2.1), into the ADM
system of equations. Noting that the Lie derivative acting on a scalar function, \(r, is
simply

Jfnf=nadA = ̂ --P-^, (2-10)
dt or

helps to recognize patterns in the systems of equations. In particular, we immediately
find the radial component of Equation (2.5) reduces to

ifn^=0. (2.11)
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This term and its derivatives appear readily throughout the system of equations.
Substituting (2.11) into the remaining equations implies the rest of the system reduces
to a complicated set of differential equations in <%, p and /!.

Applying various combinations of the 3 + 1 EFEs results in being able to write the
system algebraically in ^ and p , leaving only derivatives of the shift function p . In
particular, combining (2.4) and (2.7) we find the derivatives of °tt cancel and a relation
between p and derivatives of the shift results in

p(t,(T)a2da:=M(t,r), (2.12)
i

where we have defined a "mass" function according to a Newtonian definition. We
note here that this function does not physically represent the mass of the system as a
Newtonian volume element has been used. However, this function arises in a natural
way. Furthermore, we will show that this is precisely the mass function commonly
defined in the LTB spacetimes. Furthermore, in a vacuum region of the spacetime
where the energy density vanishes, the mass function simply becomes a constant. We
will see that this vacuum spacetime is given by the Schwarzschild spacetime in a
generalization of the Painleve-Gullstrand coordinates (see Section 2.5).

Adding Equation (2.6) to six times the radial component of Equation (2.7) enables
derivatives of °l/ to again cancel, resulting, after some algebra, in

We now find that the final metric function ^ is related to the shift, and therefore,
implicitly related to the energy density. Thus for dust, the spherically symmetric
metric in the form given by (2.1) is entirely dependent on the initial matter field.

Now by substituting (2.13) into (2.11) we find a second-order evolution equation
solely on the shift

0 = 2n {p1 - 2rXnp). (2.14)

Summarily, the line element takes the form

where /3 is given by a solution of Equation (2.14) and is further constrained by the
requirement that the signature of the spacetime be Lorentzian, /S2 - 2rifn^8 > — 1.

Due to the method of deriving the metric, we note that it is conducive to an initial
value formulation. In particular, the evolution of the system is governed by the
second-order partial differential equation (2.14). To solve this equation one must pose
boundary and initial data, which is discussed in Section 3.
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The physical realization this method has brought is due to the manner in which
it was derived. Many methods for solving the EFEs require simply solving for
the full four-dimensional spacetime with minimal consideration of the physics until
the solution has been found. It is then difficult to decipher the physics due to the
seemingly arbitrary nature of the coordinates. By specifying spacelike hypersurfaces
and allowing for the subsequent evolution of the system, we have reduced the problem
to one that relates closer to the physical intuition grasped from everyday life.

2.3. Gravitoelectromagnetism Another important set of equations which can be
solved alongside the ADM equations (2.4)-(2.7) and the conservation equations (2.8)-
(2.9) are the remaining Bianchi identities. In four dimensions one can go to the once
contracted Bianchi identities without loss of generality. By introducing the Weyl
conformal curvature tensor, the once contracted Bianchi identities can be expressed
in terms of the energy momentum tensor

V"C«M1W = in (v[vTa]li + -

The Weyl tensor is decomposable into two spatial, trace free, gravito-electromagnetic
(GEM) tensors, known as the electric and magnetic conformal curvatures, £,•; and By
respectively, where

