
Bull. Aust. Math. Soc. 101 (2020), 299–310
doi:10.1017/S0004972719000868

ON APPROXIMATELY ADDITIVE MAPPINGS
IN 2-BANACH SPACES
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Abstract

We show how some Ulam stability issues can be approached for functions taking values in 2-Banach
spaces. We use the example of the well-known Cauchy equation f (x + y) = f (x) + f (y), but we believe
that this method can be applied for many other equations. In particular we provide an extension of an
earlier stability result that has been motivated by a problem of Th. M. Rassias. The main tool is a recent
fixed point theorem in some spaces of functions with values in 2-Banach spaces.
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1. Introduction

The question of how much a function satisfying an equation approximately (for
example, a difference, differential, functional or integral equation) may differ from
a solution to the equation arises naturally in applications of mathematics. The theory
of Ulam (also called Ulam–Hyers or Hyers–Ulam) stability provides some efficient
tools to evaluate such errors (see [11, 21, 22] for further details and references).

Ulam pioneered these investigations when he posed a problem in 1940 in his talk at
the University of Wisconsin (see [20, 21]). Roughly speaking, a functional equation is
said to be stable in a class of functions if any function from that class, satisfying the
equation approximately (in some sense), is near (in a given way) to an exact solution of
the equation [1, 11, 21, 25]. The following definition corresponds to our considerations
in this paper and makes this notion a bit more precise for a metric space (Y, d) and an
equation in two variables. (Here, AB means a family of all functions mapping a set
B , ∅ into a set A , ∅ and R stands for the set of reals.)

Definition 1.1. Let S , ∅ be a set, D0 ⊂ D ⊂ YS and E ⊂ RS×S be nonempty, and
consider maps S : E → RS , H : Y × Y → Y and T :D→ YS×S . The equation

(Tψ)(s, t) = H(ψ(s), ψ(t)) (1.1)
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is said to be S-stable inD0 if, for any ψ ∈ D0 and δ ∈ S with

d((Tψ)(s, t),H(ψ(s), ψ(t))) ≤ δ(s, t), t, s ∈ S ,

there is a solution φ ∈ D of the equation such that d(φ(t), ψ(t)) ≤ (Sδ)(t) for t ∈ S.

Such stability problems have been investigated mainly in classical spaces [9, 11, 21–
24] and one of the most classical results is the following (see [10] and also [5, 7]).

Theorem 1.2. Suppose that p ∈ R \ {1}, V and W are normed spaces, ∅ , D ⊂ W \ {0}
and consider the following three conditions (where N stands for the positive integers):

(i) if p > 1, then D ⊂ 2D := {2x : x ∈ D};
(ii) if p ∈ [0, 1), then 2D ⊂ D;
(iii) if p < 0, then −x, nx ∈ D for x ∈ D and n ∈ N, n ≥ n0, with some n0 ∈ N.

Assume that c ∈ R+ := [0,∞) and g ∈ VD are such that

‖g(x1 + x2) − g(x1) − g(x2)‖ ≤ c(‖x1‖
p + ‖x2‖

p) (1.2)

for x1, x2 ∈ D with x1 + x2 ∈ D. Then the following two statements hold.

(a) If V is complete and (i) or (ii) holds, then there is a unique h ∈ VD that is additive
on D (that is, h(x + y) = h(x) + h(y) for x, y ∈ D with x + y ∈ D) and such that

‖g(x) − h(x)‖ ≤ c|1 − 2p−1|−1‖x1‖
p, x ∈ D. (1.3)

(b) If (iii) holds, then g is additive on D.

However, it is clear that the concept of an approximate solution and the idea of
nearness of two functions can be understood in various, nonstandard ways, depending
on a particular situation. One such nonclassical way of measuring a distance can be
introduced by the notion of 2-norm, proposed by Gähler in [18] (more information is
provided in the next section). To the best of our knowledge, the first paper on the Ulam
stability of functional equations in 2-Banach spaces is [19] (see also [8, 12–16, 26]
for some later related results). We show how to deal with some Ulam stability issues
(analogous to Theorem 1.2) in such spaces. We believe that those ideas can be applied
in many other similar problems.

We also suggest an open problem concerning optimality of estimates (4.7) and (5.1)
(see Remark 4.4).

