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Abstract

Epidemiological studies have reported a greater reduction in cardiovascular risk and metabolic disorders associated with diets rich in poly-

phenols. The antioxidant effects of polyphenols are attributed to the regulation of redox enzymes by reducing reactive oxygen species

production from mitochondria, NADPH oxidases and uncoupled endothelial NO synthase in addition to also up-regulating multiple anti-

oxidant enzymes. Although data supporting the effects of polyphenols in reducing oxidative stress are promising, several studies have

suggested additional mechanisms in the health benefits of polyphenols. Polyphenols from red wine increase endothelial NO production

leading to endothelium-dependent relaxation in conditions such as hypertension, stroke or the metabolic syndrome. Numerous molecules

contained in fruits and vegetables can activate sirtuins to increase lifespan and silence metabolic and physiological disturbances associated

with endothelial NO dysfunction. Although intracellular pathways involved in the endothelial effects of polyphenols are partially described,

the molecular targets of these polyphenols are not completely elucidated. We review the novel aspects of polyphenols on several targets

that could trigger the health benefits of polyphenols in conditions such as metabolic and cardiovascular disturbances.
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Polyphenols are found mainly in plant-derived foods and

beverages, and provide the tastes and colour of plant foods

while also participating in plant defensive responses against

stress due to UV radiation, pathogens and physical damage.

There are a number of excellent reviews dealing with their

protective effect against cancers, cardiovascular, metabolic(1)

and neurodegenerative diseases(2). The structures of polyphe-

nols vary from a simple phenol core to complex molecules

with a high degree of polymerisation. This family can be

divided into simple phenols, flavonoids and non-flavonoids

such as stilbene (resveratrol), saponin, curcumin and tannins.

Flavonoids can be subdivided according to their substituents

into flavanols (catechin and epicatechin), flavonols (quercetin,

myricetin and kaempferol), anthocyanidins (cyanidin and

delphinidin), flavones (apigenin and diosmin), flavanones

(naringenin and hesperetin) and chalcones (phloretin).

Dietary intake of polyphenols is highly variable. In the

USA, the intake in 1976 was estimated at 1 g of glycosylated

flavonoids per d(3). A Dutch study in 1987–88 established

lower amounts of flavanols and flavones of approximately

23 mg/d(4), but of the aglycone forms. In a cohort of US

women, the baseline mean intake of flavonols and flavone

was 21·2 mg/d, with quercetin (15·4 mg/d) being the major

contributor(5). The daily intake of anthocyanins in the USA is
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estimated to be 12·5 mg/d per person, with delphinidin contri-

buting approximately 21 % of the total anthocyanin intake(6).

An accurate estimate of dietary intake of polyphenols is

difficult to achieve because of the poor characterisation of

polyphenols in foods and the great variability of polyphenol

content within foods(7). The cardiovascular effects of polyphe-

nols have mostly been studied using extracts of polyphenols

in foods and drinks. Several other studies have used purified

resveratrol, quercetin and delphinidin to examine the cardio-

vascular effects of these components of polyphenols.

We summarise the cardiovascular effects and the mechan-

isms implicated in the health benefits associated with resvera-

trol, quercetin and delphinidin, by comparing their in vitro

effects on isolated cell systems and their in vivo repercussions

related to their absorption and bioavailability. It should be

noted that most in vitro studies have shown health benefits

at high concentrations (1–100mm), with plasma concen-

trations of polyphenols being approximately 1–20 nM
(8).

Thus, despite their high absorption, bioavailability is low in

humans and precautions concerning the conclusions of

published studies are warranted.

Endothelial cells and the regulation of vascular
homeostasis

Endothelial cells of healthy blood vessels form a monolayer

at the luminal surface to provide chemically mediated control

of vascular homeostasis. Due to their strategic localisation,

these cells prevent the contact of circulating blood with the

underlying prothrombotic arterial wall. Endothelial cells play

a critical role in the control of vascular tone via the release

of relaxing factors such as NO, endothelium-derived hyper-

polarising factor (EDHF) and PGI2. The gaseous molecule

NO is generated from L-arginine by the enzyme endothelial

NO synthase (eNOS) and diffuses towards the underlying

vascular smooth muscle cell layer to dilate blood vessels in

a cyclic guanylyl monophosphate-dependent manner (Fig. 1).

NO can also diffuse towards the lumen to prevent platelet

adhesion and activation, and also monocyte adhesion.

In addition, NO prevents the expression of prothrombotic

and proatherosclerotic mediators including tissue factor, the

physiological activator of the coagulation cascade, adhesion

molecules, chemoattractant factors and the oxidation of

LDL (Fig. 1). A prominent role exists for EDHF in the control

of resistance artery tone by hyperpolarising vascular smooth

muscle. PGI2, generated by the arachidonic acid cascade via

cyclo-oxygenases (COX), activates the cyclic AMP pathway

during its vasodilator activity. The endothelial formation of

vasoprotective factors can be increased within seconds by

several stimuli including neurohumoral substances, products

released during the degranulation of activated platelets or

during the coagulation cascade, and by shear stress at the

endothelial cell surface (Figs. 1 and 2)(9). Many CVD such as

hypertension, hypercholesterolaemia and the metabolic

syndrome are characterised by an endothelial dysfunction

as indicated by reduced endothelium-dependent vasodi-

latation subsequent to a reduced bioavailability of NO. In

addition, ageing in humans and animal models is also associ-

ated with a progressive decline of endothelium-dependent

vasodilatation(10).

Endothelial dysfunction is often associated with pro-

nounced oxidative stress that is due, at least in part, to an

increased expression of NADPH oxidase, an enzyme generat-

ing superoxide anions in the arterial wall(11–13). Superoxide

anions react with NO to reduce its bioavailability and,

hence, vascular protective effects. Endothelial dysfunction is

frequently associated with the emergence of endothelium-

dependent contractile responses involving the unopposed

contractile actions of endothelin and vasoconstrictor factors

acting on thromboxane receptors(14).
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Fig. 1. Endothelium-derived NO contributes to the regulation of vascular homeostasis. In healthy blood vessels, endothelial cells release NO, which is produced

from L-arginine by endothelial NO synthase (eNOS). NO diffuses towards the underlying vascular smooth muscle to reduce vascular tone and keep smooth

muscle cells in a non-migratory and non-proliferative state. NO can also diffuse towards the lumen where at the surface of endothelial cells, it prevents platelet

adhesion and aggregation, and adhesion of monocytes. In addition, NO is also a potent inhibitor of the expression of several proatherothrombotic molecules such

as tissue factor, chemoattractant molecules such as monocyte chemoattractant protein-1, and adhesion molecules such as vascular cell adhesion molecule-1.

Moreover, NO retards the oxidation of LDL, a key step in the development of atherosclerosis. (A colour version of this figure can be found online at

http://www.journals.cambridge.org/bjn)
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Diets such as the Mediterranean diet are associated with

improved cardiovascular health(15), which may be related to

the high intake of polyphenol-rich beverages and foods, and

fruit and vegetables. The intake of polyphenol-rich sources

such as red wine, cocoa, green tea and berries also improves

cardiovascular health(16,17). The beneficial effects of polyphe-

nols on the cardiovascular system have been attributed to

mechanisms such as improved lipid profiles, anti-atherosclero-

tic, anti-hypertensive and anti-inflammatory effects, and direct

actions on endothelial cells (Fig. 2).