Etj := CiaJpnanfi and

BU : = -ZSai

The electric conformal curvature is a measure of the tidal forces present in the
spacetime, analogous to the tidal tensor in Newtonian gravitation. The magnetic
conformal curvature has no Newtonian analogue, and is in some sense a measure of
the intrinsic rotation associated with the spacetime [5]. Therefore, while By = 0 in
spherical symmetry, we note that it will have non-trivial contributions for spacetimes
with less symmetries. For example, one aim of the current program of research
is to generalize this method to include the family of Robinson-Trautman solutions
which contain gravitational radiation. These spacetimes will begin with a non-zero
magnetic curvature. However one suggests in these scenarios that this contribution
will be "radiated away" in the form of gravitational radiation such that the steady-
state solution is spherically symmetric. Furthermore, a radiating, axially-symmetric
spacetime will have two components of the magnetic curvature. One component
will be associated with the intrinsic angular momentum of the spacetime, and will
remain once the system has radiated to a steady state. The other component associated
with the gravitational radiation will be radiated away in the vein associated with the
Robinson-Trautman solutions.
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As mentioned, for spherically symmetric dust the magnetic curvature tensor van-
ishes and the only contribution to the Weyl tensor is from the electric curvature. The
trace-free nature of the electric curvature, as well as the spherical symmetry imposed,
implies it has the simple form

E,J=diag(-2k,k,k), . (2.16)

where A. = k(t, r) represents the tidal forces associated with the spacetime. Decom-
posing the Bianchi identities, given 2?,; = 0, yields two non-trivial equations

t 87T
DkEki = —DiP and (2.17)

J?nEu- ±u EklA" + 5A(i
kEJ)k - X-EUK = 4npAu. (2.18)

Equation (2.17) can be integrated by using the form of the electric curvature (2.16),
and by substituting the definition for the mass (2.12), to give the tidal forces for the
spacetime

We note that in a vacuum region, the mass function is constant, and the tidal forces
therefore become

which is the familiar form known for the Schwarzschild spacetime. These quantities
will become important for the discussion of shock formation in Section 5.1.

The other non-trivial GEM equation (2.18) can be calculated using Equations (2.12)
and (2.16), and also substituting (2.19), and it simply gives an integrability check for
the evolution equation which will be given for the mass function (see Section 2.4, in
particular, Equation (2.25)).

2.4. Equivalence with LTB We have derived the reduced field equations (2.14),
for the line element (2.15) that represents spherically symmetric dust. We now show
that this can be transformed into LTB coordinates (r, /?, 6, <p).

Let r be a function of both the new time and new radial coordinates, that is,
r = r{x, R), and also let t = r, then let

3r(T, R)
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In this new coordinate system, the normal vector has the form n^ = (1,0, 0, 0), and
the observer is now comoving with the fluid. In these coordinates the Lie derivative of a
scalar function is simply the derivative with respect to the new temporal coordinate, r,
and the condition given by (2.14) becomes

This is a third-order differential equation in the function r(r, R), and can be integrated
twice to yield

«.20,
, R)

where E(R) and m(R), known as the energy and Misner-Sharp mass [12] respectively,
are functions of integration. Furthermore, rearranging the metric we find

/3r(t,fi)\2

ds2 = -dx2 + y aR ' dR2i + r(x, R)2dQ.2. (2.21)
1 + £(/?)

Equations (2.21) and (2.20) are the standard form of the LTB metric [3,11,21].
The function E(R), arbitrary up to the constraint E(R) > - 1 , is a measure of the

energy of a shell at a radius R [20]. Therefore, this function being equal to zero is
equivalent to saying the particles at infinity have zero kinetic energy.

It was found during the above transformation that this energy function can be
expressed in terms of the shift function in our coordinates

E(R) = P2- 2rifn)8, (2.22)

which is simply the first integral of Equation (2.14).
Transferring back into the original coordinates, we note that the energy function is

a function of t and r. Furthermore, substituting Equation (2.22) back through (2.14),
we see

S£nE = 0.

Now, substituting the mass defined in Equation (2.12) back into (2.22) gives
1M

P2 = E + , (2.23)
r

from which we can further show this implies

senM = o.
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Finally, the above equations can be put back through the line element, and we find
the resulting system can be summarized by the metric and two constraint equations

(JE + ^-dt + dr)
ds2 = dt1 + - ^ ^ - ^ '- + r W, (2.24)

3r V r dr

A + ™ 0. (126)
dt V r dr

Equations (2.25) and (2.26) provide a coupled system of differential equations which
are solved concurrently to determine the dynamics of the system.

We note that the positive root of Equation (2.23) has been selected as this represents
a collapsing model. Choosing the negative root is equivalent to reversing the time
coordinate, and therefore gives an expanding, cosmological-type model.