2. Preliminaries

By a 2-normed space (see [17]) we mean a pair (X, ‖· , ·‖) such that X is a real linear
space of dimension not smaller than 2 and ‖· , ·‖ : X × X → R+ (R+ denotes the set of
nonnegative reals) is a function satisfying the following conditions:

(a) ‖x, y‖ = 0 if and only if x and y are linearly dependent;
(b) ‖x, y‖ = ‖y, x‖ for x, y ∈ X;
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(c) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖ for x, y, z ∈ X;
(d) ‖αx, y‖ = |α| ‖x, y‖ for α ∈ R and x, y ∈ X.

A sequence (xn)n∈N (N denotes the set of positive integers) of elements of a 2-
normed space X is a Cauchy sequence if there exist linearly independent y, z ∈ X with

lim
n,m→∞

‖xn − xm, y‖ = 0 = lim
n,m→∞

‖xn − xm, z‖;

whereas (xn)n∈N is said to be convergent if there exists x ∈ X (called a limit of this
sequence and denoted by limn→∞ xn) such that limn→∞ ‖xn − x, y‖ = 0 for y ∈ X.

In a 2-normed space a sequence has at most one limit and the standard property
of the limit of a linear combination of two sequences is valid. A 2-normed space, in
which every Cauchy sequence is convergent, is called a 2-Banach space. We recall a
property from [26] and formulate an obvious, but useful, remark.

Lemma 2.1 [26]. If X is a 2-normed space and (xn)n∈N is a convergent sequence of
elements of X, then limn→∞ ‖xn, y‖ = ‖limn→∞xn, y‖ for each y ∈ X.

Remark 2.2. Let X be a 2-normed space and y, z ∈ X. According to the condition (a)
of the definition of a 2-norm, ‖z, y‖ , 0 if and only if the vectors z, y are linearly
independent.

Note that (in view of the Cauchy–Schwarz inequality), if 〈· , ·〉 is an inner product
in a real linear space X of dimension at least 2 and

‖x, y‖ :=
√
‖x‖2‖y‖2 − 〈x, y〉2, x, y ∈ X, (2.1)

then conditions (a)–(d) are fulfilled. Moreover (see [8, Proposition 2.3]), if (X, 〈· , ·〉)
is a real Hilbert space, then X is a 2-Banach space with respect to the 2-norm given
by (2.1).

If we take in R2 the classical inner product: 〈(x1, x2), (y1, y2)〉 = x1y1 + x2y2 for
(x1, x2), (y1, y2) ∈ R2, then the corresponding 2-norm, given by (2.1), takes the form

‖(x1, x2), (y1, y2)‖ := |x1y2 − x2y1|, (x1, x2), (y1, y2) ∈ R2.

Clearly, if ‖· , ·‖1 and ‖· , ·‖2 are 2-norms in a real linear space X and α, β ∈ R+,
α2 + β2 > 0, then ‖· , ·‖ = α‖· , ·‖1 + β‖· , ·‖2 is also a 2-norm in X.

An analogue of Definition 1.1 for 2-normed spaces could be formulated as follows.

Definition 2.3. Let (Y, ‖· , ·‖) be a 2-normed space and S , ∅ be a set. Let E ⊂ RS 2×Y

andD0 ⊂ D ⊂ YS be nonempty, and S : E → RS×Y , H : Y × Y → Y and T :D→ YS 2
.

Then (1.1) is said to be S-stable in D0 if, for any ψ ∈ D0 and δ ∈ E such that
‖(Tψ)(s, t) − H(ψ(s), ψ(t)), y‖ ≤ δ(s, t, y) for every s, t ∈ S and y ∈ Y , there is a solution
φ ∈ D of (1.1) with ‖φ(t) − ψ(t), y‖ ≤ (Sδ)(t, y) for t ∈ S, y ∈ Y .
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3. Fixed point theorem

Now, we present a fixed point theorem from [8, Theorem 1] that is the basic tool in
the proof of our main result. To this end let us introduce three hypotheses.

(H1) E , ∅ is a set, (Y, ‖· , ·‖) is a 2-Banach space, Y0 ⊂ Y contains two linearly
independent vectors, j ∈ N, fi ∈ EE , gi ∈ YY0

0 and Li ∈ R
E×Y
+ for i = 1, . . . , j.