Vascular protection by extracts of polyphenols

That polyphenols cause endothelium-dependent relaxations

was first observed by Fitzpatrick et al.(18), where some

wines, grape juices and grape skin extracts caused endo-

thelium-dependent relaxations in aortic rings. Other studies

confirmed that polyphenol-rich sources such as extracts

from red wines, green and black tea, and several plants

caused endothelium-dependent relaxations in large arteries,

arterioles and veins that were prevented by competitive

inhibitors of eNOS and guanylyl cyclase(18,19). Direct proof

that polyphenols (1mg/ml) stimulate endothelial formation

of NO was obtained using electron paramagnetic resonance

spectroscopy using rat aortic rings and cultured endothelial

cells(20). However, in porcine coronary arteries, red wine

extract-induced relaxation was only partially prevented by

a competitive inhibitor of eNOS but abolished by the

addition of the combination charybdotoxin plus apamin, two

inhibitors of the EDHF-mediated relaxation, indicating the

involvement of both NO and EDHF(21). The endothelium-

dependent relaxation induced by red wine polyphenols is

observed at concentrations of 3mg/ml (or greater) in porcine

coronary artery rings(21). Although the concentration of red

wine polyphenols in the blood after the intake of red wine

remains unknown, estimates are that an intake of 100 ml of

red wine by healthy volunteers increases plasma concen-

trations of polyphenolic monomers to 2·5mg/ml(22). Thus,

the stimulatory effect of red wine polyphenols on NO levels

is observed at plasma concentrations likely to be achieved

with the moderate consumption of red wine.

The signal transduction pathway mediating the stimulatory

effect of polyphenols on eNOS suggests a key role of an

intracellular redox-sensitive mechanism(23). Thus, vasodilation

to red wine polyphenols, purple grape juice and grape skin

extracts are reduced by membrane-permeant analogues of

superoxide dismutase (SOD) and also to some extent by a

membrane-permeant analogue of catalase(24). Exposure of

cultured endothelial cells to polyphenols increased the intra-

cellular formation of reactive oxygen species (ROS)(21). ROS

can trigger the activation of sarcoma oncogene homolog

(Src) kinase by phosphorylation, which subsequently leads

to a phosphatidylinositol-3-kinase-dependent activation of

Akt by phosphorylation, which ultimately causes the phos-

phorylation of eNOS at Ser1177 to increase its activity in

response to polyphenols(21,25). Changes in Ca signalling and

oestrogen receptor (ER) function also contribute to eNOS acti-

vation caused by some polyphenols(26).

Polyphenol extracts reduce CVD

Polyphenols prevent and/or improve endothelial dysfunction

and reduce blood pressure in spontaneously hypertensive

rats (SHR)(27,28), and in deoxycorticosterone acetate salt(29),

the Nv-nitro-L-arginine(30) and angiotensin II(31) hypertension

models. In the latter case, ingestion of 150 mg/kg per d of a

red wine polyphenol extract in the drinking-water reduced

hypertension induced by angiotensin II in rats (0·4 mg/kg

per d for 28 d)(31). Angiotensin II-induced hypertension was

associated with blunted endothelium-dependent vasodilation

that was reversed by the ingestion of red wine polyphenols.

Moreover, angiotensin II-induced hypertension also increased

Endothelial cells

NO

NO

eNOS

NO

L-Arginine L-ArginineNO

eNOS 

NO

Vascular protection

ACh
Bradykinin Thrombin 

VEGF, PDGF
Shear
stress

5-HT, ADP

NO

Red wine
polyphenols

Green tea
polyphenols 

Cocoa

Berry
polyphenols

Physiological activators Nutritional-derived activators

Platelets

Monocytes

Fig. 2. Endothelial formation of NO can be increased within seconds in response to numerous physiological activators such as neurohumoral substances, platelet-

derived products, products generated by the coagulation cascade, growth factors and shear stress induced by the flowing blood on the endothelial surface. In

addition, the endothelial formation of NO can also be stimulated in response to several nutritional-derived products including cocoa, berry polyphenols, red wine

polyphenols and green tea polyphenols. eNOS, endothelial NO synthase; ACh, acetylcholine; 5-HT, serotonin; VEGF, vascular endothelial growth factor; PDGF,

platelet-derived growth factor. (A colour version of this figure can be found online at http://www.journals.cambridge.org/bjn)
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oxidative stress due to the increased formation of ROS in the

arterial wall through the up-regulation of NADPH oxidase via

angiotensin type 1 receptors(12,13,31,32). Polyphenol-rich red

wine extracts abrogate the angiotensin II-stimulated up-

regulation of several NADPH oxidase subunits including Nox

1 and p22phox and the associated oxidative stress(31), probably

due to the inhibition of the angiotensin II-induced exp-

ression of NADPH oxidase by preventing angiotensin type 1

receptor expression(33). Polyphenols also exert antioxidant

activities in endothelial cells not only by reducing NADPH

oxidase expression but also reducing its activity, and

increasing the expression of antioxidant enzymes such as

catalase(34). Angiotensin II-induced endothelial dysfunction

includes endothelium-dependent contractile responses to

acetylcholine(35), which involves COX-dependent formation of

endothelium-derived contracting factors that act on thrombox-

ane receptors located on vascular smooth muscle cells. Both

the angiotensin II-induced vascular expression of COX and

the increased endothelium-derived contracting factors are sig-

nificantly reduced by red wine polyphenols(35). Thus, polyphe-

nols prevent ROS-mediated degradation of NO, and blunt

vasoconstrictor and pro-inflammatory responses (Fig. 3).

Polyphenol-rich products increase basal flow-mediated

dilation in healthy subjects at relatively low doses such as

those achieved after the intake of two glasses of red wine(36)

or 2 weeks of daily consumption of flavonoid-rich dark choco-

late bars (46 g)(37). Similar beneficial effects of polyphenol-rich

products on flow-mediated dilation occur in patients with cor-

onary artery disease after consumption of black tea(38), a green

tea extract(39) or a red grape extract(40). Systolic blood pressure

is improved in hypertensive patients by daily ingestion of

polyphenol-rich products such as a piece of a sixteen-piece

dark chocolate bar(41), two glasses of purple grape juice(42)

or 50 ml of pomegranate juice(43).

Resveratrol

Resveratrol is a stilbene identified in 1940 as a component of

Polygonum cuspidatum (Japanese knotweed) used to treat

hyperlipidaemic diseases. This polyphenol phytoalexin is

also present in several plant species, including white hellebore

(Veratrum grandiflorum O. Loes), grapes, peanuts and mul-

berries(44–46). Many of the cardioprotective effects of red

wine could be attributed to resveratrol, and recent studies

extend the benefits of resveratrol to the prevention or

retardation of cancer(45) and also to increasing the lifespan

of various organisms from yeast to vertebrates(44).