2.5. Vacuum Regions While we have derived this solution as a dust problem, we
note that these coordinates also describe vacuum regions. This is shown by simply
letting the energy density vanish at some radii on the initial hypersurface. This implies
that the mass function becomes constant, and thus Equation (2.25) is trivially satisfied.
Therefore, vacuum regions of the system are described by the line element (2.24) and
Equation (2.26) with M = Ms e R. We describe this system as the "generalized
Painleve-Gullstrand" (GPG) coordinates' as they reduce to the usual PG coordinates
[7,18] for the particular case of E = 0. Evaluating the Einstein tensor for the GPG
metric we find it vanishes as expected. This is therefore a vacuum solution of the
field equations, and spherical symmetry along with Birkhoff's theorem implies this
solution must be diffeomorphic to the Schwarzschild metric.

However, the vacuum solution described by (2.24) and (2.26) is actually a family
of solutions parametrized by the energy function. Therefore, for all solutions of
Equation (2.26), there will exist a coordinate transformation to the Schwarzschild
metric, in coordinates (T,r,9,<p). This transformation is given by solutions to the
following coupled system of differential equations:

To show this is a valid coordinate transformation amounts to showing that there
exists a solution of Equations (2.27) and (2.28), which is done by checking the

'A more detailed analysis of these vacuum coordinates will be presented in a future article.
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integrability conditions. That is, by differentiating Equation (2.27) with respect to the
radial coordinate, and Equation (2.28) with respect to the temporal coordinate, one can
show the partial derivatives commute providing Equation (2.26) is satisfied. Therefore,
providing the energy function is a solution of (2.26), the coordinate transformation is
valid, and applying the coordinate transformation yields

•-(-?)• r

which is exactly the Schwarzschild metric.

3. Initial and Boundary Conditions

We can now establish the initial and boundary data required to solve the system of
equations that describe the spacetime. We are required to specify an energy density for
the initial hypersurface. Due to the formulation of the solution, this energy density can
take any form, including vanishing for finite regions. For example, if one wanted to
study the gravitational collapse of a spherical body, then one specifies an appropriate
energy density out to a finite radius, at which point the energy density is allowed to
vanish beyond that radius. However, one can also study the collapse of concentric
shells of matter; for example by specifying successive Heaviside step functions for
the initial density. The robustness of the formalism allows for the study of any initial
configuration of spherically symmetric dust.

Whatever form the initial energy density takes, we can evaluate the initial mass
function through the definition given by Equation (2.12). For vacuum regions, this
mass function reduces to a constant. We therefore have the initial conditions for the
mass function throughout the initial spacelike hypersurface.

The data for the energy function is a little more tricky. By expressing Equa-
tion (2.25) in terms of the energy function, and substituting Equation (2.12), after
some algebra we find

* < 0 ' r < r B ) = [ »''=« - - p(0, *Wdv.

Therefore, the energy function is found by specifying two terms, namely

dp
— and p(0, r).
"* 1=0

While this works for the non-vacuum regions, one still has the freedom to choose
the form of the energy function for the vacuum regions. However, if all regions of
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the spacetime are to be described by a single coordinate patch, then one can employ
continuity of the energy function across the interface of the matter filled and vacuum
regions to determine the boundary conditions for the vacuum region.

4. Apparent horizon

No discussion of gravitational collapse is complete without contemplating the
apparent horizon. We shall now show that the coordinate system used herein allows
for the description of the apparent horizon in a clear and concise manner.

The apparent horizon is defined as the boundary of the closure of the union of all
trapped regions on a Cauchy surface [22]. An alternate, but equivalent, definition is
given by the surface with a vanishing expansion factor, ©, which is defined as the
divergence of a congruence of null geodesies

0 := Vak
a. (4.1)

Here £M is a null vector which is everywhere tangential to the congruence of radial
null geodesies. To derive this null vector, we must look at the equations of motion
describing the null geodesies in the spacetime. These are given by the Lagrangian, _£?,
and the Euler-Lagrange equations,

1 2AA ., . „ 2M
= 0, (4.2)

d dS£ 3i? d 3if 3if
0 = : and 0 = , (4.3)

dk dt dt dk dr dr

where a dot denotes differentiation with respect to the affine parameter along the
geodesies, k. Furthermore, we have used spherical symmetry to imply that the
apparent horizon will only depend on the radial and temporal coordinates, that is,
(9 = </> = 0.