(H2) T : YE → YE is an operator satisfying the inequality

‖(T ξ)(x) − (Tµ)(x), y‖ ≤
j∑

i=1

Li(x, y)‖ξ( fi(x)) − µ( fi(x)), gi(y)‖,

ξ, µ ∈ YE , x ∈ E, y ∈ Y0.

(H3) Λ : R+
E×Y0 → R+

E×Y0 is an operator defined by

(Λδ)(x, y) :=
j∑

i=1

Li(x, y)δ( fi(x), gi(y)), δ ∈ R+
E×Y0 , x ∈ E, y ∈ Y0.

Now, we are in a position to present the fixed point theorem mentioned above.

Theorem 3.1. Suppose that the hypotheses (H1)–(H3) hold and that the functions
ε : E × Y0 → R+ and ϕ : E → Y satisfy the two inequalities

‖(Tϕ)(x) − ϕ(x), y‖ ≤ ε(x, y), ε∗(x, y) :=
∞∑

l=0

(Λlε)(x, y) <∞ (3.1)

for x ∈ E and y ∈ Y0. Then the operator T has a unique fixed point ψ ∈ YE with
‖ϕ(x) − ψ(x), y‖ ≤ ε∗(x, y) for x ∈ E, y ∈ Y0; and ψ(x) = liml→∞(T lϕ)(x) for x ∈ E.

4. Stability

In this section we show that an analogue of the following theorem, proved for the
classical normed spaces [6, Theorem 1.3], can be obtained also for functions taking
values in 2-Banach spaces (actually, we prove it in a somewhat more general form).

Theorem 4.1. Let p < 0, V be a Banach space, W be a normed space and D ⊂W \ {0}
be nonempty. Assume that there is a positive integer n0 with nx ∈ D for x ∈ D and
n ∈ N, n ≥ n0. If c ∈ R+ and g ∈ VD satisfies (1.2), then there is a unique h ∈ VD that is
additive on D and such that

‖g(x) − h(x)‖ ≤ c‖x1‖
p, x ∈ D. (4.1)

This result was motivated by an open problem raised by Th. M. Rassias and
complements Theorem 1.2 by showing that the situation changes (because (4.1) is
optimal) if we drop the assumption in (iii) that −x ∈ D for x ∈ D. For some further
comments and several other related outcomes, we refer to [2–5, 7, 10, 27–29].
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In what follows, Y is a 2-Banach space, (S , +) is an abelian semigroup and
∅ , X ⊂ S . We assume that there exists a positive integer k0 > 1 with

k0x ∈ X, x ∈ X, (4.2)

where 1x = x and (n + 1)x = nx + x for x ∈ S and n ∈ N. We write N0 := {kn
0 : n ∈ N}.

Let A1, A2 : S → Y be additive (that is, Ai(x + z) = Ai(x) + Ai(z) for every x, z ∈ S ),
C,D : Y → Y , c, d ∈ R+, p, q ∈ (−∞, 0) and ψ : X2 × Y → R be a function such that

ψ∗k,i(x, y) =

∞∑
n=0

(Λn
kψk,i)(x, y) <∞, x ∈ X, y ∈ Y, i = 1, 2, k ∈ N0, k > κ, (4.3)

with some κ ∈ N (see Remark 5.1), where we write ψk,1(x, y) := ψ(x, kx, y),
ψk,2(x, y) := ψ(kx, x, y), Λk : RX×Y

+ → RX×Y
+ is given by

(Λkδ)(x, y) := δ((k + 1)x, y) + δ(kx, y), x ∈ X, y ∈ Y, δ ∈ RX×Y
+ , (4.4)

and Λ0δ = δ, Λn
k = Λk ◦ Λn−1

k for δ ∈ RX×Y
+ , n ∈ N.

Moreover, we assume that the images of C and D, C(Y) and D(Y), are not ‘too
small’, that is, the following hypothesis is valid (Ry := {ay : a ∈ R} for y ∈ Y).

(H) The set D−1(Y \ Ru) ∩C−1(Y \ Rv) contains two linearly independent vectors for
every u, v ∈ Y .