As a polyphenolic compound, resveratrol is an efficient

scavenger of hydroxyl, superoxide and metal-induced

radicals(45,47). However, the direct antioxidant effects of resver-

atrol are weaker than those of ascorbate and cysteine(45). The

protective effects of resveratrol against oxidative injury are

probably attributed to the up-regulation of the endogenous

cellular antioxidant system rather than to its direct ROS-

scavenging activity.
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Fig. 3. Potential mechanism(s) in the cardiovascular and metabolic effects of polyphenols. Polyphenols interact with oestrogen receptor a (ERa) to activate the

sirtuin-1 (SIRT1)–AMP-activated protein kinase (AMPK) network. Stimulation of SIRT1 and AMPK results in the activation of PPARg coactivator 1 a (PGC-1a),

placing mitochondria at the epicentre of targets for polyphenols in CVD and metabolic disorders. (A colour version of this figure can be found online at

http://www.journals.cambridge.org/bjn)
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Resveratrol and oxidative stress

Resveratrol increases the expression/activity of SOD, catalase

and glutathione peroxidase (GPx) in cardiac H9C2 cells(48)

and aortic smooth muscle cells(47,49). Another study, however,

found no changes in the protein levels of SOD1 or SOD2 but

an up-regulation of GPx1 and catalase in aortic segments or

cultured aortic smooth muscle(50). In a hamster model of

dilated cardiomyopathy, treatment with resveratrol increases

SOD2 levels, suppresses fibrosis, preserves cardiac function

and significantly improves survival(51). Treating hypercholes-

terolaemic, atherosclerosis-prone apoE-knockout (KO) mice

(as a model of oxidative stress) with resveratrol (30–100 mg/

kg per d for 7 d) leads to the up-regulation of SOD1, SOD2,

SOD3, GPx1 and catalase in the heart(51). The expression of

these enzymes is also increased by resveratrol in cultured

human endothelial cells(52,53).

The antioxidant transcription factor nuclear factor erythroid

2-related factor-2 (Nrf2) is a recently identified target of resver-

atrol(54,55). In cultured coronary arterial endothelial cells,

resveratrol increases the transcriptional activity of Nrf2 and

up-regulates the expression of Nrf2 target genes NAD(P)H:

quinone oxidoreductase 1, g-glutamylcysteine synthetase

(glutamate cysteine ligase catalytic subunit, GCLC) and

haem oxygenase-1(55). All these enzymes, together with

thioredoxin-1(56), could well contribute to the antioxidant

actions of resveratrol.

NADPH oxidases (NOX) are major sources of ROS in

the cardiovascular system(57,58). Resveratrol reduces the

expression of Nox2 and Nox4 in the heart of apoE-KO

mice(52) and also prevents Nox2 expression in the aorta of

diabetic mice(59). In human umbilical vein endothelial cells

(HUVEC) and HUVEC-derived EA.hy 926 endothelial cells,

resveratrol decreases the expression of Nox4(53), the most pre-

dominant Nox isoform in these cell types(60). Small-interfering

RNA (siRNA)-mediated knockdown of sirtuin 1 (SIRT1) has no

effect on the Nox4 down-regulation by resveratrol, indicating

that the effect of resveratrol on Nox4 is likely to be SIRT1-

independent(52).

Resveratrol and endothelial NO synthase uncoupling

Uncoupling of eNOS switches it from a NO-producing enzyme

to a superoxide-generating molecule. The major cause

of eNOS uncoupling under pathological conditions is a

deficiency of the eNOS cofactor tetrahydrobiopterin

(BH4)
(61,62). Tissue levels of BH4 are a balance of its biosyn-

thesis and degradation/oxidation: synthesis of BH4 from GTP

via a de novo pathway, with GTP cyclohydrolase 1 as the

rate-limiting enzyme, while rapid oxidation by peroxynitrite

makes the cofactor unavailable for eNOS generation of NO.

Untreated apoE-KO mice show increased oxidation of

BH4
(63) and significant ROS production in their aorta(63,64)

and heart(52). Both aortic(63,64) and cardiac(52) superoxide pro-

duction are reduced by the NOS inhibitor L-NG-nitroarginine

methyl ester (L-NAME), indicating that eNOS is in an

uncoupled state and that it produces ROS in this pathological

model. Resveratrol treatment enhances the expression of GTP

cyclohydrolase 1 and BH4 biosynthesis. In addition, resvera-

trol decreases the cardiac content of superoxide and peroxyni-

trite, and thereby decreases BH4 oxidation(52). As a result, the

cardiac levels of BH4 are increased by resveratrol. Cardiac

superoxide production in resveratrol-treated mice is markedly

reduced to a level that cannot be lowered any further by L-

NAME(52), suggesting that eNOS no longer produces superox-

ide in resveratrol-treated apoE-KO mice, i.e. resveratrol

reverses eNOS uncoupling. The expression of GTP cyclohy-

drolase 1 in cultured human endothelial cells is increased by

resveratrol. This up-regulation is reduced by the SIRT1 inhibi-

tor sirtinol or by siRNA-mediated SIRT1 knockdown, indicat-

ing SIRT1-dependent mechanisms(52).

Resveratrol and vasodilation

Resveratrol causes vasodilation by releasing NO from

endothelial cells(65) and/or improving NO bioavailability(59).

Resveratrol increases endothelial eNOS mRNA(66) and pro-

tein(67) expressions, and causes rapid phosphorylation of

eNOS at Ser1177 (the activator site of this enzyme), and

thereby increasing eNOS enzymatic activity(68). In parallel,

resveratrol improves NO bioavailability by decreasing oxi-

dative stress per se (69). These actions combine to stimulate

cyclic guanylyl monophosphate formation, protein kinase G

activation and vasodilation(70). Voltage-gated Kþ channels,

large Ca2þ-activated-Kþ channels or voltage-gated Ca2þ

channels(71) mediate the endothelium-independent vasodilata-

tion caused by resveratrol. The vasodilator properties of

resveratrol offer cardiovascular and vascular protection in

several models of CVD.

Resveratrol and vasoconstriction

The endothelium also releases vasoconstrictor and mitogenic

substances such as endothelin-1, which under pathophysi-

ological conditions, counteracts the protective effects of

vasodilator products from endothelial cells. Resveratrol is

able to reduce endothelial mRNA expression and secretion

of endothelin-1(66), inhibit H2O2-induced endothelin-1

expression in human vascular smooth muscle cells(72) and

reduce endothelin-1 expression in the ischaemia–reperfused

heart(73).

The renin–angiotensin system regulates blood pressure via

the release of angiotensin II that interacts with angiotensin

type 1 receptors to evoke vasoconstriction(74). Resveratrol sup-

presses the mRNA and protein expressions of angiotensin

type 1 receptors in intact mice and also in isolated vascular

smooth muscle cells(33). Resveratrol also possesses a potent

in vitro angiotensin-converting enzyme (ACE) inhibitory

activity(75), which can partially account for resveratrol-induced

blood pressure-lowering effects in various animal models of

hypertension.

Resveratrol and inflammation

Resveratrol has in vitro and in vivo anti-inflammatory effects.

Resveratrol treatment decreases the overexpression of
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adhesion molecules (vascular cell adhesion molecule-1 and

intercellular adhesion molecule-1) by inhibiting the NF-kB

pathway in TNFa-activated endothelial cells(76). In intact

animal studies, resveratrol inhibits the angiotensin II-induced

adhesion of leucocytes to arterioles, partially by reducing

cellular adhesion molecule expression and circulating levels

of monocyte chemoattractant protein-1 and macrophage

inflammatory protein-1a(77). These effects may partially con-

tribute to the cardiovascular protective activity of resveratrol,

especially during the early phase of the atherosclerotic

process.