The three equations (4.2), (4.3) can now be integrated to solve for i and r in terms of
a single constant of integration and the metric coefficients. The null vector fcM := iM

can then be expressed as

P = [yr+T, 1 + E - y/TTEy/^- + E, 0, o],

where the constant of integration has been scaled to unity without loss of generality.
Taking the divergence of this quantity, as indicated by Equation (4.1), one finds the
expansion factor vanishes along the surface given by the implicit parametric equation

r(t) = 2M(t,r(t)).
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This remarkably simple form is true for all choices of initial conditions. Furthermore,
at the interface between the matter and vacuum regions, the mass function simply
becomes the Schwarzschild mass, and the horizon reduces to the familiar event horizon
in the Schwarzschild spacetime.

5. Marginally Bound Solution

For the remainder of the article we only consider the case where the energy function,
£(/?), vanishes. Known as the marginally bound case2, this model provides a simpler
example than the non-zero energy case. The marginally bound system is described by
the line element and single condition on the mass

^ _dt

(5.D

Equation (5.1) is a first-order, quasi-linear partial differential equation which gov-
erns the dynamics of the system. The fact that this can easily be written in conservation
form is important to the numerical analysis of the system. In particular, systems that
can be written in conservation form are preferred since the convergence (if it exists)
to weak solutions of the equations is guaranteed by the Lax-Wendroff theorem [10].

The general solution to (5.1) is given implicitly by

M = & I -r3 /2 -I- rV2M 1, (5.2)

where & is a function of integration. To find the particular solution, and hence
determine the dynamics of the system, one simply requires the input of an initial mass
distribution. This initial data can be expressed in terms of the energy density, which
is translated into an initial mass via the definition (2.12).

The nature of Equation (5.2) is such that given smooth initial data, the solution can
evolve to be multi-valued for the mass function, violating physical intuition regarding
the behaviour of mass. These multi-valued solutions correspond to SCS in general
relativity, and are also described by mathematical shock waves in this formalism. The
solution prior to the formation of these shocks is described by the classical solution of
the differential equation (5.1) while after the formation of the shock the solution can
still be evolved utilizing a weak solution.

2E(R) < 0 is the bound case and E(R) > 0 is the unbound case.
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5.1. Classical Solution By analyzing the characteristics of (5.1), we can determine
the point at which the classical solution fails, and also the initial conditions required
for this to occur at some point within the collapse process.

The characteristics of Equation (5.1) can be represented by introducing a parame-
ter £, such that

r = f(£), r = r{l-) and M = M(£).

Furthermore, by defining t(0) — 0 without loss of generality, and defining a new para-
meter s :— r(0), we see M(?(0), r(0)) = M(0, s) :— M0(s). Now, the characteristics
are given by the parametric equations

M = M0(s), t = (5.3)

(5.4)

The solution becoming multi-valued corresponds to the intersection of the character-
istic curves, which is interpreted as when the transformation (£, s) -> (t, r) becomes
non-invertible. That is, then the determinant of the Jacobian of transformation van-
ishes. Therefore, to find conditions for the formation of the shock, we must solve

= 0.

It is trivial to show from Equations (5.3) and (5.4) that

3/

3*

dr

8?

Ol
ds

SL
ds

£=0.
This condition is equivalent to

t =

r — ,

(5.5)

(5.6)

where a prime denotes differentiation with respect to s. We are only concerned with

shocks that occur in the first quadrant of the (t, r) plane. Therefore, we must determine

the conditions on Mo and M'Q which imply the Jacobian vanishes.