Define Ψ : X2 × Y → R by the formula

Ψ(x1, x2, y) := c‖A1(x1),C(y)‖p + d‖A2(x2),D(y)‖q

when
‖A1(x1),C(y)‖ · ‖A2(x2),D(y)‖ , 0 (4.5)

and Ψ(x1, x2, y) := ψ(x1, x2, y) otherwise.
Our main result reads as follows.

Theorem 4.2. Let f : X → Y satisfy the inequality

‖ f (x1 + x2) − f (x1) − f (x2), y‖ ≤ Ψ(x1, x2, y) (4.6)

for every y ∈ Y and x1, x2 ∈ X such that x1 + x2 ∈ X. Then there exists a unique
h : X → Y that is additive on X and such that

‖ f (x) − h(x), y‖ ≤ min
{
c‖A1(x),C(y)‖p, d‖A2(x),D(y)‖q

}
(4.7)

for every x ∈ X and y ∈ Y with ‖A1(x),C(y)‖ · ‖A2(x),D(y)‖ , 0.
Moreover, for all x ∈ X and y ∈ Y with ‖A1(x),C(y)‖ · ‖A2(x),D(y)‖ = 0,

‖ f (x) − h(x), y‖ ≤ inf
k∈N0

ψ∗k,0(x, y),

where ψ∗k,0(x, y) := min{ψ∗k,1(x, y), ψ∗k,2(x, y)} and ψ∗k,i is given by (4.3).
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Proof. Fix k ∈ N0, k > κ, with kp + (1 + k)p < 1 and kq + (1 + k)q < 1. It is easy to see
that x2 = kx1 in (4.6) gives

‖ f ((k + 1)x1) − f (x1) − f (kx1), y‖ ≤ c‖A1(x1),C(y)‖p + kqd‖A2(x1),D(y)‖q (4.8)

for x1 ∈ X and y ∈ Y such that

‖A1(x1),C(y)‖ · ‖A2(x1),D(y)‖ , 0 (4.9)

and
‖ f ((k + 1)x1) − f (x1) − f (kx1), y‖ ≤ ψ(x1, kx1, y) (4.10)

for x1 ∈ X and y ∈ Y with ‖A1(x1),C(y)‖ · ‖A2(x1),D(y)‖ = 0. Let ε0, εk : X × Y → R
for k ∈ N be defined as follows:

ε0(x1, y) = c‖A1(x1),C(y)‖p, εk(x1, y) = kqd‖A2(x1),D(y)‖q

for x1 ∈ X and y ∈ Y satisfying (4.9) and ε0(x1, y) = εk(x1, y) = 1
2ψ(x1, kx1, y) otherwise.

Let ε = ε0 + εk and Λk : RX
+ → R

X
+ be given by (4.4).

Define the operator Tk : YX → YX by

(Tkξ)(x) := ξ((k + 1)x) − ξ(kx), x ∈ X, ξ ∈ YX .

Then Λk has the same form as Λ in (H3) (with E = S , j = 2, f1(x) = (k + 1)x, f2(x) = kx
and Li(x, y) = 1, gi(y) = y for x ∈ X, y ∈ Y0 := Y , i = 1, 2) and (H2) holds with T = Tk;
moreover, (4.8) and (4.10) can be written jointly as

‖(Tk f )(x1) − f (x1), y‖ ≤ ε(x1, y), x1 ∈ X, y ∈ Y.

Note that

ε0(mx1, y) = mpε0(x1, y), εk(mx1, y) = mqεk(x1, y), m ∈ N. (4.11)

So, it is easy to prove by induction that, for every x1 ∈ X and y ∈ Y satisfying (4.9),

(Λn
kε0)(x1, y) = (kp + (1 + k)p)nε0(x1, y), (Λn

kεk)(x1, y) = (kq + (1 + k)q)nεk(x1, y)

for every n ∈ N and, consequently,

∞∑
n=0

(Λn
kε)(x1, y) = ε0(x1, y)

∞∑
n=0

(kp + (1 + k)p)n + εk(x1, y)
∞∑

n=0

(kq + (1 + k)q)n

=
ε0(x1, y)

1 − kp − (1 + k)p +
εk(x1, y)

1 − kq − (1 + k)q . (4.12)

