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Abstract. We have imaged ∼ 1 deg2 in the V-band in the direction of the Hercules cluster
(Abell 2151). The data are used to compute, for the first time, the luminosity function (LF)
of galaxies in the cluster down to the dwarf regime (Mlim ∼ −13.85 ). The global LF is well
described by a Schechter function (Schechter 1976) with best-fit parameters α = −1.30 ± 0.06
and M∗

V = −21.25 ± 0.25. The radial dependence of the LF has also been studied, finding that
it turns out to be almost constant within the errors even further away than the virial radius.
Given the presence of significant substructure within the cluster, we have analized the LFs in
different regions. While the LFs of the two subclusters present are consistent with each other
and with the global one, the southernmost one exhibits a somewhat steeper faint-end slope.

1. Introduction
The luminosity function of galaxies (LF), that is the probability density of galaxies in

a certain population having a given luminosity, is one of the key observable quantities for
galaxy evolution theories. The comparison between the LF of galaxies in clusters and in
the field should clarify the role played by the environment in regulating galaxy evolution.
Recent results by large surveys (De Propris et al. 2003) point towards the composite LF
of cluster galaxies having a steeper faint-end slope than field galaxies, revealing that this
influence indeed exists. A2151 is a nearby (z = 0.0367), irregular and spiral-rich cluster
(∼ 50%). There is strong evidence (from optical and X-ray studies) suggesting that the
cluster is still in the process of collapse: the lack of hydrogen deficiency in the spiral
population (Giovanelli & Haynes 1985), the bumpy distribution of the hot intracluster
gas and its low X-ray flux (Huang & Sarazin 1996), and the presence of at least three
distinct subclusters (Bird, Davis & Beers 1995, BDB hereafter) point towards A2151
being a young and relatively unevolved cluster, thus making it an excellent target for the
study of the LF and stablishing comparisons with more evolved systems.

2. Observations
The observations were carried out with the WFC at the 2.5m INT. We have imaged

a mosaic of five overlapping pointings covering an area of about 1◦ × 1◦ across the
cluster (Fig. 1, left). The calibration was achieved using aperture magnitudes of bright
galaxies taken from Takamiya, Kron & Kron (1995). We have also observed the nearby
SA107 control field for purposes of background galaxy counts decontamination. The V
magnitudes were corrected for Galactic extinction using the Schlegel, Finkbeiner & Davis
(1998) dust map and the Cardelli, Clayton & Mathis (1989) extinction curve.
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3. Source extraction and photometry
The identification and extraction of sources was carried out using SExtractor (Bertin

& Arnouts 1996). The separation between stars and galaxies was performed based on
SExtractor’s stellarity index (S/G), which assigns a numerical value close to 1 if the object
is a star and values closer to 0 if it is a galaxy-like object. Pitifully, the S/G classifier
breaks down at the lower magnitude end, complicating the identification. In order to
test the reliability of the index we simulated artificial images of isolated gaussian-PSF
stars and recovered them with the same selection criteria as used for the Hercules fields.
FWHMs ranged the values of our frames. We obtained values of S/G � 0.85 for star-like
objects and with accurate photometry down to V ∼ 22.

4. Sample completeness
One of the key problems in the study of LFs is the knowledge of detection limits

of the data. We have carried out Monte Carlo simulations of artificial galaxy images,
and, as done with stars, recovered them using SExtractor. We generated galaxies with
four different morphologies: three exponential profiles with reff = 0.75, 1.5 and 3 kpc
and one Sérsic profile with reff = 0.5 kpc, each in the magnitude range 17 <V< 23
(−18.85 <MV < −12.85 at the distance of A2151 and assuming a value of H0 = 75 km
s−1 Mpc−1). Those are typical parameters of dE and dSph galaxies in nearby clusters
(Binggeli & Jerjen 1998) which are supposed to dominate the faint end of the LF. Results
of our simulations show that, as expected, galaxies with higher effective radii are hardly
detected, while recovered magnitude differences are always below 0.3 mag, which do not
play an important role in our subsequent analysis, since for the LF we are using bins of 1
mag width. If we make the simple hypothesis that all these galaxies occur with the same
probability in the cluster, our sample is 80% complete down to V = 22.

5. The luminosity functions
Once we had the number counts and effective areas for both the cluster and control

field samples, we computed the Hercules cluster LF as the statistical difference between
these counts. In Fig. 1 (right) we plot the cluster LF down to V = 22 (MV ∼ −13.85),
where the error bars include the calibration uncertainties and both Poissonian and non-
Poissonian fluctuations of counts, the latter being due to the cosmic variance (Huang et
al. 1997). We fit a Schechter function to the data, finding that it is a good representation
of the LF (χ2

ν = 0.78). Best-fit parameters are α = −1.30±0.06, M∗
V = −21.25±0.25 and

φ∗ = 53±14. Lugger (1986) computed the R-band LF of A2151 in a region 4.6 Mpc on a
side, but only down to R ∼ −19.8 (six magnitudes brighter than our limit). She derived
a value of α = −1.26±0.13, similar to ours despite of the differences between both works.

We have also investigated the radial dependence of Schechter parameters as we move
outwards the cluster. We divided our area in four different annuli from inside the core
radius to outside the virial radius, and computed the LFs in them. The faint-end slope
turned out to be almost constant within the errors.

A2151 shows substantial subclustering with at least three distinct subclusters identified
by BDB. In our mapping we cover two of them (A2151N and A2151C), while A2151E
is out of our survey (see Fig. 1, left). However, a fourth overdensity (A2151S) seems to
exist in the southernmost part of the cluster, though it was not identified as a distinct
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Figure 1. (Left) Surveyed area plotted over galaxy density contours and X-ray emission (from
Huang & Sarazin 1996). Small squares show the areas where subclusters’ LFs have been com-
puted. (Right) The global LF of A2151 and its best-fit Schechter function. Error bars also include
non-Poissonian fluctuations.

subcluster in the BDB analysis. We have computed the LFs of A2151N, A2151C and
(partly) A2151S in the areas shown in Fig. 1 (left) down to V=21. We find that, within the
errors, the two identified subclusters have slopes consistent with each other and with the
global one (α = −1.33±0.06 and α = −1.17±0.16 for A2151C and A2151N respectively).
However, for A2151S we surprisingly find a somewhat steeper slope (α = −1.64 ± 0.10).
A detailed inspection of the LF suggests that this increase in the dwarf to giant ratio
(D/G) is mainly due to a significant population of faint galaxies. If this increment is
not due to a contamination by background galaxies in this region, it would imply the
presence of a large population of dwarf galaxies in this southern subcluster.
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