Resveratrol probably improves the pro-inflammatory profile

in human obesity by decreasing pro-inflammatory cytokine

secretion and increasing adiponectin release from human adi-

pose tissue(78). Resveratrol modulates adipokine expression

and improves insulin sensitivity in murine adipocytes, where

resveratrol treatment reduces the levels of pro-inflammatory

cytokines and adipokines (TNFa, IL-6 and resistin), and

increases adiponectin and PPARg expression and the Ser/Thr

phosphorylation state of insulin receptor substrate-1(79). In

addition, resveratrol also normalises the levels of pro-

inflammatory cytokines (IL-6 and TNF-a) and COX-2

expression by decreasing NF-kB activation in diabetic rats(80).

Resveratrol and platelet function

Resveratrol alters several functions of platelets: adhesion,

activation and aggregation of platelets, and thrombus for-

mation(81). Since tissue factor is the major determinant for

the extrinsic coagulation pathway, decreases in tissue factor

expression can reduce thrombosis risk. Resveratrol attenuates

an agonist-induced increase in tissue factor mRNA in endo-

thelial and mononuclear cells, resulting from the inhibition

of IkBa (inhibitor of kappa B) degradation, thus decreasing

the DNA-binding occupancy by the transcription factor

c-Rel/p65(82). Additionally, resveratrol inhibits platelet aggre-

gation induced by collagen, thrombin, ADP or arachidonic

acid(83). Resveratrol inhibits COX-1(84) and modifies COX

metabolite production to modulate platelet activation, and

inhibits the arachidonate-dependent synthesis of inflammatory

agents such as thromboxane B2, hydroxyheptadecatrienoate

and 12-hydroxyeicosatetraenoate(83). Data from molecular

modelling studies performed by in silico docking show

that resveratrol forms stable complexes in platelet COX-1

channels(83).

Resveratrol effects and in vivo relevance

Resveratrol at concentrations of up to 100mM is used in many

cell-culture studies(47); the molecular mechanisms obtained

with such concentrations may not easily extend to understand-

ing the effects of dietary resveratrol. It is unlikely that such

high plasma concentrations of resveratrol are achieved,

either by drinking red wine or by consuming resveratrol-

containing food. However, high doses of resveratrol are well

tolerated by animals(44) and by humans(85). The low toxicity

of resveratrol favours its use as a nutraceutical (to reach

higher in vivo concentrations).

As much as 70 % of orally ingested resveratrol can be

absorbed. However, the bioavailability of unchanged resvera-

trol is very low, due to rapid and extensive metabolism(85).

The plasma concentration and the half-life of resveratrol

metabolites are much greater than those of resveratrol(44),

indicating higher systemic exposure to the modified form

than to unchanged resveratrol. It is possible that part of the

in vivo effects of resveratrol can be attributed to its

metabolites.

Quercetin

Quercetin is a polyphenol that occurs in abundance in plants

and in the diet, and belongs to the flavonoid subclass that is

identified by their ketone group(7). The main source of quer-

cetin is black elderberry, but significant quantities are also

found in cocoa, Mexican oregano, capers and cloves while

smaller concentrations occur in nuts, onions, shallot, cran-

berry, apple and red wine. Quercetin, present in foods as

quercetin glycosides, represents 60–75 % of the total dietary

flavonols plus flavone intake(86).

Quercetin and oxidative stress

Quercetin scavenges free radicals in vitro and has epidemiolo-

gical correlates. Quercetin is a potent scavenger of superoxide

anion and peroxynitrite, inhibits superoxide anion generation

by suppressing xanthine oxidase activity(87) and inhibits the

mitochondrial NADH/NADþ system(88). Important is the find-

ing that the hydroxyl groups of quercetin contribute to the

generation of intracellular superoxide, leading to the inhi-

bition of cell proliferation and the induction of apoptosis in

leukaemia cells(89).

Quercetin and vasodilation

Quercetin causes endothelium-dependent vasodilation

through the production of NO(86,90) probably by increasing

eNOS phosphorylation at 5mM
(91). Additionally, 50mM-

quercetin is proposed to also increase NO release by causing

a hyperpolarisation-dependent capacitative Ca2þ entry in iso-

lated cultured endothelial cells(92). These effects result in

endothelium-dependent vasodilatation that is inhibited by

eNOS inhibitors and charybdotoxin, thus demonstrating that

the quercetin effect is dependent on both the NO/cyclic gua-

nylyl monophosphate pathway and EDHF(91). Similar to the

effects of resveratrol, quercetin, at a physiologically relevant

concentration of 0·1mM, also increases eNOS mRNA

expression in HUVEC(66). Additionally, quercetin enhance-

ment of cyclic guanylyl monophosphate-dependent relaxation

in porcine isolated coronary arteries is insensitive to phospho-

diesterase 5 inhibition. Quercetin reduces the development of

glyceryl trinitrate-induced tolerance in vitro in porcine

arteries; these findings can benefit patients with angina

pectoris and await confirmation in humans(93).

Other studies report that quercetin treatment (100mM) sup-

presses eNOS activity in bovine aortic endothelial cells as a

result of decreased eNOS phosphorylation(94). This effect is
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associated with an in vitro disruption of mitotic microtubule

polymerisation and an in vivo inhibition of angiogenesis, as

quercetin inhibits vascular endothelial growth factor-induced

endothelial cell function and angiogenesis through the inhi-

bition of ERK1/2 (extracellular signal-regulated kinase 1/2)

phosphorylation(95).

Quercetin and vasoconstriction

As with resveratrol, quercetin decreases H2O2-induced

endothelin-1 mRNA expression and reduces endothelin-1

release in HUVEC(66). Moreover, quercetin, at 1mM and more

so at 10mM, prevents endothelin-1-induced endothelial dys-

function and NADPH oxidase subunit p47phox overexpres-

sion by inhibiting protein kinase C(96).

The detailed effects of quercetin on the renin–angiotensin

system are not known. Treatment of Dahl salt-sensitive hyper-

tensive rats with quercetin (10 mg/kg) for 4 weeks reduces

blood pressure along with decreases in angiotensin II type 1

receptor mRNA, suggesting modulation of renal function by

quercetin(97). It should be noted that quercetin fails to

modify ACE activity either in vitro using rat kidney mem-

branes(98) or in vivo after administration to rats(99), suggesting

that the antihypertensive effect of quercetin may be unrelated

to actions on the renin–angiotensin system.

Quercetin and inflammation

Although various mechanisms are involved in the anti-

inflammatory properties of quercetin, it mainly targets signal-

ling pathways related to NF-kB activation. Thus, quercetin

(10mM) decreases mRNA and protein levels of TNFa, IL-1b,

IL-6, macrophage inflammatory protein-1a and inducible NO

synthase in several in vitro and in vivo studies(100). Quercetin

has pleiotropic effects in apoE-KO mice related to the

reduction of pro-inflammatory markers (isoprostane, leuko-

triene B4 and P-selectin) and the enhancement of anti-

inflammatory indicators (eNOS and haem oxygenase-1

expression)(101), suggesting that quercetin at a dose of

1·3 mg/d could delay the atherosclerotic process through its

anti-inflammatory properties. Also, adiponectin mRNA levels

are enhanced in adipose tissue from rats receiving quercetin

fed high-fat diets(102). High concentrations of quercetin

(40mM) suppress the Akt phosphorylation and transactivation

of nuclear factor activator protein-1 and NF-kB, resulting in an

inhibition of the TNF-a-induced up-regulation of cell

migration(103). In addition, by reducing the production of

pro-inflammatory cytokines and enzymes, quercetin (50mM)

inhibits mouse dendritic cell activation, suggesting that

quercetin could be a potent immunosuppressive agent(104).