If x1 ∈ X and y ∈ Y are such that (4.9) does not hold, then, by (4.3),

∞∑
n=0

(Λn
kε)(x1, y) =

∞∑
n=0

(Λn
kψk,1)(x1, y) = ψ∗k,1(x, y) <∞.
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Thus, we have shown that (3.1) is valid with E = S , Y0 = Y , T = Tk, ϕ = f , Λ = Λk
and ε = ψk,1. Hence, in view of Theorem 3.1, there is a solution Tk : X → Y of the
equation

T (x) = T ((k + 1)x) − T (kx) (4.13)

such that

‖ f (x1) − Tk(x1), y‖ ≤ ε∗(x1, y) =

∞∑
n=0

(Λn
kε)(x1, y), x1 ∈ X, y ∈ Y, (4.14)

and it is given by the formula

Tk(x1) := lim
n→∞
T n

k f (x1), x1 ∈ X. (4.15)

Next, we prove by induction that, for every n ∈ N0 := N ∪ {0}, y ∈ Y and x1, x2 ∈ X
such that x1 + x2 ∈ X and (4.5) holds,

‖T n
k f (x1 + x2) − T n

k f (x1) − T n
k f (x2), y‖ ≤ (kp + (k + 1)p)nε0(x1, y)

+ (kq + (k + 1)q)nεk(x1, y). (4.16)

Clearly, the case n = 0 follows from (4.6). So, take n ∈ N0 and assume (4.16) for
every y ∈ Y and x1, x2 ∈ X such that x1 + x2 ∈ X and (4.5) is valid. Hence, by (4.11),

‖T n+1
k f (x1 + x2) − T n+1

k f (x1) − T n+1
k f (x2), y‖

≤ ‖T n
k f ((k + 1)x1 + (k + 1)x2) − T n

k f ((k + 1)x1) − T n
k f ((k + 1)x2), y‖

+ ‖T n
k f (kx1 + kx2) − T n

k f (kx1) − T n
k f (kx2), y‖

≤ (kp + (k + 1)p)nε0((k + 1)x1, y) + (kq + (k + 1)q)nεk((k + 1)x2, y)
+ (kp + (k + 1)p)nε0(kx1, y) + (kq + (k + 1)q)nεk(kx2, y)

= (kp + (k + 1)p)n+1ε0(x1, y) + (kq + (k + 1)q)n+1εk(x2, y)

for y ∈ Y and x1, x2 ∈ X such that x1 + x2 ∈ X and (4.5) holds, which proves (4.16).
Fix x1, x2 ∈ X with x1 + x2 ∈ X. Now, by hypothesis (H) (with u = A1(x1) and

v = A2(x2)), there are linearly independent vectors z1, z2 ∈ Y such that the pairs of
vectors A1(x1),C(zi) and A2(x2), D(zi) are linearly independent for i = 1, 2, which
means that (4.5) holds for y = zi (see Remark 2.2). Now, letting n→ ∞ in (4.16)
with y = zi for i = 1, 2, we get (see Lemma 2.1) ‖Tk(x1 + x2) − Tk(x1) − Tk(x2), zi‖ = 0,
whence Tk(x1 + x2) − Tk(x1) − Tk(x2) = 0, because z1, z2 are linearly independent.
Thus, we have shown that Tk is additive on X.

Next, we prove that Tk is the unique function from YX that is additive on X and

‖ f (x1) − Tk(x1), y‖ ≤
Bε0(x1, y)

1 − kp − (k + 1)p +
Bεk(x1, y)

1 − kq − (k + 1)q

for some B > 0 and every x1 ∈ X and y ∈ Y satisfying (4.9). So, suppose that
B0 ∈ (0,∞), T0 : X → Y is additive on X and

‖ f (x1) − T0(x1), y‖ ≤
B0ε0(x1, y)

1 − kp − (k + 1)p +
B0εk(x1, y)

1 − kq − (k + 1)q
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for all x1 ∈ X, y ∈ Y such that (4.9) holds. Then (see (4.12) and (4.14))