As s — r(t = 0), we see s e [0, oo). Furthermore, p > 0 and M0(s) is defined

by letting t — 0 in Equation (2.12), implying M0(s) > 0 for all s. Therefore, by

demanding t > 0 in (5.5), we see

M'0>0.
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This will only not hold true when p(0, r) = 0 for some finite range of r, as this will
imply M'o = 0. Therefore, the characteristics emanating from radii for which there is
a vanishing energy density will never cross, as expected.

Now, demanding r > 0 in Equation (5.6) implies, after some manipulation,

> 0. (5.7)

Thus, shocks occur in the first quadrant of the (t, r) plane if for any finite range of
^ e [0, co), the inequality in (5.7) is satisfied.

Finally, letting t = 0 in (2.19) implies the "tidal force" at t = 0 is

>
3 ds

and considering s > 0, the inequality in (5.7) is equivalent to

k(0, r) < 0.

Summarily, we have proved the following theorem:

THEOREM 5.1 (Shell-Crossing Theorem). SCS occur in marginally bound LTB
collapse if and only ifk(0, r) < Ofor some finite range ofr e [0, oo).

Conversely, if A.(0, r) > 0 for all r, then shock waves will not form. Furthermore,
the initial time for the shock to begin, denoted ts, can be determined solely from the
initial conditions by taking the minimum of (5.5),

= V2min

5.2. Weak Solution The solution is satisfied classically until the point where the
characteristics first cross. This is the initial point of the shock surface, and beyond
this point the solution to Equation (5.1) is only given by a weak solution. The analysis
of the weak solution is made simpler by putting the equation into conservation form.
This is done by rescaling the radial coordinate such that r := r3/7, implying

dM d

dt dr

where f(M) := —V^M3/2. The weak solution is defined as follows: consider a test
function \js € C1 which vanishes everywhere outside a rectangle defined by 0 < t < T
and a < r < b, and also on the lines t = T, a = r and b = r (for some a, b and
T e R). A weak solution is defined to be a solution of

ff (
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for all test functions ir.
The weak solution contains a world-line whereby the solution contains a jump dis-

continuity which is the shock surface. This world-line can be expressed parametrically
in terms of the time coordinate, that is, rs(t). Either side of the shock, the solution is
satisfied by the usual classical solution discussed in Section 5.1.

A method for evolving shocks beyond the initial point of formation, utilized in
many classical scenarios, is to introduce a viscosity term into the differential equation,

dM d 82M

Here, e -> 0+ near r = fs(t), and is zero elsewhere. This has the effect of smoothing
out the shock into a travelling wave solution. Despite the spacetime being pressureless,
we can imagine when particles begin to get extremely close to one another, as is the
case just before a shock begins to occur, a force would begin to play a role that kept
these particles from getting too close.

Utilizing the viscosity term in the differential equation, we can derive a condition
on the shock known as the Rankine-Hugionot condition, which gives the velocity of
the shock (see for example [19]). This is given by

dr, [f{M)t
Vs : = — = T—, where [.. .1 := hm - lim .

This result can be transformed back into the radial coordinate utilized in the metric,
and the velocity of the shock is found to be

_ dr, _ -
s ' dt

We note that the smoothing either side of the shock necessarily implies that the mass is
still a monotonically increasing function in the positive radial direction. Therefore, V,
must necessarily be negative, implying the shock travels in the direction towards
r = 0. Furthermore, once formed there is no mechanism to stop the evolution of
the shock, and therefore during the evolution it will reach r = 0, at which point the
shock will cease to exist and the classical solution will be regained. Thus, we see that
even if a shock forms as a global naked singularity, it will evolve to the end state of
gravitational collapse as a black hole.

6. Shock Example

We wish to highlight the formation and evolution of a shock wave by way of
example. In particular, specifying an initial matter distribution such that the initial tidal
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force, X(0, r) < 0 for a finite range of r, ensures a shock will develop throughout the
evolution. We define an initial energy-density distribution by the following piecewise
continuous function:

A> =
I 3 C<^S 3ra, 3 C ( ^ 7Z~ ~^~ ' r — rBo

(O, r > rd0 "

While the density profile given (Figure 1) is an unrealistic starting point for grav-
itational collapse, we note that the energy density in realistic collapse scenarios may
not necessarily be monotonically decreasing, and may therefore have corresponding
regions where the tidal force takes on the opposite sign. For example, an accretion
disc around a black hole will have a distribution not dissimilar to the present example.