However, contradictory results have been described in

human subjects as no effects on the inflammatory profile

were detected in females receiving a 12-week supplemen-

tation with quercetin (0·5–1 g/d)(105). Dietary supplementation

of quercetin in combination with vitamin C for 4 weeks does

not change plasma biomarkers of inflammation (TNF-a, IL-1b,

IL-6 and C-reactive protein) and the disease severity of

rheumatoid arthritis patients(106).

Quercetin and platelet function

Platelet aggregation contributes to both the development of

atherosclerosis and to acute platelet thrombus formation,

followed by embolisation of stenosed arteries. Quercetin

impairs in vitro platelet aggregation induced by thrombin by

interfering with Ca2þ mobilisation and serotonin secretion(107),

and inhibiting platelet kinases such as phosphatidylinositol-3-

kinsase and Src kinases(108). These results were obtained with

concentrations that exceed those attained after standard con-

sumption of flavonoid-rich foods. Quercetin inhibits platelet

aggregation independently of the agonist used (arachidonic

acid or ADP)(83). Quercetin inhibits platelet activation through

the blockade of activity of the proto-oncogene tyrosine-

protein kinase Fyn and the tyrosine phosphorylation of

spleen tyrosine kinase (Syk) and phospholipase C gamma 2

(PLCg2) following quercetin internalisation in platelets(109).

Limitations of the use of quercetin

Quercetin is absorbed through the gastrointestinal tract

and rapidly metabolised by methylation and conjugation

with glucuronic acid and/or sulphate in enterocytes and in

the liver(110,111). Once conjugated, quercetin is present in

plasma after repeated daily dosage(112), and, paradoxically,

although the plasma concentrations of free quercetin are

very low, it can occur in relatively high concentrations in sev-

eral tissues indicating that in situ deconjugation of quercetin

can occur(113).

Delphinidin

Anthocyanins are the largest group of water-soluble pigments in

the plant kingdom and are responsible for most of the red, blue

and purple colours of fruits, vegetables, flowers and other plant

tissues or products(2). The six anthocyanins commonly found in

plants are classified according to the number and position of

hydroxyl and methoxyl groups on the flavan nucleus, and are

named pelargonidin, cyanidin, delphinidin, peonidin, petuni-

din and malvidin. The daily intake of anthocyanins in humans

is approximately 180–215 mg/d in the USA(3), with the major

sources of anthocyanins being blueberries, cherries, raspber-

ries, strawberries, black currants, purple grapes and red wine;

a 100 g serving of berries provides up to 500 mg anthocyanins.

Various metabolites are formed during the metabolism of

anthocyanins and anthocyanidins and include glucuronides

and methylated and sulphated derivatives of anthocyanins(114).

Among the different classes of polyphenolic compounds

present in red wine, anthocyanins and oligomeric condensed

tannins exhibit pharmacological profiles comparable with total

red wine extracts in terms of endothelial-dependent NO-

mediated vasodilatation(115). Of the different anthocyanins

identified in wine, only delphinidin causes endothelium-

dependent relaxation, although it is slightly less potent than

total red wine extract(115).

Delphinidin and oxidative stress

Delphinidin possesses antioxidant effects in a wide range

of chemical oxidation systems by virtue of two hydroxyl
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groups on the phenyl ring(116), and among the anthocyanins,

delphinidin has the greatest in vitro potency against superox-

ide anions and peroxynitrite(117). Since this study was

performed at neutral pH, it is not clear whether this potency

is maintained in vivo. Its ability to scavenge ROS protects

endothelial cells from LDL-induced lipid oxidation, although

it is not clear whether the effects of delphinidin in quenching

ROS are by direct actions on LDL. Nevertheless, delphinidin

(25–200mM) restores SOD activity to a similar extent to that

produced by vitamin C, suggesting that delphinidin maintains

endothelial cell function by preserving endogenous anti-

oxidants and by attenuating lipid peroxidation(118). Treatment

of CCl4-intoxicated mice with delphinidin (25 mg/kg, once

daily for 2 weeks) decreases oxidative stress in the liver as

reflected by the recovery of GPx activity and the ratio reduced

glutathione:oxidised glutathione. These antioxidant effects of

delphinidin are associated with antifibrotic activity, indicating

that delphinidin possesses a tissue-regenerative capability(119).

Cytotoxic effects of delphinidin (100mM for 24 h) in metastatic

cells (but not in cells originating from a primary tumour site)

are related to cellular free radical accumulation, inhibition of

glutathione reductase and depletion of glutathione, suggesting

that delphinidin could be used as a sensitising agent in meta-

static therapy(120).

Delphinidin and vasodilation

Delphinidin stimulates NO production independently of its

antioxidant property(20). Delphinidin activates NO release by

increasing intracellular Ca2þ concentrations through the

release from intracellular stores and the entry from the extra-

cellular space. In bovine aortic endothelial cells, delphinidin-

induced increases in intracellular Ca2þ are accompanied by

tyrosine phosphorylation of several intracellular proteins(121).

Acute treatment with delphinidin (10 min) enhances NO

release and eNOS phosphorylation at Ser1177(26).

The only study of the angiogenic properties of low doses of

delphinidin (0·06 mg/kg per d) reports no effects on the recov-

ery of blood flow in ischaemic hindlimbs, while higher doses

of delphinidin (0·6 mg/kg per d) have anti-angiogenic effects

as characterised by impaired blood flow and decreased

vascular density in the ischaemic leg of rats(122). These results

are similar to those obtained with the whole extracts from red

wine, suggesting that delphinidin could play an important role

in the anti-angiogenic effect of red wine.

By targeting STAT1 (a nuclear transcriptional factor of the

signal transducers and activators family and which has a

critical role in cardiomyocyte apoptosis), delphinidin (more

potently than quercetin) provides protection against

ischaemia–reperfusion injury in isolated cardiomyocytes and

in the Langerdoff-perfused rat heart when used at 10mM 2 h

before the onset of the ischaemic insult(123).

Delphinidin and vasoconstriction

Delphinidin reduces both mRNA and protein levels of

endothelin-1 in cultured HUVEC(124). While resveratrol and

quercetin (30mM) reduce endothelin-1 production by

only 20 %, similar concentrations of delphinidin lower

endothelin-1 production by approximately 75 %(125). Although

the inhibition of purified ACE by oligomeric procyanidins

(mainly oligomeric epicatechins) is well established(126),

the effects of delphinidin-3-O-sambubioside on ACE have

only been recently reported. This compound inhibits ACE by

competing with the active site of the enzyme, with an half-

maximal inhibitory concentration value similar to that

obtained with quercetin(127).

Delphinidin and inflammation

Several in vitro studies report that delphinidin interacts

directly with kinases; however, it is not established whether

delphinidin also has similar effects in vivo. Delphinidin

(5–20mM) suppresses COX-2 promoter activity and COX-2

expression in mouse epidermal cells by inhibiting activator

protein-1 and NF-kB pathways; these effects result from the

direct binding of delphinidin to the ATP-binding site in the

kinase domain of mitogen-activated protein kinase kinase 4

and to the ATP-binding site of the catalytic domain of

phosphatidylinositol-3-kinsase(128). Delphinidin (10–40mM)

inhibits phosphorylations of c-Jun N-terminal kinases, p38

mitogen-activated protein kinase, Akt and ERK as well as

Fyn kinase in mouse epidermal cells, and directly binds with

Fyn kinase in a non-competitive manner with ATP(129).