‖Tk(x1) − T0(x1), y‖ ≤ ‖Tk(x1) − f (x1), y‖ + ‖ f (x) − T0(x1), y‖

≤
(B0 + 1)ε0(x1, y)
1 − kp − (k + 1)p +

(B0 + 1)εk(x1, y)
1 − kq − (k + 1)q

= (B0 + 1)ε0(x1, y)
∞∑

n=0

(kp + (k + 1)p)n

+ (B0 + 1)εk(x1, y)
∞∑

n=0

(kq + (k + 1)q)n (4.17)

for x1 ∈ X, y ∈ Y such that (4.9) holds.
Now, we show that, for each j ∈ N0 and x1 ∈ X, y ∈ Y satisfying (4.9),

‖Tk(x1) − T0(x1), y‖ ≤ (B0 + 1)ε0(x1, y)
∞∑

n= j

(kp + (k + 1)p)n

+ (B0 + 1)εk(x1, y)
∞∑

n= j

(kq + (k + 1)q)n. (4.18)

Clearly, the case j = 0 is exactly (4.17). So, fix j ∈ N0 and assume that (4.18) holds.
Note that Tk and T0 are solutions to (4.13). Hence, by (4.17),

‖Tk(x1) − T0(x1), y‖ = ‖Tk((k + 1)x1) − Tk(kx1) − T0((k + 1)x1) + T0(kx1), y‖
≤ ‖Tk((k + 1)x1) − T0((k + 1)x1), y‖ + ‖Tk(kx1) − T0(kx1), y‖

≤ (B0 + 1)ε0((k + 1)x1, y)
∞∑

n= j

(kp + (k + 1)p)n

+ (B0 + 1)εk((k + 1)x1, y)
∞∑

n= j

(kq + (k + 1)q)n

+ (B0 + 1)ε0(kx1, y)
∞∑

n= j

(kp + (k + 1)p)n

+ (B0 + 1)εk(kx1, y)
∞∑

n= j

(kq + (k + 1)q)n

for x1 ∈ X, y ∈ Y with (4.9). Finally, by (4.11),

‖Tk(x1) − T0(x1), y‖ ≤ (B0 + 1)ε0(x1, y)
∞∑

n= j+1

(kp + (k + 1)p)n

+ (B0 + 1)εk(x1, y)
∞∑

n= j+1

(kq + (k + 1)q)n

for x1 ∈ X, y ∈ Y such that (4.9) holds, which completes the proof of (4.18).
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For each x1 ∈ X, there exist linearly independent vectors z1, z2 ∈ Y such that the
pairs of vectors A1(x1),C(zi) and A2(x1),D(zi) are linearly independent for i = 1, 2 (see
hypothesis (H)), which means that (see Remark 2.2) (4.9) holds with y = zi for i = 1,2.
Hence, letting j→∞ in (4.18) (with y = zi for i = 1, 2), we get Tk = T0.

Arguing analogously, for each l ∈ N0, l > k, we obtain a unique Tl : X → Y that is
additive on X and

‖ f (x1) − Tl(x1), y‖ ≤
ε0(x1, y)

1 − lp − (l + 1)p +
εl(x1, y)

1 − lq − (l + 1)q

for x1 ∈ X, y ∈ Y with (4.9). Since, for each l ∈ N0, l > k, we have εl < εk, the
uniqueness of Tk implies that Tk = Tl, whence

‖ f (x1) − Tk(x1), y‖ ≤
ε0(x1, y)

1 − lp − (l + 1)p +
εl(x1, y)

1 − lq − (l + 1)q

=
c‖A1(x1),C(y)‖p

1 − lp − (l + 1)p +
lqd‖A2(x1),D(y)‖q

1 − lq − (l + 1)q (4.19)

for x1 ∈ X, y ∈ Y satisfying (4.9). Now, letting l→∞ in (4.19), for every x1 ∈ X, y ∈ Y
satisfying (4.9),

‖ f (x1) − Tk(x1), y‖ ≤ c‖A1(x1),C(y)‖p. (4.20)

On the other hand, (4.6) with x1 = kx2 gives

‖ f (k + 1)x1 − f (kx1) − f (x1), y‖ ≤ ckp‖A1(x1),C(y)‖p + d‖A2(x1),D(y)‖q

for x1 ∈ X and y ∈ Y such that (4.9) holds. So, we can repeat the whole reasoning of
the proof analogously to obtain that

‖ f (x1) − T ′k(x1), y‖ ≤ d‖A2(x1),D(y)‖q (4.21)

for x1 ∈ X, y ∈ Y with (4.9), where

T ′k(x1) := lim
n→∞

(T n
k f )(x1), x1 ∈ X. (4.22)

Clearly, formulas (4.15) and (4.22) define the same mapping, whence (4.20) and (4.21)
yield (4.7) with h = Tk = T ′k. The uniqueness of h is a consequence of the uniqueness
property proved for Tk. �

Remark 4.3. It follows from the proof of Theorem 4.2 that h = Tk for any k ∈ N0, k > κ,
where Tk is given by (4.15) (or (4.22) with T ′k = Tk).