Po

FIGURE 1. Initial density profile of an energy-density distribution

While an analytic solution utilizing the above initial conditions can be found, it
is extremely long, implicit and highly nonlinear. However, the classical solution can
be plotted even past the initial formation of the shock. We do this only to display
the nature of the shell crossing singularity being a multi-valued function in the mass.
Figure 2 displays the characteristic curves of constant mass emanating from the initial
distribution. The dashed curves are those coming from the exterior, vacuum region of
the spacetime. The shock wave is represented here by a crossing of the characteristic
curves. Figure 3 displays three plots of the mass function against the radius of the
classical solution at three different times.

7. Conclusion

A review of the literature associated with LTB collapse shows that major phenom-
enological discussion is focused on SCS (for example, [4,15,16,20]). However, much
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FIGURE 2. Characteristic curves of constant mass.

M M M

FIGURE 3. Initial mass, mass profile at shock formation and mass profile after shock formation.

of this work is done in terms of arbitrary functions which are difficult to interpret.
The work herein derived LTB regions and Schwarzschild regions in GPG coor-

dinates via an initial value formulation. The advantage of this approach is four-
fold:

(1) It enabled the metric to be written in terms of a single line element, thus avoiding
complicated matching schemes at the interface. This differs from the standard ap-
proach in the literature (for example, [13]) where two spacetimes are matched across
a boundary by a coordinate transformation. Difficulties often arise in showing that
this coordinate transformation is valid everywhere along the boundary as the Jacobian
of transformation is non-trivial to analyze. By writing the line element in a single
coordinate patch, no transformation is required and this difficulty is avoided. It has
already been shown that this method is extendable beyond the dust case to include
both perfect fluids [8] and also a completely general fluid [9]. However, the equa-
tions derived in those cases are extremely difficult to handle due to more terms in the
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fluid implying more terms are also required to describe the geometry (see [9] for a
discussion of this point). The dust cases analyzed in this article provide relatively
straightforward analytic solutions, and hence the structure of the equations is better
understood.
(2) Furthermore, as analytic solutions are found from the initial conditions, this

approach is excellent as a test-bed for numerical schemes. In particular, the evolution
of the boundary of the two regions of the spacetime and of the SCS singularity can be
tested as exact analytic forms of both of these are known.
(3) The metric coefficients are all expressed in terms of the matter fields. Further-

more, the dynamics of the spacetime are completely determined by two differential
equations governing the mass and energy functions. The problem is then solved using
physically reasonable initial and boundary conditions on the energy density. The evo-
lution of this mass function can result in multi-valued solutions for particular choices
of initial conditions, which is exactly equivalent to SCS. The advantage of this scheme
is that it explicitly identifies the SCS to be equivalent to shock waves. This enables one
to analyze the dynamical extensions of SCS beyond their initial point of formation.
In particular, we showed that a SCS that forms as a globally naked singularity must
become a locally naked singularity, and eventually fall to a Schwarzschild singularity
at r = 0, at which point it will cease to affect the system.
(4) The spacetime is easier to visualize due to the physical intuition being similar

to familiar fluid problems. Rather than dealing with abstract four-dimensional co-
ordinates, we deal with the propagation of hypersurfaces, exactly as we imagine the
spacetime in which we live. Mathematically, this implies all functions appearing in
the solution are not necessarily arbitrary, but are more appropriately based on physical
intuition.
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Appendix

For clarity, we express the extrinsic curvatures Ktj, and three-Riemann curvatures
iRij, in terms of the metric coefficients. The Lie derivative operator with respect to
the normal S£n, is expressed when operating on a scalar in Equation (2.10), and we
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have already let a = 1 (see Section 2.1):

2 0 0

- L

1 / 2 f ° °
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