Additionally, delphinidin also inhibits a broad spectrum

of receptor tyrosine kinases of the epidermal growth factor

receptor B (ErbB) and vascular endothelial growth factor

receptor families in both cell-free assays and intact cell

systems(130). Other enzymes potentially playing a role in

inflammation are also inhibited by delphinidin: for example,

a mixed competitive and non-competitive phospholipase A2

inhibition has been described for delphinidin in a cell-free

assay(131), while delphinidin also weakly inhibits proteasome

activity(132). These data highlight the ability of delphinidin to

interfere with pro-inflammatory pathways, although no evi-

dence of in vivo effects on these enzyme systems is available.

Delphinidin and platelet function

Although aqueous residues containing the anthocyanic frac-

tion from red wine suppressed ADP-induced platelet aggrega-

tion(133), delphinidin was unable to inhibit collagen-induced

platelet aggregation in vitro (133). Delphinidin containing

fractions from purple grapes inhibits whole-blood aggrega-

tion, suggesting a potential mechanism for the beneficial

effects of polyphenols on the suppression of platelet-mediated

thrombosis(134).

Limitations on the use of delphinidin

Although abundant in the diet, anthocyanins, in general, and

delphinidin in particular, are either poorly absorbed or not

absorbed at all. One consequence of the poor bioavailability

of anthocyanins is that many effects observed in vitro (e.g.

inhibition of COX-2) are unlikely to occur in vivo. The

measurement in plasma or urine of the original anthocyanins
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and their conjugated metabolites (glucuronidated and

sulphated anthocyanins) indicates their very low bioavailabil-

ity(7,135). In addition, intestinal microflora play an important

role in the metabolism of anthocyanins(136). Clearly, additional

in vivo studies on the effects of delphinidin are needed to

establish the beneficial effects of concentrations used in

in vitro studies, which generally tend to be higher than

those attained physiologically.

Molecular targets of polyphenols

The ability of polyphenols to target transcriptional networks

that modulate gene expression favouring NO production,

anti-inflammatory mediators and energy expenses provides

an attractive pharmacological approach to treat cardiovascular

and metabolic diseases (Fig. 3). Some molecular targets of

polyphenols are discussed below.

AMP-activated protein kinase

AMP-activated protein kinase (AMPK) is a Ser/Thr protein

kinase involved in ATP production in mammalian cells(137).

The AMPK cascade may have an important role in preventing

diseases since AMPK inhibits fat accumulation, reduces

cholesterol synthesis and modulates inflammatory cytokines.

Polyphenols found in natural products can target and activate

AMPK leading to numerous beneficial effects in cardiovascular

and metabolic diseases, as shown by the finding that

activation of AMPK by resveratrol is SIRT1-independent(138)

(see below). By increasing AMPK phosphorylation, resveratrol

prevents the development of hyperlipidaemia and athero-

sclerosis in diabetic mice(139). These effects may be related

to reduced fat accumulation(140), enhanced glucose transpor-

ter GLUT4 translocation and increases in glucose uptake by

diabetic rat cardiomyocytes(141). Resveratrol increases physical

endurance and mitochondrial biogenesis as revealed by

increases in the expressions of PPARg coactivator (PGC)-1a,

PGC-1b, oestrogen-related receptor a and nuclear respiratory

factor (NRF) in AMPK-deficient mice, leading to improved glu-

cose homeostasis through mechanisms dependent on AMPK

activation(140).

Quercetin also activates the AMP–AMPK pathway via down-

regulation of protein phosphatase 2C in the brains of old

mice fed a cholesterol-rich diet, indicating that quercetin

enhances the resistance of neurons to age-related diseases

via AMPK pathway activation(142). Furthermore, quercetin

inhibits adipocyte 3T3-L1 differentiation by decreasing

adipogenic transcription factors such as PPARg and CCAAT/

enhancer-binding protein via the phosphorylation of mito-

gen-activated protein kinase, suggesting that quercetin can

regulate the adipocyte life cycle(143). Dietary bilberry extracts

rich in anthocyanidins ameliorate hyperglycaemia and insulin

sensitivity in diabetic mice by activating AMPK in the adipose

tissue, skeletal muscle and liver(144).

Sirtuin 1

Polyphenols such as resveratrol activate a NADþ-dependent

protein deacetylase, silent information regulator orthologue 1

(SIRT1)(145), which regulates a variety of cellular functions

such as genome maintenance, longevity and metab-

olism(146,147). Resveratrol increases the lifespan in animals

partially via the stimulation of SIRT1, in a manner similar to

energy restriction(148). Resveratrol augments exercise endur-

ance in mice through the deacetylation of PGC-1a (a mito-

chondrial biogenesis factor) by SIRT1 to stimulate

mitochondrial function in muscle and brown adipose

tissue(149). The pleiotropic effects of resveratrol, which occur

by the activation of SIRT1, could protect animals from obesity

and diabetes by shifting the energy balance towards energy

consumption rather than storage(149).

Small-interfering RNA against SOD2 or SIRT1 reduce the

cell-protective effects of resveratrol(51). Although a recent

study using cell-free assays questions the ability of resveratrol

to activate SIRT1 directly(150), it is highly likely that resveratrol

(or its metabolites) can promote SIRT1 activation in vivo.

Moreover, resveratrol also enhances the expression levels of

SIRT1. In an attempt to address this, Li’s group reported that

inhibition of SIRT1 activity with sirtinol or knockdown of

SIRT1 expression with siRNA both reduced the effects of

resveratrol on SOD1, SOD2 and GPx1, but not those on SOD3

and catalase(52). This finding is consistent with the findings

that resveratrol up-regulates SOD2 in C2C12 myoblasts in a

SIRT1-dependent manner(51).

Of note is the report that SIRT1 also activates the

transcriptional activity of PGC-1a, and subsequently induces

mitochondrial biogenesis and lipolysis, and so inhibits the gen-

eration of ROS from the mitochondria(151). The activation of

SIRT1 is related to both lipid and glucose homeostasis; thus,

SIRT1 inhibits adipogenesis, reduces fat storage in adipose

tissue(152) and increases insulin secretion and sensitivity(153).

Resveratrol stimulates eNOS activity by SIRT1 activation and

eNOS deacetylation(154). For example, resveratrol increases

mitochondrial mass and up-regulates eNOS by activating

SIRT1 in human coronary arterial endothelial cells, where

the ability of resveratrol to induce mitochondrial biogenesis

is NO-dependent(155). Likewise, SIRT1 activation by other

stimuli such as laminar flow and statin treatment also increases

eNOS activity and NO production(156). Thus, the interaction

between SIRT1 and eNOS contributes to the cardiovascular

beneficial effects of resveratrol. The multifaceted molecular

mechanisms for the cardiovascular benefits of resveratrol are

summarised in Fig. 4.

In a similar manner, treating mice with quercetin enhances

mRNA expression of PGC-1a and SIRT1 to increase both

maximal endurance capacity and running activity(157). The

possibility of targeting SIRT1 by polyphenols, and thereby

co-affecting PGC-1a signalling, makes endothelial mitochon-

dria important in CVD and metabolic disorders.