Remark 4.4. Estimates (1.3) in Theorem 1.2 and (4.1) in Theorem 4.1 are optimal (see
[10, Remark 3.7] and [6, Remark 3.2]). Therefore, there arises a natural open problem
if this is also the case for (4.7) and (5.1) (see the next section).

https://doi.org/10.1017/S0004972719000868 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000868
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5. Final comments

The next remark provides an example of a function ψ : X2 × Y → R such that (4.3)
holds (many other similar examples can be constructed analogously).

Remark 5.1. Fix linearly independent u1, u2 ∈ Y . Then ‖z, u1‖2 + ‖z, u2‖2 > 0 for each
z ∈ Y \ {0} (see Remark 2.2).

Let α1, α2, β1, β2 ∈ (0,∞), p1, p2 ∈ (−∞, 0) and χ1, χ2 : Y → Y . If 0 < Ai(X) for
i = 1, 2, then we may define η1, η2 : X → R+ and ψ : X2 × Y → R+ by

ηi(x) = (αi‖Ai(x), u1‖ + βi‖Ai(x), u2‖)pi , i = 1, 2, x ∈ X,
ψ(x1, x2, y) = χ1(y)η1(x1) + χ2(y)η2(x2), x1, x2 ∈ X, y ∈ Y.

Then ηi(mx) = mpiηi(x) for m ∈ N and i = 1, 2, whence

(Λkψk,1)(x, y) = χ1(y)(η1((k + 1)x) + η1(kx)) + χ2(y)(η2((k + 1)kx) + η2(k2x))
≤ χ1(y)((k + 1)p1η1(x) + kp1η1(x)) + χ2(y)((k + 1)p2η2(kx) + kp2η2(kx))
≤ (kp1 + (k + 1)p1 + kp2 + (k + 1)p2 )ψk,1(x, y)

and analogously (Λkψk,2)(x, y) ≤ (kp1 + (k + 1)p1 + kp2 + (k + 1)p2 )ψk,2(x, y) for every
k ∈ N0, x ∈ X and y ∈ Y . Since, for k ∈ N, Λk is linear, by induction we easily get

(Λn
kψk,i)(x, y) ≤ (kp1 + (k + 1)p1 + kp2 + (k + 1)p2 )nψk,i(x, y), n ∈ N0, i = 1, 2,

for x ∈ X, y ∈ Y . If κ ∈ N and κpi + (κ + 1)pi < 1/2 for i = 1, 2, then, for k ∈ N0, k ≥ κ,
∞∑

n=0

(Λn
kψk,i)(x, y) ≤

ψk,i(x, y)
1 − (kp1 + (k + 1)p1 + kp2 + (k + 1)p2 )

, x ∈ X, y ∈ Y, i = 1, 2.

Note that the methods, from the proof of Theorem 4.2, can be applied in classical
Banach spaces yielding the following generalisation of Theorem 4.1 (Theorem 5.2 also
complements the main results in [5, 7]). Here S , X, p, q, c and d are as before.

Theorem 5.2. Let V be a Banach space and ξ1, ξ2 ∈ (V \ {0})X be additive on X. Assume
that there is k0 ∈ N such that (4.2) holds. If g ∈ VX satisfies

‖g(x1 + x2) − g(x1) − g(x2)‖ ≤ c‖ξ1(x1)‖p + d‖ξ2(x2)‖q

for x1, x2 ∈ X with x1 + x2 ∈ X, then there is a unique, additive on X, h ∈ YX with

‖g(x) − h(x)‖ ≤ min{c‖ξ1(x)‖p, d‖ξ2(x)‖q}, x ∈ X. (5.1)
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