Oestrogen receptor a

Due to the structural similarities with diethylstilbestrol (a

synthetic oestrogen), resveratrol has been proposed to activate

the ER. Resveratrol binds to and activates gene transcription

via the ER in oestrogen-sensitive tissues and cell lines(158).

Of interest, resveratrol binds ERb with a lower affinity than
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at ERa(159). Owing to its properties as an agonist for the ER,

resveratrol is able to regulate the transcription of oestrogen-

responsive target genes, and possibly has cancer chemopre-

ventive effects(160). Activation of ER is a key step in the effects

of resveratrol on glucose uptake by muscles(161). At the

molecular level, resveratrol rapidly activates ERa in caveolae,

leading to eNOS activation by the stimulation of G-protein Ga,

caveolin-1 (Cav-1), Src and ERK1/2K; siRNA knockdown of

ERa, but not ERb, or the presence of ER antagonists inhibits

the rapid eNOS activation by resveratrol(68).

As described for resveratrol, quercetin is also able to reduce

oestrogen-sensitive tumour growth in mouse models by

directly acting on ER(162) and by down-regulating cytoplasmic

ER levels and promotion of a tighter nuclear association of

the ER(163). Quercetin exhibits a similar potency of both ER

subtypes(164) and stimulates the expression of the proto-

oncogene c-fos through ERa activation(165).

Recent data suggest that delphinidin interacts directly with

the activator site of ERa, leading to the activation of eNOS.

Thus, the ability of delphinidin (and of total polyphenolic

extract from red wine) to induce NO production and endo-

thelium-dependent vasorelaxation data is lost in ERa-deficient

mice or after using siRNA for this receptor(26). Silencing

the effects of ERa completely prevents delphinidin

activation of Src, ERK1/2 and eNOS, while binding assay

and docking experiments indicate a direct interaction

between delphinidin and the ERa activator site. Oral

administration of total polyphenolic extracts from red wine

increases the sensitivity of endothelium-dependent relaxation

to acetylcholine and is associated with increased NO pro-

duction and decreased superoxide anions in control mice

but absent in ERa-deficient mice(26).

Interaction between molecular targets of polyphenols

It is likely that there is an intracellular crosstalk of signalling

cascades activated by molecular targets of polyphenols. For

example, resveratrol modulates tumour cell proliferation and

protein translation via SIRT1-dependent AMPK activation in

ER-positive breast cancer cells, highlighting the interactions

of ER, SIRT1 and AMPK(166). Resveratrol induces deacetylation

of PGC-1a mediated by SIRT1 and phosphorylation of

AMPK in the liver to promote fatty acid oxidation and inhibit

lipogenesis(167). It is likely that SIRT1 may be upstream of

AMPK, since SIRT1 activation increases AMPK activity(168),

probably by SIRT1 deacetylation/activation of the upstream

AMPK kinase liver kinase B1 (LKB1)(169). Finally, eNOS acety-

lation is higher in AMPKa2-deficient mice, suggesting

that AMPK phosphorylation of eNOS is required for SIRT1

deacetylation of eNOS(156). These findings suggest that the

improvement of cell function produced by the polyphenols

resveratrol, quercetin and delphinidin occurs by the activation

of several signalling mechanisms in addition to the transcrip-

tional and post-translational effects.

Resveratrol

SIRT1 Nrf2 ?

?
?

?

PGC-1α

GCH1

SOD2 GPx1

Cat.

NQO1

HO-1

GCLC Trx-1SOD1
Mito.

biogenesis
eNOS

uncouplingNOX

ROS generation ROS detoxification

Oxidative stress

Fig. 4. Resveratrol reduces oxidative stress by decreasing reactive oxygen species (ROS) production from NADPH oxidases (NOX), uncoupled endothelial NO

synthase (eNOS, by up-regulating GTP cyclohydrolase 1, GCH1) and mitochondria (by stimulating mitochondrial (Mito.) biogenesis). In addition, resveratrol

enhances the expression of antioxidant enzymes, such as superoxide dismutases (SOD1–3), catalase (Cat.), glutathione peroxidase 1 (GPx1), NAD(P)H:quinone

oxidoreductase 1 (NQO1), g-glutamylcysteine synthetase (glutamate cysteine ligase catalytic subunit, GCLC), haem oxygenase-1 (HO-1) and thioredoxin-1

(Trx-1). SIRT1, sirtuin 1; PGC-1a, PPARg coactivator 1-a; Nrf2, nuclear factor E2-related factor-2. (A colour version of this figure can be found online at

http://www.journals.cambridge.org/bjn)
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Polyphenols and CVD

Cardiovascular mortality exceeds cancers as the leading cause

of death in the world. CVD include CHD, stroke, hyper-

tension, peripheral artery disease and heart failure. The

major causes of CVD are tobacco use, physical inactivity and

hyperenergetic diets.

Hypertension

Hypertension causes modifications of the vascular walls that

lead to hypertensive cardiomyopathy and heart failure(170).

Changes in the mechanical properties of arteries affect vascu-

lar resistance by altering the pressure–lumen diameter

relationship of small arteries(74). Part of the cardioprotective

actions of polyphenols is by lowering blood pressure. How-

ever, contradictory data are available: for instance, an antihy-

pertensive effect of resveratrol was reported in partially

nephrectomised rats(171), while in double transgenic rats har-

bouring human renin and angiotensinogen genes, resveratrol

reduces blood pressure, ameliorates cardiac hypertrophy

and prevents angiotensin II-induced mortality, probably by

increasing mitochondrial biogenesis and SIRT1 activity(172).

Resveratrol probably suppresses angiotensin II type 1 receptor

expression through SIRT1 activation, suggesting that the inhi-

bition of the renin–angiotensin system may contribute, at least

in part, to the resveratrol-induced cardiprotective effects(33).

Other studies report that resveratrol does not affect established

hypertension in SHR(173), although it attenuates the compli-

ance of arteries from SHR without changes in wall stiffness

by reducing eutrophic remodelling(174).

Chronic treatment with quercetin (10 mg/kg) reduces systo-

lic blood pressure and significantly reduces left ventricular and

renal hypertrophy in SHR(175), hypertension induced by the

inhibition of NOS(86) and in deoxycorticosterone acetate-salt

hypertensive rats(176). It appears that quercetin is effective in

all animal models of hypertension studied, and acts indepen-

dently of the status of renin–angiotensin system, oxidative

stress, NO, etc.(86).

Short-term oral administration of polyphenols from red

wine (a rich source of delphinidin) decreases blood pressure

in normotensive rats. This haemodynamic effect was associ-

ated with an enhanced endothelium-dependent relaxation

and an induction of gene expression within the arterial wall,

which together maintain unchanged agonist-induced contrac-

tility(177). Polyphenols from red wine reduce blood pressure

elevations caused by chronic inhibition of NOS, attenuate

end-organ damage such as myocardial fibrosis and aortic

thickening, and decrease protein synthesis in the heart

and aorta(178,179). Polyphenols also prevent endothelium-

dysfunction by increasing eNOS activity, moderately

enhancing eNOS expression and reducing oxidative stress in

the left ventricle and aorta. Endothelial dysfunction associated

with excessive NADPH oxidase-dependent vascular formation

of ROS in angiotensin II-induced hypertension is prevented by

polyphenols(31). Thus, polyphenols from red wine reduce

hypertension by modulating the NO and ROS balance in the

cardiovascular system.

Stroke

Cerebral ischaemia is caused by reduced cerebral blood flow.

Stroke involves the interaction of neurons, glia, vascular cells

and matrix components, all of which participate in the

mechanisms of tissue injury and repair. The severe reduction

of cerebral blood flow initiates a series of pathophysiological

mechanisms such as impaired energy metabolism, loss of ionic

homeostasis, excessive release of excitatory amino acids

(mainly aspartate and glutamate) and increased oxidative

stress. All these processes lead to brain tissue damage and

cell death.

Resveratrol reduces infarct volume in various experimental

models of stroke(180). The mechanisms involved in neuropro-

tection are largely by the inhibition of lipid oxidation pro-

cesses. More recent data indicate that resveratrol significantly

restores ATP content and the activity of mitochondrial respir-

atory complexes in a model of transient rat middle cerebral

artery occlusion by decreasing apoptosis, mitochondrial lipid

peroxidation, brain infarct volume and oedema(181). In the

stroke model, resveratrol improves neurological function by

reducing the release of excitatory neurotransmitters (gluta-

mate and aspartate), and increases inhibitory neurotransmitter

release (g-amino-n-butyric acid and glycine)(182). It is likely

that these effects are mediated through the activation of oes-

trogen and N-methyl-D-aspartate receptors(183) or the SIRT1

pathway(184). Resveratrol administration also induces angio-

genesis in the cortical area of mice exposed to middle cerebral

artery ischaemia(185). These findings highlight the ability of

resveratrol to preserve ischaemic neurovascular units in the

treatment of ischaemic stroke.

Liposomal preparations of quercetin that enhance neuropro-

tective capacity reduce cerebral damage provoked by cerebral

ischaemia(186). Repeated treatment with quercetin for 15 d

before ischaemic surgery in gerbils reduces lipid peroxidation,
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ROS

AT1

NADPH
oxidase

PI3K/Akt
 P

EDHFEDCF
Endothelial

cell
NO

COX

Platelet activation

Endothelial dysfunction

Improvement of vascular health

Polyphenols

Fig. 5. The protective effect of polyphenols on blood vessels is due to their

ability to act on endothelial cells to increase the formation of the vasoprotec-

tive factors NO and endothelium-derived hyperpolarising factor and reduce

the endothelial formation of cyclo-oxygenase (COX)-derived vasocontracting

factors, and also on vascular smooth muscle cells to reduce oxidative stress,

in part, by decreasing the expression of NADPH oxidase and, possibly, also

the angiotensin 1 receptor. ROS, reactive oxygen species; PI3K/AKT, phos-

phatidylinositol-3-kinsase/Akt; EDCF, endothelium-derived contracting factor;

EDHF, endothelium-derived hyperpolarising factor; AT1, angiotensin type 1

receptor. (A colour version of this figure can be found online at

http://www.journals.cambridge.org/bjn)
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suggesting that early administration of quercetin could offer

protection of neuronal units during cerebral ischaemia(187).

Feeding rats with diets enriched in anthocyanins from

blueberries provides neuroprotection after stroke induced

by ligation of the left common carotid artery independently of

their ability to scavenge oxygen radicals(188). An anthocyanin-

rich extract from red wine reduces injury induced by cerebral

ischaemia in rats, and protects from ischaemia-induced

excitotoxicity (by reducing the release of the excita-

tory neurotransmitters glutamate and aspartate), energy failure

(by increasing glucose concentrations) and oxidative stress

(by increasing levels of ascorbic and uric acids)(189). Long-

term administration of polyphenols partially restores cerebral

blood flow during cerebral artery occlusion and improves

flow during reperfusion in the cortex, as measured by

increased diameters of the arteries of the cerebral tree, while

also causing differential expression of proteins involved in

neuroprotection, maintenance of neuronal integrity, oxidative

stress, energy metabolism and inflammation (such as neurofi-

lament medium polypeptide (NF-M) or TOAD-64)(190). These

experimental data indicate the beneficial effects of polyphe-

nols in stroke protection, or in treatment during different

phases of the disease.

Polyphenols and metabolic diseases

Resveratrol extends the lifespan in mice fed a high-fat diet by

reducing fat accumulation and improving glucose tolerance

and insulin sensitivity(167). Hypercholesterolaemic swines

receiving resveratrol (100 mg/kg per d for 1 month) have

reduced BMI, total cholesterol, LDL, blood glucose levels

and systolic blood pressure(191), while in Zucker obese rats,

resveratrol improves inflammation (by increasing adiponectin

and reducing TNF-a production in the visceral adipose tissue)

and reduces plasma concentrations of TAG, total cholesterol,

NEFA, insulin and leptin(192). At a molecular level, resveratrol

inhibits preadipocyte proliferation and adipogenic differen-

tiation in a SIRT1-dependent manner(193). In human adipo-

cytes, resveratrol stimulates basal and insulin-stimulated

glucose uptake, while de novo lipogenesis is inhibited in

parallel with a down-regulation of lipogenic gene expression.

Furthermore, resveratrol influences the secretory profile of

human preadipocytes in a way that can positively interfere

with the development of obesity-associated co-morbidities(193).

Other studies implicate ERa in resveratrol-stimulated, insulin-

dependent and -independent glucose uptake(161).

Quercetin (2 or 10 mg/kg) improves dyslipidaemia, hyper-

tension and hyperinsulinaemia in obese Zucker rats, but

only the higher dose evokes the anti-inflammatory effects in

visceral adipose tissue(194). However, quercetin is unable to

improve insulin sensitivity in SHR(175). Comparing the same

doses of resveratrol and delphinidin (2·1 mg/kg) in a rat

model of the metabolic syndrome shows that only delphinidin

prevents insulin resistance without reducing high blood

pressure(195).

There are beneficial effects of dietary supplementation of

red wine polyphenol extracts on obesity-associated alterations

with respect to changes in metabolic disturbances and

cardiovascular function in Zucker fatty rats(196). These poly-

phenols improve glucose metabolism by reducing plasma

glucose and fructosamine in Zucker fatty rats. Moreover,

polyphenols reduce circulating TAG, total cholesterol as well

as LDL-cholesterol in Zucker fatty rats; echocardiography

measurements indicate improved cardiac performance asso-

ciated with decreased peripheral arterial resistance(196). Poly-

phenol extracts improve vasodilation by enhancing eNOS

activity and reducing superoxide anion release via decreased

expression of the NADPH oxidase membrane subunit

Nox-1(196), suggesting that polyphenol consumption may be

helpful in reducing obesity-associated metabolic disorders.

Conclusions

Several sources of polyphenols including red wines, grape

juices and green teas have the potential to improve vascular

health, for example, by stimulating the formation of vasopro-

tective factors such as NO and EDHF to promote vasodilata-

tion and prevent platelet activation. Polyphenols can also

improve vascular smooth muscle function, by reducing the

excessive vascular oxidative stress of pathological blood

vessels. The antioxidant effect probably reflects changes in

the expression levels of antioxidant and pro-oxidant enzymes.

Polyphenol treatments are associated with a reduced

expression of NADPH oxidase, a vascular source of superox-

ide anions, and a reduced angiotensin system, a strong activa-

tor of NADPH oxidase. The reduced oxidative stress will

prevent the degradation of NO by superoxide anions and

also prevent vasoconstriction and pro-inflammatory responses

(Fig. 5). Thus, actions of polyphenols on endothelial and

smooth muscle cells can promote vascular health.
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